Dealing with Multi-Dimensional Data and the Burden of Annotation
The need for huge data sets represents a bottleneck for the application of artificial intelligence. Substantially fewer annotated target lesions than normal tissues for comparison present an additional problem in the field of pathology. Organic brains overcome these limitations by utilizing large nu...
Saved in:
Published in | The American journal of pathology Vol. 191; no. 10; pp. 1709 - 1716 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2021
|
Online Access | Get full text |
ISSN | 0002-9440 1525-2191 |
DOI | 10.1016/j.ajpath.2021.05.023 |
Cover
Loading…
Abstract | The need for huge data sets represents a bottleneck for the application of artificial intelligence. Substantially fewer annotated target lesions than normal tissues for comparison present an additional problem in the field of pathology. Organic brains overcome these limitations by utilizing large numbers of specialized neural nets arranged in both linear and parallel fashion, with each solving a restricted classification problem. They rely on local Hebbian error corrections as compared to the nonlocal back-propagation used in most artificial neural nets, and leverage reinforcement. For these reasons, even toddlers are able to classify objects after only a few examples. Rather than provide an overview of current AI research in pathology, this review focuses on general strategies for overcoming the data bottleneck. These include transfer learning, zero-shot learning, Siamese networks, one-class models, generative networks, and reinforcement learning. Neither an extensive mathematic background nor advanced programing skills are needed to make these subjects accessible to pathologists. However, some familiarity with the basic principles of deep learning, briefly reviewed here, is expected to be useful in understanding both the current limitations of machine learning and determining ways to address them. |
---|---|
AbstractList | The need for huge data sets represents a bottleneck for the application of artificial intelligence. Substantially fewer annotated target lesions than normal tissues for comparison present an additional problem in the field of pathology. Organic brains overcome these limitations by utilizing large numbers of specialized neural nets arranged in both linear and parallel fashion, with each solving a restricted classification problem. They rely on local Hebbian error corrections as compared to the nonlocal back-propagation used in most artificial neural nets, and leverage reinforcement. For these reasons, even toddlers are able to classify objects after only a few examples. Rather than provide an overview of current AI research in pathology, this review focuses on general strategies for overcoming the data bottleneck. These include transfer learning, zero-shot learning, Siamese networks, one-class models, generative networks, and reinforcement learning. Neither an extensive mathematic background nor advanced programing skills are needed to make these subjects accessible to pathologists. However, some familiarity with the basic principles of deep learning, briefly reviewed here, is expected to be useful in understanding both the current limitations of machine learning and determining ways to address them. |
