Intermittent Control for Synchronization of Markov Jump Inertial Neural Networks with Reaction–Diffusion Terms via Non-reduced-Order Method
This paper concentrates on designing an aperiodically intermittent controller for synchronization of Markov jump inertial neural networks (MJINNs) with reaction–diffusion terms. Unlike the traditional reduced-order variable substitution method, the synchronization for MJINNs is studied directly usin...
Saved in:
Published in | Circuits, systems, and signal processing Vol. 42; no. 1; pp. 199 - 215 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper concentrates on designing an aperiodically intermittent controller for synchronization of Markov jump inertial neural networks (MJINNs) with reaction–diffusion terms. Unlike the traditional reduced-order variable substitution method, the synchronization for MJINNs is studied directly using a non-reduced-order method. Besides, an aperiodic intermittent controller with spatially sampled data, which is intermittent in time and sampled data in space, is constructed under the consideration of the limited communication bandwidth. Furthermore, based on the Lyapunov direct method and several inequality techniques, the synchronization criteria of MJINNs under the proposed controller are derived. Finally, the proposed approach’s effectiveness is illustrated by using a numerical example. |
---|---|
AbstractList | This paper concentrates on designing an aperiodically intermittent controller for synchronization of Markov jump inertial neural networks (MJINNs) with reaction–diffusion terms. Unlike the traditional reduced-order variable substitution method, the synchronization for MJINNs is studied directly using a non-reduced-order method. Besides, an aperiodic intermittent controller with spatially sampled data, which is intermittent in time and sampled data in space, is constructed under the consideration of the limited communication bandwidth. Furthermore, based on the Lyapunov direct method and several inequality techniques, the synchronization criteria of MJINNs under the proposed controller are derived. Finally, the proposed approach’s effectiveness is illustrated by using a numerical example. |
Author | Hu, Dongxiao Li, Xingru Ma, Jianwei Song, Xiaona |
Author_xml | – sequence: 1 givenname: Dongxiao surname: Hu fullname: Hu, Dongxiao organization: School of Information Engineering, Henan University of Science and Technology – sequence: 2 givenname: Xiaona orcidid: 0000-0001-8476-5112 surname: Song fullname: Song, Xiaona email: xiaona_97@163.com organization: School of Information Engineering, Henan University of Science and Technology – sequence: 3 givenname: Xingru surname: Li fullname: Li, Xingru organization: School of Information Engineering, Henan University of Science and Technology – sequence: 4 givenname: Jianwei surname: Ma fullname: Ma, Jianwei organization: School of Information Engineering, Henan University of Science and Technology |
BookMark | eNp9kM9uEzEQhy1UJNLCC3CyxNkwtnfjzREFKKn6R4IicbPc9Zi4Teww9rYqJ16gJ96QJ2GTICFx6GE00mi--Y2-Q3aQckLGXkp4LQHMmwIAuhGg1FhSKyGfsIlstRRtZ7oDNgFlOgGd_PqMHZZyDSBnzUxN2MMiVaR1rBVT5fOcKuUVD5n45_vULymn-MPVmBPPgZ85usm3_GRYb_giIdXoVvwcB9q1epfppvC7WJf8E7p-S_3--etdDGEo2wuXY1Dht9Hx85wEoR969OKCPBI_w7rM_jl7Gtyq4Iu__Yh9-fD-cv5RnF4cL-ZvT0WvmlkVwbdX2Hh0rpMGAXwfZp2WIMeRMSp0rQm6aafe4JXWUyeDaaTU2PoAwUulj9ir_d0N5e8Dlmqv80BpjLTKTMFAK6Edt9R-q6dcCmGwG4prR_dWgt1qt3vtdtRud9qtHKHuP6iPdWewkourx1G9R8uYk74h_fvqEeoP44ic-g |
CitedBy_id | crossref_primary_10_1002_acs_3856 crossref_primary_10_1177_09596518241246812 crossref_primary_10_1016_j_neunet_2024_106671 crossref_primary_10_3390_math12121911 crossref_primary_10_1007_s12190_024_02234_w |
