Dealing with Multi-Dimensional Data and the Burden of Annotation

The need for huge data sets represents a bottleneck for the application of artificial intelligence. Substantially fewer annotated target lesions than normal tissues for comparison present an additional problem in the field of pathology. Organic brains overcome these limitations by utilizing large nu...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of pathology Vol. 191; no. 10; pp. 1709 - 1716
Main Authors Mitchell, Benjamin R., Cohen, Marion C., Cohen, Stanley
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2021
Online AccessGet full text
ISSN0002-9440
1525-2191
DOI10.1016/j.ajpath.2021.05.023

Cover

Loading…
Abstract The need for huge data sets represents a bottleneck for the application of artificial intelligence. Substantially fewer annotated target lesions than normal tissues for comparison present an additional problem in the field of pathology. Organic brains overcome these limitations by utilizing large numbers of specialized neural nets arranged in both linear and parallel fashion, with each solving a restricted classification problem. They rely on local Hebbian error corrections as compared to the nonlocal back-propagation used in most artificial neural nets, and leverage reinforcement. For these reasons, even toddlers are able to classify objects after only a few examples. Rather than provide an overview of current AI research in pathology, this review focuses on general strategies for overcoming the data bottleneck. These include transfer learning, zero-shot learning, Siamese networks, one-class models, generative networks, and reinforcement learning. Neither an extensive mathematic background nor advanced programing skills are needed to make these subjects accessible to pathologists. However, some familiarity with the basic principles of deep learning, briefly reviewed here, is expected to be useful in understanding both the current limitations of machine learning and determining ways to address them.
AbstractList The need for huge data sets represents a bottleneck for the application of artificial intelligence. Substantially fewer annotated target lesions than normal tissues for comparison present an additional problem in the field of pathology. Organic brains overcome these limitations by utilizing large numbers of specialized neural nets arranged in both linear and parallel fashion, with each solving a restricted classification problem. They rely on local Hebbian error corrections as compared to the nonlocal back-propagation used in most artificial neural nets, and leverage reinforcement. For these reasons, even toddlers are able to classify objects after only a few examples. Rather than provide an overview of current AI research in pathology, this review focuses on general strategies for overcoming the data bottleneck. These include transfer learning, zero-shot learning, Siamese networks, one-class models, generative networks, and reinforcement learning. Neither an extensive mathematic background nor advanced programing skills are needed to make these subjects accessible to pathologists. However, some familiarity with the basic principles of deep learning, briefly reviewed here, is expected to be useful in understanding both the current limitations of machine learning and determining ways to address them.
Author Mitchell, Benjamin R.
Cohen, Marion C.
Cohen, Stanley
Author_xml – sequence: 1
  givenname: Benjamin R.
  surname: Mitchell
  fullname: Mitchell, Benjamin R.
  organization: Department of Computer Science, Swarthmore College, Swarthmore, Pennsylvania
– sequence: 2
  givenname: Marion C.
  surname: Cohen
  fullname: Cohen, Marion C.