Author | Mitchell, Benjamin R. Cohen, Marion C. Cohen, Stanley |
Author_xml | – sequence: 1 givenname: Benjamin R. surname: Mitchell fullname: Mitchell, Benjamin R. organization: Department of Computer Science, Swarthmore College, Swarthmore, Pennsylvania – sequence: 2 givenname: Marion C. surname: Cohen fullname: Cohen, Marion C. organization: Clinical Science Analytics & Insights, Philadelphia, Pennsylvania – sequence: 3 givenname: Stanley surname: Cohen fullname: Cohen, Stanley email: cohenst@njms.rutgers.edu organization: Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey |
BookMark | eNqFkM9OwzAMhyMEEtvgDTj0BVritOlahBBj4580xAXOkZu6LKVLpzQD7e3pVE677GRZ9veT_Y3ZqW0tMXYFPAIO6XUdYb1Bv4oEFxBxGXERn7ARSCFDATmcshHnXIR5kvBzNu66um_TOOMjdr8gbIz9Cn6NXwVv28abcGHWZDvTWmyCBXoM0JaBX1HwsHUl2aCtgpm1rUff71ywswqbji7_64R9Pj1-zF_C5fvz63y2DLWQPA4TQC0LiUAactKinAIkSTYtY10lugBRpUBZP6wQ0jQnKGRBmMUAZZ4VaRFP2M2Qq13bdY4qpc1wgXdoGgVc7V2oWg0u1N6F4lL1Lno4OYA3zqzR7Y5hdwNG_WM_hpzqtCGrqTSOtFdla44F3B4E6F620dh80-44_gcB_JE1 |
CitedBy_id | crossref_primary_10_1080_17460441_2022_2114451 crossref_primary_10_1016_j_oooo_2023_12_006 crossref_primary_10_1016_j_ajpath_2021_07_011 crossref_primary_10_3390_s22176481 crossref_primary_10_3892_br_2024_1781 crossref_primary_10_1016_j_modpat_2022_100086 crossref_primary_10_1016_j_labinv_2024_102203 |
Cites_doi | 10.1126/science.1127647 10.1016/j.patter.2020.100089 10.1037/h0042519 10.1007/s42484-019-00006-5 10.1007/BF02478259 10.1109/TIP.2019.2917862 10.1371/journal.pone.0141357 10.1038/323533a0 10.1007/s10489-020-01637-z 10.1109/TKDE.2009.191 10.1109/TMM.2019.2960636 10.1126/sciadv.aaz4888 10.3389/fgene.2019.00599 10.1016/j.compmedimag.2016.05.003 |
ContentType | Journal Article |
Copyright | 2021 American Society for Investigative Pathology |
Copyright_xml | – notice: 2021 American Society for Investigative Pathology |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ajpath.2021.05.023 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1525-2191 |
EndPage | 1716 |
ExternalDocumentID | 10_1016_j_ajpath_2021_05_023 S0002944021002625 |
GroupedDBID | --- --K -~X .1- .55 .FO .GJ 0R~ 1P~ 23M 2WC 34R 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 7X7 88E 88I 8AF 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEDT AAEDW AAFWJ AAIKJ AALRI AAQFI AAQXK AAXUO AAYWO ABCQX ABJNI ABLJU ABMAC ABOCM ABUWG ABWVN ACGFO ACGOD ACPRK ACRPL ACVFH ADBBV ADCNI ADEZE ADHJS ADMUD ADNMO ADVLN AENEX AEUPX AEVXI AFFNX AFJKZ AFKRA AFPUW AFRHN AFTJW AGCQF AGHFR AGQPQ AHDRD AHMBA AI. AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN AZQEC BAWUL BBNVY BELOY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CS3 DIK DWQXO E3Z EBS EFJIC EFKBS EJD F5P FDB FEDTE FGOYB FYUFA GBLVA GNUQQ GX1 H13 HCIFZ HMCUK HVGLF HX~ HZ~ IH2 IXB J5H KOM KQ8 L7B LID LK8 M1P M2P M41 M7P MVM N9A O9- OG~ OHT OK1 OS. P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X R2- ROL RPM SEL SES SJN SSZ TIP TR2 UKHRP VH1 WH7 WOQ X7M XH2 Y6R YHG YNH Z5R ZGI ZXP 3V. AACTN AAIAV ABVKL ADPAM AFCTW AGZHU ALXNB NCXOZ ZA5 AAYXX ALIPV CITATION |
ID | FETCH-LOGICAL-c2503-41ac5b5a1ec19ec2d7114487d3cf4cb12f61e8ec1fa1669e1b5bea8311d98b6b3 |
IEDL.DBID | IXB |
ISSN | 0002-9440 |
IngestDate | Tue Jul 01 02:35:10 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Fri Feb 23 02:43:08 EST 2024 Tue Aug 26 16:57:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2503-41ac5b5a1ec19ec2d7114487d3cf4cb12f61e8ec1fa1669e1b5bea8311d98b6b3 |