Cites_doi | 10.1016/j.neunet.2021.02.004 10.1016/j.neucom.2018.11.011 10.1016/j.ins.2018.04.069 10.1016/j.neucom.2021.07.016 10.1016/j.ins.2015.01.028 10.1109/TSMC.2019.2958419 10.1109/TCYB.2018.2821119 10.1007/s11071-018-4633-z 10.1109/TNNLS.2016.2619345 10.1016/j.neunet.2018.04.017 10.1016/j.neucom.2017.12.028 10.1007/s11071-018-4603-5 10.1016/j.neucom.2016.10.020 10.1109/TCYB.2018.2882519 10.1016/j.neucom.2018.05.030 10.1007/s00034-020-01428-4 10.1109/TNNLS.2016.2552640 10.1049/iet-cta.2020.0136 10.1007/s00521-020-05540-z 10.1016/j.neucom.2019.01.096 10.1016/j.neucom.2019.09.034 10.1109/TSMC.2021.3081630 10.1016/j.neucom.2020.05.103 10.1016/j.automatica.2012.02.006 10.1016/j.chaos.2016.06.004 10.1016/j.neucom.2019.05.028 10.1016/j.chaos.2007.05.002 10.1109/TAC.2020.2990173 10.1007/s00034-016-0377-5 10.1016/j.neunet.2017.09.009 10.1016/0167-2789(86)90152-1 10.1016/j.neunet.2016.07.001 10.1016/j.nahs.2018.11.003 10.1016/j.neucom.2017.04.075 10.1016/j.neunet.2020.01.002 10.1109/TSMC.2020.3002960 10.1007/s12555-016-0515-7 10.1016/j.neucom.2008.01.006 10.1109/TII.2018.2808966 10.1016/j.jfranklin.2020.04.036 10.1016/j.fss.2016.03.012 10.1080/00207179.2019.1577562 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7SP 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1007/s00034-022-02132-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Science Database (NC LIVE) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1531-5878 |
EndPage | 215 |
ExternalDocumentID | 10_1007_s00034_022_02132_1 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61976081 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 88I 8AO 8FE 8FG 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7SP 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c249t-fd5be4deaa817e00dcf983101dea772f857f3456d7eb336a1f74113e5df0fd123 |
IEDL.DBID | BENPR |
ISSN | 0278-081X |
IngestDate | Sat Aug 16 21:26:04 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Tue Jul 01 00:50:53 EDT 2025 Fri Feb 21 02:46:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Aperiodically intermittent controller Spatially sampled data Synchronization Reaction–diffusion Markov jump inertial neural networks Non-reduced order |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-fd5be4deaa817e00dcf983101dea772f857f3456d7eb336a1f74113e5df0fd123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8476-5112 |
PQID | 2760705105 |
PQPubID | 30136 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2760705105 crossref_primary_10_1007_s00034_022_02132_1 crossref_citationtrail_10_1007_s00034_022_02132_1 springer_journals_10_1007_s00034_022_02132_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Cambridge |
PublicationSubtitle | CSSP |
PublicationTitle | Circuits, systems, and signal processing |
PublicationTitleAbbrev | Circuits Syst Signal Process |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Hui, Hu, Yu, Jiang (CR14) 2021; 2021 Jardas, Pecaric, Roki, Sarapa (CR15) 1997; 32 Wan, Sun, Chen, Zhao, Zheng (CR36) 2019; 356 Fridman, Blighovsky (CR9) 2012; 48 Li, Zhang, Li (CR18) 2021; 94 Fang, Jiao, Dongmei, Wang (CR6) 2021; 460 Zhang, Chen, Li (CR45) 2020; 373 Liu, Ho, Xie (CR24) 2018; 50 Lu (CR26) 2008; 35 Zhang, Tang, Liu (CR43) 2021; 2021 Song, Man, Ahn, Song (CR32) 2019; 51 Wang, Feng, Huan (CR38) 2019; 32 Hu, Guan, Xiong, Chao (CR10) 2018; 14 Wang, Wang, Chen, Qiu (CR37) 2021; 139 Huang, Cao (CR13) 2018; 282 Zhang, Ren (CR46) 2019; 95 Liu, Chen, Lu (CR22) 2017; 222 Liu, Li, Wang, Sun (CR21) 2018; 454 Ali, Gunasekaran, Zhu (CR1) 2017; 306 Li, Li, Cheng (CR19) 2017; 96 Liu, Ho, Song, Xu (CR23) 2018; 49 Zhang, Shengyuan, Zou (CR42) 2008; 72 Tang, Jian (CR34) 2019; 338 Lakshmanan, Prakash, Lim, Rakkiyappan, Balasubramaniam, Nahavandi (CR17) 2016; 29 Hu, Feng, Duan, Liu (CR12) 2016; 28 Ru, Xia, Huang, Chen, Wang (CR31) 2020; 357 Feng, Xiong, Tang, Yang (CR7) 2018; 310 Feng, Yang, Song, Cao (CR8) 2018; 339 Zhang, Qi (CR44) 2021; 33 Deng, Hanping, Xiong, Xiong, Liu (CR5) 2015; 305 Yongbao, Wang, Li (CR39) 2019; 95 Villarrubia, De Paz, Chamoso, De la Prieta (CR35) 