  organization: Clinical Science Analytics & Insights, Philadelphia, Pennsylvania
– sequence: 3
  givenname: Stanley
  surname: Cohen
  fullname: Cohen, Stanley
  email: cohenst@njms.rutgers.edu
  organization: Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
BookMark eNqFkM9OwzAMhyMEEtvgDTj0BVritOlahBBj4580xAXOkZu6LKVLpzQD7e3pVE677GRZ9veT_Y3ZqW0tMXYFPAIO6XUdYb1Bv4oEFxBxGXERn7ARSCFDATmcshHnXIR5kvBzNu66um_TOOMjdr8gbIz9Cn6NXwVv28abcGHWZDvTWmyCBXoM0JaBX1HwsHUl2aCtgpm1rUff71ywswqbji7_64R9Pj1-zF_C5fvz63y2DLWQPA4TQC0LiUAactKinAIkSTYtY10lugBRpUBZP6wQ0jQnKGRBmMUAZZ4VaRFP2M2Qq13bdY4qpc1wgXdoGgVc7V2oWg0u1N6F4lL1Lno4OYA3zqzR7Y5hdwNG_WM_hpzqtCGrqTSOtFdla44F3B4E6F620dh80-44_gcB_JE1
CitedBy_id crossref_primary_10_1080_17460441_2022_2114451
crossref_primary_10_1016_j_oooo_2023_12_006
crossref_primary_10_1016_j_ajpath_2021_07_011
crossref_primary_10_3390_s22176481
crossref_primary_10_3892_br_2024_1781
crossref_primary_10_1016_j_modpat_2022_100086
crossref_primary_10_1016_j_labinv_2024_102203
Cites_doi 10.1126/science.1127647
10.1016/j.patter.2020.100089
10.1037/h0042519
10.1007/s42484-019-00006-5
10.1007/BF02478259
10.1109/TIP.2019.2917862
10.1371/journal.pone.0141357
10.1038/323533a0
10.1007/s10489-020-01637-z
10.1109/TKDE.2009.191
10.1109/TMM.2019.2960636
10.1126/sciadv.aaz4888
10.3389/fgene.2019.00599
10.1016/j.compmedimag.2016.05.003
ContentType Journal Article
Copyright 2021 American Society for Investigative Pathology
Copyright_xml – notice: 2021 American Society for Investigative Pathology
DBID AAYXX
CITATION
DOI 10.1016/j.ajpath.2021.05.023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1525-2191
EndPage 1716
ExternalDocumentID 10_1016_j_ajpath_2021_05_023
S0002944021002625
GroupedDBID ---
--K
-~X
.1-
.55
.FO
.GJ
0R~
1P~
23M
2WC
34R
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
7X7
88E
88I
8AF
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEDT
AAEDW
AAFWJ
AAIKJ
AALRI
AAQFI
AAQXK
AAXUO
AAYWO
ABCQX
ABJNI
ABLJU
ABMAC
ABOCM
ABUWG
ABWVN
ACGFO
ACGOD
ACPRK
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADHJS
ADMUD
ADNMO
ADVLN
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AGCQF
AGHFR
AGQPQ
AHDRD
AHMBA
AI.
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
AZQEC
BAWUL
BBNVY
BELOY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CS3
DIK
DWQXO
E3Z
EBS
EFJIC
EFKBS
EJD
F5P
FDB
FEDTE
FGOYB
FYUFA
GBLVA
GNUQQ
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
HZ~
IH2
IXB
J5H
KOM
KQ8
L7B
LID
LK8
M1P
M2P
M41
M7P
MVM
N9A
O9-
OG~
OHT
OK1
OS.
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
R2-
ROL
RPM
SEL
SES
SJN
SSZ
TIP
TR2
UKHRP
VH1
WH7
WOQ
X7M
XH2
Y6R
YHG
YNH
Z5R
ZGI
ZXP
3V.