OpenAccessLink | https://www.clinicalkey.com/#!/content/1-s2.0-S0002944021002625 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ajpath_2021_05_023 crossref_primary_10_1016_j_ajpath_2021_05_023 elsevier_sciencedirect_doi_10_1016_j_ajpath_2021_05_023 elsevier_clinicalkey_doi_10_1016_j_ajpath_2021_05_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | The American journal of pathology |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Perrera, Patel (bib14) 2018; 28 Furuta, Inoue, Yamasaki (bib26) 2020; 22 McCulloch, Pitts (bib2) 1943; 5 Hebb (bib7) 1949 Rumelhart, Hinton, Williams (bib4) 1986; 323 Chalapathy, Menon, Chawla (bib13) 2019 Pan, Yang (bib8) 2010; 22 Cao, Cogdell, Coker, Duan, Hauer, Kleinekathofer, Jansen, Mancal, Miller, Olgilvie, Prokhorenko, Renger, Tan, Tempelaar, Thorwart, Rhyrhaug, Westenhoff, Zigmantas (bib32) 2020; 6 Wiering, van Hasselt, Pietersma, Schomaker (bib24) 2011 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib22) 2014; 2 Acampora (bib30) 2019; 1 Snell, Swersky, Zemel (bib11) 2017 Rosenblatt (bib3) 1958; 65 Gildenblat, Klaiman (bib19) 2019 Hinton, Salakhutdinov (bib20) 2006; 313 Wittek (bib31) 2014 Sabour, Frosst, Hinto (bib27) 2017 LeCun, Kavukcuoglu, Farabet (bib5) 2010 Lecun, Chopra, Hadsell, Ranzato, Huang (bib29) 2007 Levenson, Krupinski, Navarro, Wasserman (bib6) 2015; 10 Quinn, Nguyen, Lee, Venkatesh (bib16) 2019; 10 Cohen (bib1) 2021 Wu (bib9) 2012 Tschuchnig, Oostingh, Gadermayr (bib23) 2020; 1 Lin, Chen, Qi (bib25) 2020; 50 Tokmakov, Wang, Hebert (bib28) 2019 Wang, Yao, Kwok, Ni (bib10) 2020; 53 Chen, fan, Li, Wu, Yang, Gao, Jiu, Wu, Chen, Tang, Chen, Wang, Mao, NG, Shi, Yu, Zhou (bib12) 2020; 2 Cano, Cruz-Roa (bib18) 2020; 11330 Janowczyk, Basavanhally, Maadabhuahi (bib21) 2019; 57 Sokolov, Paull, Stuart (bib15) 2016; 21 Koch, Zemel, Salakhutdinov (bib17) 2015; 3 Rumelhart (10.1016/j.ajpath.2021.05.023_bib4) 1986; 323 Goodfellow (10.1016/j.ajpath.2021.05.023_bib22) 2014; 2 Hebb (10.1016/j.ajpath.2021.05.023_bib7) 1949 Perrera (10.1016/j.ajpath.2021.05.023_bib14) 2018; 28 Sokolov (10.1016/j.ajpath.2021.05.023_bib15) 2016; 21 LeCun (10.1016/j.ajpath.2021.05.023_bib5) 2010 Cao (10.1016/j.ajpath.2021.05.023_bib32) 2020; 6 Koch (10.1016/j.ajpath.2021.05.023_bib17) 2015; 3 Wang (10.1016/j.ajpath.2021.05.023_bib10) 2020; 53 Cano (10.1016/j.ajpath.2021.05.023_bib18) 2020; 11330 Cohen (10.1016/j.ajpath.2021.05.023_bib1) 2021 Levenson (10.1016/j.ajpath.2021.05.023_bib6) 2015; 10 Tokmakov (10.1016/j.ajpath.2021.05.023_bib28) 2019 Chalapathy (10.1016/j.ajpath.2021.05.023_bib13) 2019 Pan (10.1016/j.ajpath.2021.05.023_bib8) 2010; 22 Snell (10.1016/j.ajpath.2021.05.023_bib11) 2017 Lin (10.1016/j.ajpath.2021.05.023_bib25) 2020; 50 Hinton (10.1016/j.ajpath.2021.05.023_bib20) 2006; 313 Chen (10.1016/j.ajpath.2021.05.023_bib12) 2020; 2 Wiering (10.1016/j.ajpath.2021.05.023_bib24) 2011 Gildenblat (10.1016/j.ajpath.2021.05.023_bib19) 2019 Janowczyk (10.1016/j.ajpath.2021.05.023_bib21) 2019; 57 Acampora (10.1016/j.ajpath.2021.05.023_bib30) 2019; 1 Rosenblatt (10.1016/j.ajpath.2021.05.023_bib3) 1958; 65 Tschuchnig (10.1016/j.ajpath.2021.05.023_bib23) 2020; 1 Sabour (10.1016/j.ajpath.2021.05.023_bib27) 2017 Furuta (10.1016/j.ajpath.2021.05.023_bib26) 2020; 22 Lecun (10.1016/j.ajpath.2021.05.023_bib29) 2007 McCulloch (10.1016/j.ajpath.2021.05.023_bib2) 1943; 5 Wittek (10.1016/j.ajpath.2021.05.023_bib31) 2014 Quinn (10.1016/j.ajpath.2021.05.023_bib16) 2019; 10 Wu (10.1016/j.ajpath.2021.05.023_bib9) 2012 |