2018; 272 Ren, Jiang, Li, Binglong (CR30) 2021; 420 Jiang, Luo (CR16) 2017; 36 Aouiti, Bessifi, Li (CR2) 2020; 39 Hu, Yu (CR11) 2016; 91 Yang, Teng, Bin, Li, Na, ChunYi (CR40) 2017; 15 Lu, Jiang, Hu, Abdurahman (CR25) 2018; 105 Prakash, Balasubramaniam, Lakshmanan (CR29) 2016; 83 Babcock, Westervelt (CR3) 1986; 23 Song, Man, Song, Ning (CR33) 2020; 14 Liu, Ye (CR20) 2020; 52 Juan, Cheng, Jiang, Wang (CR41) 2020; 124 Min, Xu, Li, Zhang (CR27) 2022; 52 Min, Shengyuan, Zhang (CR28) 2020; 66 Dai, Xia, Xia, Shen (CR4) 2019; 331 B Lu (2132_CR25) 2018; 105 MS Ali (2132_CR1) 2017; 306 S Lakshmanan (2132_CR17) 2016; 29 C Hu (2132_CR11) 2016; 91 P Wan (2132_CR36) 2019; 356 E Fridman (2132_CR9) 2012; 48 H Min (2132_CR27) 2022; 52 W Yongbao (2132_CR39) 2019; 95 Q Tang (2132_CR34) 2019; 338 C Yang (2132_CR40) 2017; 15 B Zhang (2132_CR42) 2008; 72 T Fang (2132_CR6) 2021; 460 M Prakash (2132_CR29) 2016; 83 Yu Juan (2132_CR41) 2020; 124 X Li (2132_CR19) 2017; 96 Y Feng (2132_CR7) 2018; 310 GJ Lu (2132_CR26) 2008; 35 C Aouiti (2132_CR2) 2020; 39 C Jardas (2132_CR15) 1997; 32 Q Huang (2132_CR13) 2018; 282 D Liu (2132_CR20) 2020; 52 Y Feng (2132_CR8) 2018; 339 S Li (2132_CR18) 2021; 94 KL Babcock (2132_CR3) 1986; 23 Y Ren (2132_CR30) 2021; 420 W Zhang (2132_CR44) 2021; 33 L Liu (2132_CR22) 2017; 222 J Wang (2132_CR37) 2021; 139 X Liu (2132_CR24) 2018; 50 Z Zhang (2132_CR46) 2019; 95 Y Jiang (2132_CR16) 2017; 36 P Wang (2132_CR38) 2019; 32 Z Zhang (2132_CR45) 2020; 373 G Villarrubia (2132_CR35) 2018; 272 Y Deng (2132_CR5) 2015; 305 X Hu (2132_CR12) 2016; 28 X Liu (2132_CR23) 2018; 49 S Zhang (2132_CR43) 2021; 2021 X Song (2132_CR32) 2019; 51 T Ru (2132_CR31) 2020; 357 J Hui (2132_CR14) 2021; 2021 H Min (2132_CR28) 2020; 66 B Hu (2132_CR10) 2018; 14 H Liu (2132_CR21) 2018; 454 X Song (2132_CR33) 2020; 14 M Dai (2132_CR4) 2019; 331 |
References_xml | – volume: 139 start-page: 64 year: 2021 end-page: 76 ident: CR37 article-title: Synchronization criteria of delayed inertial neural networks with generally Markovian jumping publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.02.004 – volume: 331 start-page: 403 year: 2019 end-page: 411 ident: CR4 article-title: Event-triggered passive synchronization for Markov jump neural networks subject to randomly occurring gain variations publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.011 – volume: 454 start-page: 30 year: 2018 end-page: 45 ident: CR21 article-title: Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.04.069 – volume: 460 start-page: 399 year: 2021 end-page: 408 ident: CR6 article-title: Non-fragile extended dissipative synchronization of Markov jump inertial neural networks: an event-triggered control strategy publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.07.016 – volume: 305 start-page: 146 year: 2015 end-page: 164 ident: CR5 article-title: A general hybrid model for chaos robust synchronization and degradation reduction publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.01.028 – volume: 51 start-page: 3650 issue: 6 year: 2019 end-page: 3661 ident: CR32 article-title: Finite-time dissipative synchronization for Markovian jump generalized inertial neural networks with reaction–diffusion terms publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2958419 – volume: 49 start-page: 2398 issue: 6 year: 2018 end-page: 2403 ident: CR23 article-title: Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2821119 – volume: 95 start-page: 1361 issue: 2 year: 2019 end-page: 1377 ident: CR39 article-title: Generalized quantized intermittent control with adaptive strategy on finite-time synchronization of delayed coupled systems and applications publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4633-z – volume: 29 start-page: 195 issue: 1 year: 2016 end-page: 207 ident: CR17 article-title: Synchronization of an inertial neural network with time-varying delays