AACTN
AAIAV
ABVKL
ADPAM
AFCTW
AGZHU
ALXNB
NCXOZ
ZA5
AAYXX
ALIPV
CITATION
ID FETCH-LOGICAL-c2503-41ac5b5a1ec19ec2d7114487d3cf4cb12f61e8ec1fa1669e1b5bea8311d98b6b3
IEDL.DBID IXB
ISSN 0002-9440
IngestDate Tue Jul 01 02:35:10 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Fri Feb 23 02:43:08 EST 2024
Tue Aug 26 16:57:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2503-41ac5b5a1ec19ec2d7114487d3cf4cb12f61e8ec1fa1669e1b5bea8311d98b6b3
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0002944021002625
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_ajpath_2021_05_023
crossref_primary_10_1016_j_ajpath_2021_05_023
elsevier_sciencedirect_doi_10_1016_j_ajpath_2021_05_023
elsevier_clinicalkey_doi_10_1016_j_ajpath_2021_05_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle The American journal of pathology
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Perrera, Patel (bib14) 2018; 28
Furuta, Inoue, Yamasaki (bib26) 2020; 22
McCulloch, Pitts (bib2) 1943; 5
Hebb (bib7) 1949
Rumelhart, Hinton, Williams (bib4) 1986; 323
Chalapathy, Menon, Chawla (bib13) 2019
Pan, Yang (bib8) 2010; 22
Cao, Cogdell, Coker, Duan, Hauer, Kleinekathofer, Jansen, Mancal, Miller, Olgilvie, Prokhorenko, Renger, Tan, Tempelaar, Thorwart, Rhyrhaug, Westenhoff, Zigmantas (bib32) 2020; 6
Wiering, van Hasselt, Pietersma, Schomaker (bib24) 2011
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib22) 2014; 2
Acampora (bib30) 2019; 1
Snell, Swersky, Zemel (bib11) 2017
Rosenblatt (bib3) 1958; 65
Gildenblat, Klaiman (bib19) 2019
Hinton, Salakhutdinov (bib20) 2006; 313
Wittek (bib31) 2014
Sabour, Frosst, Hinto (bib27) 2017
LeCun, Kavukcuoglu, Farabet (bib5) 2010
Lecun, Chopra, Hadsell, Ranzato, Huang (bib29) 2007
Levenson, Krupinski, Navarro, Wasserman (bib6) 2015; 10
Quinn, Nguyen, Lee, Venkatesh (bib16) 2019; 10
Cohen (bib1) 2021
Wu (bib9) 2012
Tschuchnig, Oostingh, Gadermayr (bib23) 2020; 1
Lin, Chen, Qi (bib25) 2020; 50
Tokmakov, Wang, Hebert (bib28) 2019
Wang, Yao, Kwok, Ni (bib10) 2020; 53
Chen, fan, Li, Wu, Yang, Gao, Jiu, Wu, Chen, Tang, Chen, Wang, Mao, NG, Shi, Yu, Zhou (bib12) 2020; 2
Cano, Cruz-Roa (bib18) 2020; 11330
Janowczyk, Basavanhally, Maadabhuahi (bib21) 2019; 57
Sokolov, Paull, Stuart (bib15) 2016; 21
Koch, Zemel, Salakhutdinov (bib17) 2015; 3
Rumelhart (10.1016/j.ajpath.2021.05.023_bib4) 1986; 323
Goodfellow (10.1016/j.ajpath.2021.05.023_bib22) 2014; 2
Hebb (10.1016/j.ajpath.2021.05.023_bib7) 1949
Perrera (10.1016/j.ajpath.2021.05.023_bib14) 2018; 28
Sokolov (10.1016/j.ajpath.2021.05.023_bib15) 2016; 21
LeCun (10.1016/j.ajpath.2021.05.023_bib5) 2010
Cao (10.1016/j.ajpath.2021.05.023_bib32) 2020; 6
Koch (10.1016/j.ajpath.2021.05.023_bib17) 2015; 3
Wang (10.1016/j.ajpath.2021.05.023_bib10) 2020; 53
Cano (10.1016/j.ajpath.2021.05.023_bib18) 2020; 11330
Cohen (10.1016/j.ajpath.2021.05.023_bib1) 2021
Levenson (10.1016/j.ajpath.2021.05.023_bib6) 2015; 10
Tokmakov (10.1016/j.ajpath.2021.05.023_bib28) 2019
Chalapathy (10.1016/j.ajpath.2021.05.023_bib13) 2019
Pan (10.1016/j.ajpath.2021.05.023_bib8) 2010; 22
Snell (10.1016/j.ajpath.2021.05.023_bib11) 2017
Lin (10.1016/j.ajpath.2021.05.023_bib25) 2020; 50
Hinton (10.1016/j.ajpath.2021.05.023_bib20) 2006; 313
Chen (10.1016/j.ajpath.2021.05.023_bib12) 2020; 2
Wiering (10.1016/j.ajpath.2021.05.023_bib24) 2011
Gildenblat (10.1016/j.ajpath.2021.05.023_bib19) 2019
Janowczyk (10.1016/j.ajpath.2021.05.023_bib21) 2019; 57
Acampora (10.1016/j.ajpath.2021.05.023_bib30) 2019; 1
Rosenblatt (10.1016/j.ajpath.2021.05.023_bib3) 1958; 65
Tschuchnig (10.1016/j.ajpath.2021.05.023_bib23) 2020; 1
Sabour (10.1016/j.ajpath.2021.05.023_bib27) 2017