References_xml | – volume: 6 start-page: eaaz4888 year: 2020 ident: bib32 article-title: Quantum biology revisited publication-title: Sci Adv – volume: 65 start-page: 385 year: 1958 end-page: 408 ident: bib3 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol Rev – volume: 53 start-page: 1 year: 2020 end-page: 34 ident: bib10 article-title: Generating from a few samples: a survey on few-shot learning publication-title: ACM Computing Surveys – volume: 2 start-page: 2672 year: 2014 end-page: 2680 ident: bib22 article-title: 27th International Conference on the Advances in Neural Information Processing Systems 2014 Dec 8–13, Montreal, QC, Canada publication-title: ACM – start-page: 1 year: 2012 end-page: 16 ident: bib9 publication-title: Cluster analysis and K-means clustering: an introduction, Advances in K-means Clustering: A Data Mining Thinking – volume: 11330 start-page: 113300A year: 2020 ident: bib18 article-title: An exploratory study of one-shot learning using Siamese convolutional neural network for histopathology image classification in breast cancer from few data examples publication-title: Proc SPIE – year: 2017 ident: bib11 article-title: Prototypical networks for few-shot learning – start-page: 6372 year: 2019 end-page: 6381 ident: bib28 article-title: Learning compositional representations for few shot recognition publication-title: 2019 International Conference on Computer Vision (ICCV). 2019 Oct 27-Nov 2, Seoul, Korea, IEEE/CVF – start-page: 63 year: 2014 end-page: 72 ident: bib31 article-title: Pattern recognition and neural networks publication-title: Quantum Machine Learning – volume: 22 start-page: 1704 year: 2020 end-page: 1719 ident: bib26 article-title: PixelRL: fully convolutional network with reinforcement learning for image processing publication-title: IEEE Trans Multimedia – start-page: 13 year: 2021 end-page: 14 ident: bib1 publication-title: The basics of machine learning: strategies and techniques. Artificial Intelligence and Deep Learning in Pathology – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib20 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – year: 1949 ident: bib7 article-title: The Organization of Behavior – volume: 3 start-page: 7 year: 2015 ident: bib17 article-title: Siamese networks for one-shot image recognition publication-title: J Machine Learn Res – year: 2011 ident: bib24 article-title: Reinforcement learning algorithms for solving classification problems publication-title: 2011 Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). 2011, Apr 12–14, Paris, France, IEEE – volume: 57 start-page: 50 year: 2019 end-page: 61 ident: bib21 article-title: Stain normalization using sparse autoencoders (StaNoSA): application to digital pathology publication-title: Comput Med Imaging Graph – year: 2019 ident: bib13 article-title: Anomaly detection using one-class neural networks publication-title: arXiv – start-page: 253 year: 2010 end-page: 256 ident: bib5 article-title: Convolutional networks and applications in vision publication-title: 2010 International Symposium on Circuits