and its application to secure communication publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2619345 – volume: 105 start-page: 75 year: 2018 end-page: 87 ident: CR25 article-title: Abdurahman, Synchronization of hybrid coupled reaction-diffusion neural networks with time delays via generalized intermittent control with spacial sampled-data publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.04.017 – volume: 282 start-page: 89 year: 2018 end-page: 97 ident: CR13 article-title: Stability analysis of inertial Cohen–Grossberg neural networks with Markovian jumping parameters publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.028 – volume: 95 start-page: 905 issue: 2 year: 2019 end-page: 917 ident: CR46 article-title: New sufficient conditions on global asymptotic synchronization of inertial delayed neural networks by using integrating inequality techniques publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4603-5 – volume: 222 start-page: 105 year: 2017 end-page: 115 ident: CR22 article-title: Aperiodically intermittent synchronization for a class of reaction–diffusion neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.020 – volume: 50 start-page: 1771 issue: 4 year: 2018 end-page: 1775 ident: CR24 article-title: Prespecified-time cluster synchronization of complex networks via a smooth control approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2882519 – volume: 310 start-page: 165 year: 2018 end-page: 171 ident: CR7 article-title: Exponential synchronization of inertial neural networks with mixed delays via quantized pinning control publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.030 – volume: 39 start-page: 5406 issue: 11 year: 2020 end-page: 5428 ident: CR2 article-title: Finite-time and fixed-time synchronization of complex-valued recurrent neural networks with discontinuous activations and time-varying delays publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-020-01428-4 – volume: 28 start-page: 1889 issue: 8 year: 2016 end-page: 1901 ident: CR12 article-title: A memristive multilayer cellular neural network with applications to image processing publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2552640 – volume: 14 start-page: 2726 issue: 18 year: 2020 end-page: 2740 ident: CR33 article-title: Event-triggered synchronisation of Markovian reaction-diffusion inertial neural networks and its application in image encryption publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2020.0136 – volume: 33 start-page: 7953 issue: 13 year: 2021 end-page: 7964 ident: CR44 article-title: Synchronization of coupled memristive inertial delayed neural networks with impulse and intermittent control publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05540-z – volume: 338 start-page: 181 year: 2019 end-page: 190 ident: CR34 article-title: Exponential synchronization of inertial neural networks with mixed time-varying delays via periodically intermittent control publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.096 – volume: 373 start-page: 15 year: 2020 end-page: 23 ident: CR45 article-title: Further study on finite-time synchronization for delayed inertial neural networks via inequality skills publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.034 – volume: 52 start-page: 3957 issue: 6 year: 2022 end-page: 3966 ident: CR27 article-title: Adaptive stabilization of uncertain nonlinear systems under output constraint publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2021.3081630 – volume: 420 start-page: 337 year: 2021 end-page: 348 ident: CR30 article-title: Finite-time synchronization of stochastic complex networks with random coupling delay via quantized aperiodically intermittent control publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.103 – volume: 48 start-page: 826 issue: 5 year: 2012 end-page: 836 ident: CR9 article-title: Robust