Furuta (10.1016/j.ajpath.2021.05.023_bib26) 2020; 22
Lecun (10.1016/j.ajpath.2021.05.023_bib29) 2007
McCulloch (10.1016/j.ajpath.2021.05.023_bib2) 1943; 5
Wittek (10.1016/j.ajpath.2021.05.023_bib31) 2014
Quinn (10.1016/j.ajpath.2021.05.023_bib16) 2019; 10
Wu (10.1016/j.ajpath.2021.05.023_bib9) 2012
References_xml – volume: 6
  start-page: eaaz4888
  year: 2020
  ident: bib32
  article-title: Quantum biology revisited
  publication-title: Sci Adv
– volume: 65
  start-page: 385
  year: 1958
  end-page: 408
  ident: bib3
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol Rev
– volume: 53
  start-page: 1
  year: 2020
  end-page: 34
  ident: bib10
  article-title: Generating from a few samples: a survey on few-shot learning
  publication-title: ACM Computing Surveys
– volume: 2
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib22
  article-title: 27th International Conference on the Advances in Neural Information Processing Systems 2014 Dec 8–13, Montreal, QC, Canada
  publication-title: ACM
– start-page: 1
  year: 2012
  end-page: 16
  ident: bib9
  publication-title: Cluster analysis and K-means clustering: an introduction, Advances in K-means Clustering: A Data Mining Thinking
– volume: 11330
  start-page: 113300A
  year: 2020
  ident: bib18
  article-title: An exploratory study of one-shot learning using Siamese convolutional neural network for histopathology image classification in breast cancer from few data examples
  publication-title: Proc SPIE
– year: 2017
  ident: bib11
  article-title: Prototypical networks for few-shot learning
– start-page: 6372
  year: 2019
  end-page: 6381
  ident: bib28
  article-title: Learning compositional representations for few shot recognition
  publication-title: 2019 International Conference on Computer Vision (ICCV). 2019 Oct 27-Nov 2, Seoul, Korea, IEEE/CVF
– start-page: 63
  year: 2014
  end-page: 72
  ident: bib31
  article-title: Pattern recognition and neural networks
  publication-title: Quantum Machine Learning
– volume: 22
  start-page: 1704
  year: 2020
  end-page: 1719
  ident: bib26
  article-title: PixelRL: fully convolutional network with reinforcement learning for image processing
  publication-title: IEEE Trans Multimedia
– start-page: 13
  year: 2021
  end-page: 14
  ident: bib1
  publication-title: The basics of machine learning: strategies and techniques. Artificial Intelligence and Deep Learning in Pathology
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib20
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– year: 1949
  ident: bib7
  article-title: The Organization of Behavior
– volume: 3
  start-page: 7
  year: 2015
  ident: bib17
  article-title: Siamese networks for one-shot image recognition
  publication-title: J Machine Learn Res
– year: 2011
  ident: bib24
  article-title: Reinforcement learning algorithms for solving classification problems
  publication-title: 2011 Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). 2011, Apr 12–14, Paris, France, IEEE
– volume: 57
  start-page: 50
  year: 2019
  end-page: 61
  ident: bib21
  article-title: Stain normalization using sparse autoencoders (StaNoSA): application to digital pathology
  publication-title: Comput Med Imaging Graph
– year: 2019
  ident: bib13
  article-title: Anomaly detection using one-class neural networks
  publication-title: arXiv
– start-page: 253
  year: 2010
  end-page: 256
  ident: bib5
  article-title: Convolutional networks and applications in vision
  publication-title: 2010 International Symposium on Circuits and Systems (ISCAC 2010), 2010 May 30-Jun 2, Paris. ACM/IEEE.