and Systems (ISCAC 2010), 2010 May 30-Jun 2, Paris. ACM/IEEE. – volume: 21 start-page: 405 year: 2016 end-page: 416 ident: bib15 article-title: One class detection of cell states in tumor subtypes publication-title: Biocomputing: Proc Pac Symp – volume: 10 start-page: 599 year: 2019 ident: bib16 article-title: Cancer as a tissue anomaly: classifying transcriptomes based only on healthy data publication-title: Front Genet – year: 2017 ident: bib27 article-title: Dynamic routing between capsules publication-title: 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017 Dec 4, Long Beach, CA. ACM – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib8 article-title: A survey on transfer learning publication-title: IEEE Trans Knowledge Data Eng – volume: 28 start-page: 5450 year: 2018 end-page: 5463 ident: bib14 article-title: Learning deep features for one-class classification. publication-title: IEEE Trans Image Process – year: 2019 ident: bib19 article-title: Self-supervised similarity learning for digital pathology publication-title: arXiv – volume: 2 start-page: 1 year: 2020 end-page: 11 ident: bib12 article-title: Molecular subgrouping of medulloblastoma based on few-shot learning of multitasking using conventional MR images: a retrospective multicenter study publication-title: Neurooncol Adv – volume: 50 start-page: 2488 year: 2020 end-page: 2502 ident: bib25 article-title: Deep reinforcement learning for imbalanced classification publication-title: Applied Intelligence – volume: 10 start-page: e0141357 year: 2015 ident: bib6 article-title: Pigeons as trainable observers of pathology and radiology breast cancer images publication-title: PLoS One – volume: 1 start-page: 100089 year: 2020 ident: bib23 article-title: Generative adversarial networks in digital pathology: a survey of trends and future potential publication-title: Patterns – start-page: 191 year: 2007 end-page: 246 ident: bib29 article-title: Energy-based models publication-title: Predicting Structured Data – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: bib2 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Math Biophys – volume: 1 start-page: 1 year: 2019 end-page: 3 ident: bib30 article-title: Editorial publication-title: Quan Machine Intelligence – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib4 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.ajpath.2021.05.023_bib20 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – start-page: 13 year: 2021 ident: 10.1016/j.ajpath.2021.05.023_bib1 – start-page: 253 year: 2010 ident: 10.1016/j.ajpath.2021.05.023_bib5 article-title: Convolutional networks and applications in vision – volume: 2 start-page: 1 year: 2020 ident: 10.1016/j.ajpath.2021.05.023_bib12 article-title: Molecular subgrouping of medulloblastoma based on few-shot learning of multitasking using conventional MR images: a retrospective multicenter study publication-title: Neurooncol Adv – volume: 1 start-page: 100089 year: 2020 ident: 10.1016/j.ajpath.2021.05.023_bib23 article-title: Generative adversarial networks in digital pathology: a survey of trends and future potential publication-title: Patterns doi: 10.1016/j.patter.2020.100089 – volume: 21 start-page: 405 year: 2016 ident: 10.1016/j.ajpath.2021.05.023_bib15 article-title: One class detection of cell states in tumor subtypes