sampled-data control of a class of semilinear parabolic systems publication-title: Automatica doi: 10.1016/j.automatica.2012.02.006 – volume: 91 start-page: 262 year: 2016 end-page: 269 ident: CR11 article-title: Generalized intermittent control and its adaptive strategy on stabilization and synchronization of chaotic systems publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2016.06.004 – volume: 356 start-page: 195 year: 2019 end-page: 205 ident: CR36 article-title: Exponential synchronization of inertial reaction-diffusion coupled neural networks with proportional delay via periodically intermittent control publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.028 – volume: 339 start-page: 874 year: 2018 end-page: 887 ident: CR8 article-title: Synchronization of memristive neural networks with mixed delays via quantized intermittent control publication-title: Appl. Math. Comput. – volume: 35 start-page: 116 issue: 1 year: 2008 end-page: 125 ident: CR26 article-title: Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2007.05.002 – volume: 2021 start-page: 1 year: 2021 end-page: 29 ident: CR43 article-title: Synchronization of a Riemann–Liouville fractional time-delayed neural network with two inertial terms publication-title: Circuits Syst. Signal Process. – volume: 66 start-page: 1306 issue: 3 year: 2020 end-page: 1313 ident: CR28 article-title: Adaptive finite-time stabilization of stochastic nonlinear systems subject to full-state constraints and input saturation publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2020.2990173 – volume: 36 start-page: 1426 issue: 4 year: 2017 end-page: 1444 ident: CR16 article-title: Periodically intermittent synchronization of stochastic delayed neural networks publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-016-0377-5 – volume: 96 start-page: 91 year: 2017 end-page: 100 ident: CR19 article-title: Some new results on stability and synchronization for delayed inertial neural networks based on non-reduced order method publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.09.009 – volume: 23 start-page: 464 issue: 1–3 year: 1986 end-page: 469 ident: CR3 article-title: Stability and dynamics of simple electronic neural networks with added inertia publication-title: Physica D doi: 10.1016/0167-2789(86)90152-1 – volume: 83 start-page: 86 year: 2016 end-page: 93 ident: CR29 article-title: Synchronization of Markovian jumping inertial neural networks and its applications in image encryption publication-title: Neural Netw. doi: 10.1016/j.neunet.2016.07.001 – volume: 32 start-page: 115 year: 2019 end-page: 130 ident: CR38 article-title: Stabilization of stochastic delayed networks with Markovian switching and hybrid nonlinear coupling via aperiodically intermittent control publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2018.11.003 – volume: 272 start-page: 10 year: 2018 end-page: 16 ident: CR35 article-title: Artificial neural networks used in optimization problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.075 – volume: 124 start-page: 50 year: 2020 end-page: 59 ident: CR41 article-title: Exponential and adaptive synchronization of inertial complex-valued neural networks: a non-reduced order and non-separation approach publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.01.002 – volume: 2021 start-page: 1 year: 2021 end-page: 15 ident: CR14 article-title: Intermittent control based exponential synchronization of inertial neural networks with mixed delays publication-title: Neural Process. Lett. – volume: 52 start-page: 448 issue: 1 year: 2020 end-page: 458 ident: CR20 article-title: Exponential stabilization of delayed inertial memristive neural networks via aperiodically intermittent control strategy publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2020.3002960 – volume: 15 start-page: 1916 issue: 4 year: 2017 end-page: 1924 ident: CR40 article-title: Global adaptive tracking control of robot manipulators using neural networks with finite-time learning convergence publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-016-0515-7 – volume: 72 start-page: 321 issue: 1–3 year: 2008 end-page: 330 ident: CR42 article-title: Improved delay-dependent exponential stability criteria for discrete-time recurrent neural networks with time-varying delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.01.006 – volume: 14 start-page: 3775 issue: 8 year: 2018 end-page: 3787 ident: CR10 article-title: Intelligent impulsive synchronization of nonlinear interconnected neural networks for image protection publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2808966 – volume: 357 start-page: 6882 issue: 11 year: 2020 end-page: 6898 ident: CR31 article-title: Reachable set estimation of delayed fuzzy inertial neural networks with Markov jumping parameters publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.04.036 – volume: 306 start-page: 87 year: 2017 end-page: 104 ident: CR1 article-title: State estimation of T-S fuzzy delayed neural networks with Markovian jumping parameters using sampled-data control publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2016.03.012 – volume: 32 start-page: 201 issue: 52 year: 1997 end-page: 206 ident: CR15 article-title: On an inequality of hardy-littlewood-pólya and some applications to entropies publication-title: Glas. Mat. Ser. III – volume: 94 start-page: 7 issue: 1 year: 2021 end-page: 20 ident: CR18 article-title: Stabilisation of multi-weights stochastic complex networks with time-varying delay driven by g-Brownian motion via aperiodically intermittent adaptive control publication-title: Int. J. Control doi: 10.1080/00207179.2019.1577562 – volume: 339 start-page: 874 year: 2018 ident: 2132_CR8 publication-title: Appl. Math. Comput. – volume: 49 start-page: 2398 issue: 6 year: 2018 ident: 2132_CR23 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2821119 – volume: 52 start-page: 448 issue: 1 year: 2020 ident: 2132_CR20 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2020.3002960 – volume: 331 start-page: 403 year: 2019 ident: 2132_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.011 – volume: 282 start-page: 89 year: 2018 ident: 2132_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.028 – volume: 23 start-page: 464 issue: 1–3 year: 1986 ident: 2132_CR3 publication-title: Physica D doi: 10.1016/0167-2789(86)90152-1 – volume: 310 start-page: 165 year: 2018 ident: 2132_CR7 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.030 – volume: 50 start-page: 1771 issue: 4 year: 2018 ident: 2132_CR24 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2882519 – volume: 2021 start-page: 1 year: 2021 ident: 2132_CR43 publication-title: Circuits Syst. Signal Process. – volume: 83 start-page: 86 year: 2016 ident: 2132_CR29 publication-title: Neural Netw. doi: 10.1016/j.neunet.2016.07.001 – volume: 373 start-page: 15 year: 2020 ident: 2132_CR45 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.034 – volume: 94 start-page: 7 issue: 1 year: 2021 ident: 2132_CR18 publication-title: Int. J. Control doi: 10.1080/00207179.2019.1577562 – volume: 139 start-page: 64 year: 2021 ident: 2132_CR37 publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.02.004 – volume: 51 start-page: 3650 issue: 6 year: 2019 ident: 2132_CR32 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2958419 – volume: 29 start-page: 195 issue: 1 year: 2016 ident: 2132_CR17 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2619345 – volume: 36 start-page: 1426 issue: 4 year: 2017 ident: 2132_CR16 publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-016-0377-5 – volume: 356 start-page: 195 year: 2019 ident: 2132_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.028 – volume: 48 start-page: 826 issue: 5 year: 2012 ident: 2132_CR9 