– volume: 21
  start-page: 405
  year: 2016
  end-page: 416
  ident: bib15
  article-title: One class detection of cell states in tumor subtypes
  publication-title: Biocomputing: Proc Pac Symp
– volume: 10
  start-page: 599
  year: 2019
  ident: bib16
  article-title: Cancer as a tissue anomaly: classifying transcriptomes based only on healthy data
  publication-title: Front Genet
– year: 2017
  ident: bib27
  article-title: Dynamic routing between capsules
  publication-title: 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017 Dec 4, Long Beach, CA. ACM
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib8
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowledge Data Eng
– volume: 28
  start-page: 5450
  year: 2018
  end-page: 5463
  ident: bib14
  article-title: Learning deep features for one-class classification.
  publication-title: IEEE Trans Image Process
– year: 2019
  ident: bib19
  article-title: Self-supervised similarity learning for digital pathology
  publication-title: arXiv
– volume: 2
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib12
  article-title: Molecular subgrouping of medulloblastoma based on few-shot learning of multitasking using conventional MR images: a retrospective multicenter study
  publication-title: Neurooncol Adv
– volume: 50
  start-page: 2488
  year: 2020
  end-page: 2502
  ident: bib25
  article-title: Deep reinforcement learning for imbalanced classification
  publication-title: Applied Intelligence
– volume: 10
  start-page: e0141357
  year: 2015
  ident: bib6
  article-title: Pigeons as trainable observers of pathology and radiology breast cancer images
  publication-title: PLoS One
– volume: 1
  start-page: 100089
  year: 2020
  ident: bib23
  article-title: Generative adversarial networks in digital pathology: a survey of trends and future potential
  publication-title: Patterns
– start-page: 191
  year: 2007
  end-page: 246
  ident: bib29
  article-title: Energy-based models
  publication-title: Predicting Structured Data
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: bib2
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biophys
– volume: 1
  start-page: 1
  year: 2019
  end-page: 3
  ident: bib30
  article-title: Editorial
  publication-title: Quan Machine Intelligence
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib4
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.ajpath.2021.05.023_bib20
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 13
  year: 2021
  ident: 10.1016/j.ajpath.2021.05.023_bib1
– start-page: 253
  year: 2010
  ident: 10.1016/j.ajpath.2021.05.023_bib5
  article-title: Convolutional networks and applications in vision
– volume: 2
  start-page: 1
  year: 2020
  ident: 10.1016/j.ajpath.2021.05.023_bib12
  article-title: Molecular subgrouping of medulloblastoma based on few-shot learning of multitasking using conventional MR images: a retrospective multicenter study
  publication-title: Neurooncol Adv
– volume: 1
  start-page: 100089
  year: 2020
  ident: 10.1016/j.ajpath.2021.05.023_bib23
  article-title: Generative adversarial networks in digital pathology: a survey of trends and future potential
  publication-title: Patterns
  doi: 10.1016/j.patter.2020.100089
– volume: 21
  start-page: 405
  year: 2016
  ident: 10.1016/j.ajpath.2021.05.023_bib15
  article-title: One class detection of cell states in tumor subtypes