publication-title: Biocomputing: Proc Pac Symp – volume: 65 start-page: 385 year: 1958 ident: 10.1016/j.ajpath.2021.05.023_bib3 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol Rev doi: 10.1037/h0042519 – year: 2017 ident: 10.1016/j.ajpath.2021.05.023_bib27 article-title: Dynamic routing between capsules – year: 2017 ident: 10.1016/j.ajpath.2021.05.023_bib11 – volume: 1 start-page: 1 year: 2019 ident: 10.1016/j.ajpath.2021.05.023_bib30 article-title: Editorial publication-title: Quan Machine Intelligence doi: 10.1007/s42484-019-00006-5 – year: 2019 ident: 10.1016/j.ajpath.2021.05.023_bib13 article-title: Anomaly detection using one-class neural networks – volume: 2 start-page: 2672 year: 2014 ident: 10.1016/j.ajpath.2021.05.023_bib22 article-title: 27th International Conference on the Advances in Neural Information Processing Systems 2014 Dec 8–13, Montreal, QC, Canada publication-title: ACM – start-page: 1 year: 2012 ident: 10.1016/j.ajpath.2021.05.023_bib9 – volume: 11330 start-page: 113300A year: 2020 ident: 10.1016/j.ajpath.2021.05.023_bib18 article-title: An exploratory study of one-shot learning using Siamese convolutional neural network for histopathology image classification in breast cancer from few data examples publication-title: Proc SPIE – volume: 5 start-page: 115 year: 1943 ident: 10.1016/j.ajpath.2021.05.023_bib2 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – volume: 28 start-page: 5450 year: 2018 ident: 10.1016/j.ajpath.2021.05.023_bib14 article-title: Learning deep features for one-class classification. publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2917862 – volume: 10 start-page: e0141357 year: 2015 ident: 10.1016/j.ajpath.2021.05.023_bib6 article-title: Pigeons as trainable observers of pathology and radiology breast cancer images publication-title: PLoS One doi: 10.1371/journal.pone.0141357 – volume: 3 start-page: 7 year: 2015 ident: 10.1016/j.ajpath.2021.05.023_bib17 article-title: Siamese networks for one-shot image recognition publication-title: J Machine Learn Res – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.ajpath.2021.05.023_bib4 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – start-page: 63 year: 2014 ident: 10.1016/j.ajpath.2021.05.023_bib31 article-title: Pattern recognition and neural networks – volume: 50 start-page: 2488 year: 2020 ident: 10.1016/j.ajpath.2021.05.023_bib25 article-title: Deep reinforcement learning for imbalanced classification publication-title: Applied Intelligence doi: 10.1007/s10489-020-01637-z – start-page: 6372 year: 2019 ident: 10.1016/j.ajpath.2021.05.023_bib28 article-title: Learning compositional representations for few shot recognition – year: 1949 ident: 10.1016/j.ajpath.2021.05.023_bib7 – volume: 22 start-page: 1345 year: 2010 ident: 10.1016/j.ajpath.2021.05.023_bib8 article-title: A survey on transfer learning publication-title: IEEE Trans Knowledge Data Eng doi: 10.1109/TKDE.2009.191 – volume: 22 start-page: 1704 year: 2020 ident: 10.1016/j.ajpath.2021.05.023_bib26 article-title: PixelRL: fully convolutional network with reinforcement learning for image processing publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2019.2960636 – year: 2019 ident: 10.1016/j.ajpath.2021.05.023_bib19 article-title: Self-supervised similarity learning for digital pathology – year: 2011 