publication-title: Automatica doi: 10.1016/j.automatica.2012.02.006 – volume: 35 start-page: 116 issue: 1 year: 2008 ident: 2132_CR26 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2007.05.002 – volume: 460 start-page: 399 year: 2021 ident: 2132_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.07.016 – volume: 15 start-page: 1916 issue: 4 year: 2017 ident: 2132_CR40 publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-016-0515-7 – volume: 91 start-page: 262 year: 2016 ident: 2132_CR11 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2016.06.004 – volume: 96 start-page: 91 year: 2017 ident: 2132_CR19 publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.09.009 – volume: 306 start-page: 87 year: 2017 ident: 2132_CR1 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2016.03.012 – volume: 420 start-page: 337 year: 2021 ident: 2132_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.103 – volume: 222 start-page: 105 year: 2017 ident: 2132_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.020 – volume: 95 start-page: 905 issue: 2 year: 2019 ident: 2132_CR46 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4603-5 – volume: 28 start-page: 1889 issue: 8 year: 2016 ident: 2132_CR12 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2552640 – volume: 124 start-page: 50 year: 2020 ident: 2132_CR41 publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.01.002 – volume: 454 start-page: 30 year: 2018 ident: 2132_CR21 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.04.069 – volume: 14 start-page: 3775 issue: 8 year: 2018 ident: 2132_CR10 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2808966 – volume: 66 start-page: 1306 issue: 3 year: 2020 ident: 2132_CR28 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2020.2990173 – volume: 33 start-page: 7953 issue: 13 year: 2021 ident: 2132_CR44 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05540-z – volume: 52 start-page: 3957 issue: 6 year: 2022 ident: 2132_CR27 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2021.3081630 – volume: 72 start-page: 321 issue: 1–3 year: 2008 ident: 2132_CR42 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.01.006 – volume: 357 start-page: 6882 issue: 11 year: 2020 ident: 2132_CR31 publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.04.036 – volume: 39 start-page: 5406 issue: 11 year: 2020 ident: 2132_CR2 publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-020-01428-4 – volume: 272 start-page: 10 year: 2018 ident: 2132_CR35 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.075 – volume: 32 start-page: 201 issue: 52 year: 1997 ident: 2132_CR15 publication-title: Glas. Mat. Ser. III – volume: 95 start-page: 1361 issue: 2 year: 2019 ident: 2132_CR39 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4633-z – volume: 105 start-page: 75 year: 2018 ident: 2132_CR25 publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.04.017 – volume: 338 start-page: 181 year: 2019 ident: 2132_CR34 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.096 – volume: 2021 start-page: 1 year: 2021 ident: 2132_CR14 publication-title: Neural Process. Lett. – volume: 305 start-page: 146 year: 2015 ident: 2132_CR5 publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.01.028 – volume: 14 start-page: 2726 issue: 18 year: 2020 ident: 2132_CR33 publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2020.0136 – volume: 32 start-page: 115 year: 2019 ident: 2132_CR38 publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2018.11.003 |
SSID | ssj0019492 |
Score | 2.3246088 |
Snippet | This paper concentrates on designing an aperiodically intermittent controller for synchronization of Markov jump inertial neural networks (MJINNs) with... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 199 |