  publication-title: Biocomputing: Proc Pac Symp
– volume: 65
  start-page: 385
  year: 1958
  ident: 10.1016/j.ajpath.2021.05.023_bib3
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol Rev
  doi: 10.1037/h0042519
– year: 2017
  ident: 10.1016/j.ajpath.2021.05.023_bib27
  article-title: Dynamic routing between capsules
– year: 2017
  ident: 10.1016/j.ajpath.2021.05.023_bib11
– volume: 1
  start-page: 1
  year: 2019
  ident: 10.1016/j.ajpath.2021.05.023_bib30
  article-title: Editorial
  publication-title: Quan Machine Intelligence
  doi: 10.1007/s42484-019-00006-5
– year: 2019
  ident: 10.1016/j.ajpath.2021.05.023_bib13
  article-title: Anomaly detection using one-class neural networks
– volume: 2
  start-page: 2672
  year: 2014
  ident: 10.1016/j.ajpath.2021.05.023_bib22
  article-title: 27th International Conference on the Advances in Neural Information Processing Systems 2014 Dec 8–13, Montreal, QC, Canada
  publication-title: ACM
– start-page: 1
  year: 2012
  ident: 10.1016/j.ajpath.2021.05.023_bib9
– volume: 11330
  start-page: 113300A
  year: 2020
  ident: 10.1016/j.ajpath.2021.05.023_bib18
  article-title: An exploratory study of one-shot learning using Siamese convolutional neural network for histopathology image classification in breast cancer from few data examples
  publication-title: Proc SPIE
– volume: 5
  start-page: 115
  year: 1943
  ident: 10.1016/j.ajpath.2021.05.023_bib2
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– volume: 28
  start-page: 5450
  year: 2018
  ident: 10.1016/j.ajpath.2021.05.023_bib14
  article-title: Learning deep features for one-class classification.
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2917862
– volume: 10
  start-page: e0141357
  year: 2015
  ident: 10.1016/j.ajpath.2021.05.023_bib6
  article-title: Pigeons as trainable observers of pathology and radiology breast cancer images
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0141357
– volume: 3
  start-page: 7
  year: 2015
  ident: 10.1016/j.ajpath.2021.05.023_bib17
  article-title: Siamese networks for one-shot image recognition
  publication-title: J Machine Learn Res
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.ajpath.2021.05.023_bib4
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– start-page: 63
  year: 2014
  ident: 10.1016/j.ajpath.2021.05.023_bib31
  article-title: Pattern recognition and neural networks
– volume: 50
  start-page: 2488
  year: 2020
  ident: 10.1016/j.ajpath.2021.05.023_bib25
  article-title: Deep reinforcement learning for imbalanced classification
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-01637-z
– start-page: 6372
  year: 2019
  ident: 10.1016/j.ajpath.2021.05.023_bib28
  article-title: Learning compositional representations for few shot recognition
– year: 1949
  ident: 10.1016/j.ajpath.2021.05.023_bib7
– volume: 22
  start-page: 1345
  year: 2010
  ident: 10.1016/j.ajpath.2021.05.023_bib8
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowledge Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 22
  start-page: 1704
  year: 2020
  ident: 10.1016/j.ajpath.2021.05.023_bib26
  article-title: PixelRL: fully convolutional network with reinforcement learning for image processing
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2019.2960636
– year: 2019
  ident: 10.1016/j.ajpath.2021.05.023_bib19
  article-title: Self-supervised similarity learning for digital pathology
– year: 2011
  ident: 10.1016/j.ajpath.2021.05.023_bib24
  article-title: Reinforcement learning algorithms for solving classification problems
– volume: 6
  start-page: eaaz4888
  year: 2020
  ident: 10.1016/j.ajpath.2021.05.023_bib32
  article-title: Quantum biology revisited
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaz4888
– start-page: 191
  year: 2007
  ident: 10.1016/j.ajpath.2021.05.023_bib29
  article-title: Energy-based models
– volume: 53
  start-page: 1
  year: 2020
  ident: 10.1016/j.ajpath.2021.05.023_bib10
  article-title: Generating from a few samples: a survey on few-shot learning
  publication-title: ACM Computing Surveys
– volume: 10
  start-page: 599
  year: 2019
  ident: 10.1016/j.ajpath.2021.05.023_bib16
  article-title: Cancer as a tissue anomaly: classifying transcriptomes based only on healthy data
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00599
– volume: 57
  start-page: 50
  year: 2019
  ident: 10.1016/j.ajpath.2021.05.023_bib21
  article-title: Stain normalization using sparse autoencoders (StaNoSA): application to digital pathology
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2016.05.003
SSID ssj0006380
Score 2.3697805
SecondaryResourceType review_article
Snippet The need for huge data sets represents a bottleneck for the application of artificial intelligence. Substantially fewer annotated target lesions than normal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1709
Title Dealing with Multi-Dimensional Data and the Burden of Annotation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0002944021002625
https://dx.doi.org/10.1016/j.ajpath.2021.05.023
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61B_EiPvFZcvAa2kk2m-zN2lqLUE8WegtJNgstsi1S_7-TfRQFoeBxsxlYvgzz2Mw3Q8hDqhQUCizLVAgsUYIz67Vn3EmdeqdV4JGNPHtLp_PkdSEXHTJquTCxrLKx_bVNr6x1s9Jv0OxvlsvI8R3wLEli0oKJBI9E89ipJZL4Fk87a4z6NWhD4Li7pc9VNV52Fef-YpbIoerfycXf7umHy5mckOMmVqTD-nNOSSeUZ-Rw1tyGn5PHMUZ56Hpo_JlKKyotG8du_XWnDTq2W0ttmVMM8mjNV6Drgg7Lcl1fwF-Q-eT5fTRlzUQE5jFUESwB66WTFoKHLHieK0xnMOXIhS8S74AXKQSNLwsLaZoFcNIFqwVAnmmXOnFJuuW6DFeEWoenA9IGjXlprq0LIsdz8SEpIAEH10S0QBjftAuPUys-TFsXtjI1fCbCZwbSIHzXhO2kNnW7jD37ZYuxaamgaLwM2vM9cmon90td9kre_FvylhzFp7qS7450t59f4R4jkq3rkYOXBfQqxfsG4i7fPA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61gnoRn1ifOXgNbbLJZvdmbS2ttj210FtIslmoyLZI_f9ONrtFQSh43WQgTIaZbzbzzSD0GEtJc0k1SaVzhMuIEW0TS5gRSWxNIh3zbOTJNB7O-etCLBqoV3NhfFll5fuDTy-9dfWlXWmzvV4uPce3w1LOfdICiQQTe2gf0EDs67pGi-etOwYD69QY2G-v-XNlkZd-94N_IU1ktGzgyaK_49OPmDM4QccVWMTdcJ5T1HDFGTqYVM_h5-ipDzAPYg_2f1NxyaUlfd-uP7TawH290VgXGQaUhwNhAa9y3C2KVXiBv0DzwcusNyTVSARiAatEhFNthRGaOktTZ1kmIZ-BnCOLbM6toSyPqUtgMdc0jlNHjTBOJxGlWZqY2ESXqFmsCneFsDZwPVRol0BimiXauCiDi7GO55RTQ1soqhWhbNUv3I-t-FB1Ydi7CupTXn2qIxSor4XIVmod-mXs2C9qHauaCwreS4FD3yEnt3K_7GWn5PW_JR_Q4XA2GavxaPp2g478Sijru0XNzeeXuwN4sjH3pfl9A_Uh4XI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dealing+with+Multi-Dimensional+Data+and+the+Burden+of+Annotation&rft.jtitle=The+American+journal+of+pathology&rft.au=Mitchell%2C+Benjamin+R.&rft.au=Cohen%2C+Marion+C.&rft.au=Cohen%2C+Stanley&rft.date=2021-10-01&rft.pub=Elsevier+Inc&rft.issn=0002-9440&rft.eissn=1525-2191&rft.volume=191&rft.issue=10&rft.spage=1709&rft.epage=1716&rft_id=info:doi/10.1016%2Fj.ajpath.2021.05.023&rft.externalDocID=S0002944021002625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9440&client=summon