ident: 10.1016/j.ajpath.2021.05.023_bib24 article-title: Reinforcement learning algorithms for solving classification problems – volume: 6 start-page: eaaz4888 year: 2020 ident: 10.1016/j.ajpath.2021.05.023_bib32 article-title: Quantum biology revisited publication-title: Sci Adv doi: 10.1126/sciadv.aaz4888 – start-page: 191 year: 2007 ident: 10.1016/j.ajpath.2021.05.023_bib29 article-title: Energy-based models – volume: 53 start-page: 1 year: 2020 ident: 10.1016/j.ajpath.2021.05.023_bib10 article-title: Generating from a few samples: a survey on few-shot learning publication-title: ACM Computing Surveys – volume: 10 start-page: 599 year: 2019 ident: 10.1016/j.ajpath.2021.05.023_bib16 article-title: Cancer as a tissue anomaly: classifying transcriptomes based only on healthy data publication-title: Front Genet doi: 10.3389/fgene.2019.00599 – volume: 57 start-page: 50 year: 2019 ident: 10.1016/j.ajpath.2021.05.023_bib21 article-title: Stain normalization using sparse autoencoders (StaNoSA): application to digital pathology publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2016.05.003 |
SSID | ssj0006380 |
Score | 2.3697805 |
SecondaryResourceType | review_article |
Snippet | The need for huge data sets represents a bottleneck for the application of artificial intelligence. Substantially fewer annotated target lesions than normal... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1709 |
Title | Dealing with Multi-Dimensional Data and the Burden of Annotation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0002944021002625 https://dx.doi.org/10.1016/j.ajpath.2021.05.023 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61B_EiPvFZcvAa2kk2m-zN2lqLUE8WegtJNgstsi1S_7-TfRQFoeBxsxlYvgzz2Mw3Q8hDqhQUCizLVAgsUYIz67Vn3EmdeqdV4JGNPHtLp_PkdSEXHTJquTCxrLKx_bVNr6x1s9Jv0OxvlsvI8R3wLEli0oKJBI9E89ipJZL4Fk87a4z6NWhD4Li7pc9VNV52Fef-YpbIoerfycXf7umHy5mckOMmVqTD-nNOSSeUZ-Rw1tyGn5PHMUZ56Hpo_JlKKyotG8du_XWnDTq2W0ttmVMM8mjNV6Drgg7Lcl1fwF-Q-eT5fTRlzUQE5jFUESwB66WTFoKHLHieK0xnMOXIhS8S74AXKQSNLwsLaZoFcNIFqwVAnmmXOnFJuuW6DFeEWoenA9IGjXlprq0LIsdz8SEpIAEH10S0QBjftAuPUys-TFsXtjI1fCbCZwbSIHzXhO2kNnW7jD37ZYuxaamgaLwM2vM9cmon90td9kre_FvylhzFp7qS7450t59f4R4jkq3rkYOXBfQqxfsG4i7fPA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61gnoRn1ifOXgNbbLJZvdmbS2ttj210FtIslmoyLZI_f9ONrtFQSh43WQgTIaZbzbzzSD0GEtJc0k1SaVzhMuIEW0TS5gRSWxNIh3zbOTJNB7O-etCLBqoV3NhfFll5fuDTy-9dfWlXWmzvV4uPce3w1LOfdICiQQTe2gf0EDs67pGi-etOwYD69QY2G-v-XNlkZd-94N_IU1ktGzgyaK_49OPmDM4QccVWMTdcJ5T1HDFGTqYVM_h5-ipDzAPYg_2f1NxyaUlfd-uP7TawH290VgXGQaUhwNhAa9y3C2KVXiBv0DzwcusNyTVSARiAatEhFNthRGaOktTZ1kmIZ-BnCOLbM6toSyPqUtgMdc0jlNHjTBOJxGlWZqY2ESXqFmsCneFsDZwPVRol0BimiXauCiDi7GO55RTQ1soqhWhbNUv3I-t-FB1Ydi7CupTXn2qIxSor4XIVmod-mXs2C9qHauaCwreS4FD3yEnt3K_7GWn5PW_JR_Q4XA2GavxaPp2g478Sijru0XNzeeXuwN4sjH3pfl9A_Uh4XI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dealing+with+Multi-Dimensional+Data+and+the+Burden+of+Annotation&rft.jtitle=The+American+journal+of+pathology&rft.au=Mitchell%2C+Benjamin+R.&rft.au=Cohen%2C+Marion+C.&rft.au=Cohen%2C+Stanley&rft.date=2021-10-01&rft.pub=Elsevier+Inc&rft.issn=0002-9440&rft.eissn=1525-2191&rft.volume=191&rft.issue=10&rft.spage=1709&rft.epage=1716&rft_id=info:doi/10.1016%2Fj.ajpath.2021.05.023&rft.externalDocID=S0002944021002625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9440&client=summon |