SubjectTerms | Circuits Circuits and Systems Controllers Diffusion Electrical Engineering Electronics and Microelectronics Engineering Instrumentation Liapunov direct method Methods Neural networks Sampled data Signal processing Signal,Image and Speech Processing Substitution reactions Synchronism |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kXvQgPrFaZQ_edCHJbpL2WKqlFqygLfQWttldKGgqTVrw5h_w5D_0lzizeVRFBU8JyWYDmc3ON69vCDnjjuQ-DxzmSs6ZCJyYgVaUcCYkN02JnF-YbTEIeiPRH_vjoigsLbPdy5Ck3amrYjfLpcIw-xz0EvcY2DzrPtrusIpHXruKHbSEbYWMITUGCm9clMr8PMdXdbTCmN_ColbbdLfJVgETaTuX6w5Z08ku2fxEHrhHXq0z73GaAerNaCdPOaeAQen9cxJbztu8xJLODMWSnNmS9kF49DrBXGqYHYk57MFmgqcUfbL0TuelDu8vb5dTYxboTaNDeFFKl1NJB7OEzZHuVSt2i7Sd9Mb2oN4no-7VsNNjRXMFFoPFlTGj_IkWSkvZdEPtOCo2LWw65sIlQNym6YeGA7pSIZjbPJCuAezhcu0r4xgF-u6A1JJZog8JdbgnpVQiMBMFeERI2AUV4sAYwKWKRZ245TeO4oJ5HBtgPEQVZ7KVSwRyiaxcIrdOzqtnnnLejT9HN0rRRcU_mEZeGMB-hgCyTi5Kca5u_z7b0f-GH5MN7EGf-2UapJbNF_oEkEo2ObUL8wNQ6uBB priority: 102 providerName: Springer Nature |
Title | Intermittent Control for Synchronization of Markov Jump Inertial Neural Networks with Reaction–Diffusion Terms via Non-reduced-Order Method |
URI | https://link.springer.com/article/10.1007/s00034-022-02132-1 https://www.proquest.com/docview/2760705105 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEB4BubSHikKrhoZoD9zaVe2s7TinKoQEmqoBBSKlJ2vj3ZUigZ0mDhI3XoATb8iTMLPeJG0lONla22vJs575dn6-ATgSnhShiDzuSyF4EHkpR6so8SyQwsSSOL8o22IQnY2C_jgcO4fbwqVVrnSiVdQqT8lH_q3RjHB1Ehz4PvvDqWsURVddC41tqKAKjnHzVTnuDi6G6zhCK7BtkSm8xtH4jV3ZjC2es9wsnLLZ0c6JBvf_NU0bvPlfiNRant4uvHOQkbVLGb-HLZ3twdu_iAT34cE69m6mBSLggnXK9HOGeJRd3mWp5b8tyy1ZbhiV5-S3rI-CZD8yyqvG2Ymkwx5sVviCkX-WDXVZ9vB0_3gyNWZJnjV2hS9asNupZIM843OiftWKnxOFJ_tl-1F_gFGve9U5467RAk9x91Vwo8KJDpSWMvab2vNUalrUgMzHIUTfJg6bRiDSUk3ceotI-gZxiC90qIxnFNq-j7CT5Zn-BMwTDSmlCiIzUYhNAokaUREmTBFoqjSogr_6xknqWMipGcZ1suZPtnJJUC6JlUviV-HL-plZycHx6t21legS9z8uks3qqcLXlTg3l1-e7eD12T7DG-o_X_pkarBTzJf6EFFKManDdtw7rUOlffr7Z7fuFiaOjhrtZ5L56D8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB4hOLQ9INpSNYWWPcCpXdXrXTvJAVUISBN-UqkNUm7uxrsrRaI2EAPixgtw4j14qD5JZ9Z2UpDgxsmWf9aSZ3bn2_n5BmBdBlpGMg640FJyFQcpR6uo8Uxp6VqaOL8o26Ifd4_U3jAazsFdXQtDaZX1mugXapOn5CP_GjZj1E6CA99OTjl1jaLoat1Co1SLfXt1iVu2yWZvB-W7EYad3cF2l1ddBXiKW42COxONrDJW65Zo2iAwqWtTty2BlxBqulbUdBJhhWniPlPGWjg0ukLayLjAGUFEB7jkLygp2zSjWp3v06hFW_kmzBTM42hqh1WRji_V80wwnHLn0arKkIv7hnCGbh8EZL2d6yzBYgVQ2VapUa9hzmZv4NV_tIVv4ca7Ef-MC8TbBdsuk90Zol_26ypLPdtuWdzJcseoGCi_YHuoNqyXURY3jk6UIP7gc9AnjLzB7Kctiyz-Xt_ujJ07Jz8eG-CHJuxirFk_z_gZEc1aw38QYSg79N2vl-HoWQTwDuazPLPvgQUy1FobFbuRQSSkNK6_hhBoirDWpKoBov7HSVpxnlPrjeNkytbs5ZKgXBIvl0Q04PP0nZOS8ePJp1dr0SXV7J8kM11twJdanLPbj4_24enR1uBFd3B4kBz0-vsr8DJEvFV6g1Zhvjg7tx8RHxWjT14pGfx-7lnwD57WIU0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB6hRKraA4LSqqFA91BOdIXX659wqBAlRISfFFGQcnM33l0pErWBOFTceAFOvE0fp0_SmbWd0ErlxsmWf9aSZ3bm29mZbwA-Sk_JUEYeF0pKHkReytErKjwLlLRtRZxflG3Rj_bPg4NBOJiDX3UtDKVV1jbRGWqdpxQj3_TjCLWT4MCmrdIiTjrd7csrTh2kaKe1bqdRqsihuf2Jy7fx514HZb3u-929s919XnUY4CkuOwpudTg0gTZKtUVsPE-ndos6bwm8hLDTtsPYSoQYOsY1p4yUsOiAhTShtp7VgkgP0Pw3Y1wVeQ1oftnrn5xO9zC2AteSmbb2ODreQVWy4wr3HC8Mp0x69LHS5-JvtzjDuv9szzqv112A-Qqusp1SvxZhzmSv4dUjEsMluHdBxR-jAtF3wXbL1HeGWJh9u81Sx71blnqy3DIqDcpv2AEqEetllNONoxNBiDu4jPQxo9gwOzVlycXvu4fOyNoJRfXYGX5ozG5GivXzjF8T7azR_CvRh7Jj1wv7DZw_iwjeQiPLM_MOmCd9pZQOIjvUiIsChdZYEx5NEeTqNGiBqP9xklYM6NSI4yKZcjc7uSQol8TJJREt2Ji-c1nyfzz59EotuqSyBeNkprkt-FSLc3b7_6MtPz3aB3iBMyA56vUP38NLH8FXGRpagUZxPTGrCJaK4VqllQy-P_dE-APVZCbf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intermittent+Control+for+Synchronization+of+Markov+Jump+Inertial+Neural+Networks+with+Reaction%E2%80%93Diffusion+Terms+via+Non-reduced-Order+Method&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Hu%2C+Dongxiao&rft.au=Song%2C+Xiaona&rft.au=Li%2C+Xingru&rft.au=Ma%2C+Jianwei&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=42&rft.issue=1&rft.spage=199&rft.epage=215&rft_id=info:doi/10.1007%2Fs00034-022-02132-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon |