Physics-informed machine learning approach for reduced-order modeling of integrally bladed rotors: Theory and application
Integrally bladed rotors are commonly used in aircraft and rocket turbomachinery and known to exhibit complex dynamics when subject to operational loading conditions. Though nominally cyclic-symmetric structures, in practice, cyclic symmetry is destroyed due to mistuning caused by random sector-to-s...
Saved in:
Published in | Journal of sound and vibration Vol. 596; p. 118773 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-460X |
DOI | 10.1016/j.jsv.2024.118773 |
Cover
Loading…
Abstract | Integrally bladed rotors are commonly used in aircraft and rocket turbomachinery and known to exhibit complex dynamics when subject to operational loading conditions. Though nominally cyclic-symmetric structures, in practice, cyclic symmetry is destroyed due to mistuning caused by random sector-to-sector imperfections in material properties and geometry. Simulating mistuned blisk dynamics using high-fidelity models can be computationally expensive, thus, a variety of physics-based reduced-order models have been previously developed. However, these models cannot easily incorporate experimental data nor leverage potential benefits of data-driven and machine-learning-based approaches. Here, we present a novel first-of-its-kind physics-informed machine learning modeling approach that incorporates physical laws directly into a novel network architecture while maintaining a sector-level viewpoint. The approach is combined with an assembly procedure resulting in a significantly smaller linear system based on blade-alone response data, and can directly incorporate physical response data like that measured with blade tip timing and/or traveling-wave excitation. Validation is shown using a large-scale finite-element model, with multiple traveling-wave forced-response predictions and response selection cases considered. Using only as little as a single degree of freedom per sector from the blade tip, this approach shows high accuracy relative to high-fidelity simulations.
•Novel reduced-order model for large-scale integrally bladed rotors.•Based on sector-level physics-informed neural networks using blade tip data only.•Maintains derived analytical relationships and known mistuned system dynamics.•Integrated with numerical techniques to improve accuracy and robustness.•Extensively validated and generalized for as little as 1 degree of freedom per blade. |
---|---|
AbstractList | Integrally bladed rotors are commonly used in aircraft and rocket turbomachinery and known to exhibit complex dynamics when subject to operational loading conditions. Though nominally cyclic-symmetric structures, in practice, cyclic symmetry is destroyed due to mistuning caused by random sector-to-sector imperfections in material properties and geometry. Simulating mistuned blisk dynamics using high-fidelity models can be computationally expensive, thus, a variety of physics-based reduced-order models have been previously developed. However, these models cannot easily incorporate experimental data nor leverage potential benefits of data-driven and machine-learning-based approaches. Here, we present a novel first-of-its-kind physics-informed machine learning modeling approach that incorporates physical laws directly into a novel network architecture while maintaining a sector-level viewpoint. The approach is combined with an assembly procedure resulting in a significantly smaller linear system based on blade-alone response data, and can directly incorporate physical response data like that measured with blade tip timing and/or traveling-wave excitation. Validation is shown using a large-scale finite-element model, with multiple traveling-wave forced-response predictions and response selection cases considered. Using only as little as a single degree of freedom per sector from the blade tip, this approach shows high accuracy relative to high-fidelity simulations.
•Novel reduced-order model for large-scale integrally bladed rotors.•Based on sector-level physics-informed neural networks using blade tip data only.•Maintains derived analytical relationships and known mistuned system dynamics.•Integrated with numerical techniques to improve accuracy and robustness.•Extensively validated and generalized for as little as 1 degree of freedom per blade. |
ArticleNumber | 118773 |
Author | Kelly, Sean T. Epureanu, Bogdan I. |
Author_xml | – sequence: 1 givenname: Sean T. orcidid: 0000-0002-5911-7559 surname: Kelly fullname: Kelly, Sean T. email: seantk@umich.edu – sequence: 2 givenname: Bogdan I. surname: Epureanu fullname: Epureanu, Bogdan I. email: epureanu@umich.edu |
BookMark | eNp9kMtqwzAQRbVIoUnaD-hOP2BXsmRbblcl9AWBdpFCd0KWRomMIwXJDfjva5OuuxoY7rnMnBVa-OABoTtKckpodd_lXTrnBSl4Tqmoa7ZAS0KKIuMV-b5Gq5Q6QkjDGV-i8fMwJqdT5rwN8QgGH5U-OA-4BxW983usTqcYpiWeAjiC-dFgshANRHwMBvo5Eyx2foB9VH0_4rZXZmqKYQgxPeDdAUIcsfJm7uqdVoML_gZdWdUnuP2ba_T18rzbvGXbj9f3zdM20wVvhsy2lRBAOLScCWg4N1BXpbVEl5bYsqpEybgWvNQlaxvgtq6AM6YEYdRY0bA1opdeHUNKEaw8RXdUcZSUyNmX7OTkS86-5MXXxDxeGJgOOzuIMmkHfnrcRdCDNMH9Q_8Cgdt59Q |
Cites_doi | 10.1007/s10915-022-01939-z 10.1115/1.1447236 10.1115/1.4000805 10.1016/j.cma.2015.03.018 10.1016/j.ymssp.2016.03.020 10.1061/(ASCE)EM.1943-7889.0001556 10.1063/1.5128231 10.2514/1.J051140 10.1115/1.2987237 10.2514/1.16345 10.1007/BF00012667 10.1137/18M1177846 10.1016/j.ymssp.2023.110308 10.1016/j.cma.2020.112989 10.1016/0893-6080(89)90020-8 10.1063/5.0038929 10.1115/1.2749293 10.2514/1.13172 10.1016/j.engstruct.2020.110704 10.1115/1.4042079 10.1115/1.4044642 10.1016/j.cma.2020.113226 10.1061/(ASCE)0893-1321(2001)14:4(127) 10.1115/1.4049014 10.1016/j.engappai.2020.103947 10.1146/annurev-fluid-030121-015835 10.1038/s42254-021-00314-5 10.1016/j.patcog.2017.10.013 10.1007/978-3-031-04086-3_4 10.1016/j.ymssp.2013.08.027 10.2514/1.J060117 10.1115/1.4043083 10.2514/1.J060209 10.1017/S0022112010001217 10.2514/1.37314 10.1007/s11831-016-9183-2 10.1115/1.4027722 10.2514/1.J062215 10.1016/j.ijnonlinmec.2010.10.001 10.1115/1.0002942V 10.1061/(ASCE)EM.1943-7889.0001971 10.1115/1.3269170 10.1115/1.2889743 10.2514/2.6089 10.1115/1.4007783 10.1016/j.matcom.2020.07.017 10.1115/1.4052503 10.1115/1.1385197 10.2514/1.J058682 10.1016/j.jcp.2018.10.045 10.1115/1.1508384 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jsv.2024.118773 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_jsv_2024_118773 S0022460X24005352 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFSI ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DM4 E.L EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSQ SST SSZ T5K TN5 XPP ZMT ~G- 29L 6TJ AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AHPGS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ H~9 IHE LG5 M24 M37 M41 NDZJH R2- RIG SMS SPG SSH T9H VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c249t-fb688e04eb438e944de765ff0c5f0f5668534c845c53b9e4f76e433a8031df893 |
IEDL.DBID | .~1 |
ISSN | 0022-460X |
IngestDate | Tue Jul 01 03:32:22 EDT 2025 Wed Dec 04 16:49:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural dynamics Turbomachinery Reduced-order modeling Physics-informed neural networks Blisks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-fb688e04eb438e944de765ff0c5f0f5668534c845c53b9e4f76e433a8031df893 |
ORCID | 0000-0002-5911-7559 |
ParticipantIDs | crossref_primary_10_1016_j_jsv_2024_118773 elsevier_sciencedirect_doi_10_1016_j_jsv_2024_118773 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-05 |
PublicationDateYYYYMMDD | 2025-02-05 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Journal of sound and vibration |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – sequence: 0 name: Elsevier Ltd |
References | Lin, Hu, Chen, Yang, Xu (b49) 2016; 81 Castanier, Ottarsson, Pierre (b19) 1997; 119 Wu, Jahanshahi (b25) 2018; 145 Cuomo, Di Cola, Giampaolo, Rozza, Raissi, Piccialli (b5) 2022; 92 Sinha (b42) 2009; 131 Firrone, Zucca, Gola (b12) 2011; 46 Fitzner, Epureanu, Filippi (b18) 2014; 42 Avrutskiy (b59) 2017 Schmid (b27) 2010; 656 Stoffel, Gulakala, Bamer, Markert (b23) 2020; 364 Simpson, Dervilis, Chatzi (b36) 2021; 147 Kingma, Ba (b63) 2014 Griffin, Hoosac (b9) 1984; 106 Kelly, Lupini, Epureanu (b38) 2021; 59 Bertalan, Dietrich, Mezić, Kevrekidis (b7) 2019; 29 Krack, Salles, Thouverez (b11) 2017; 24 Zhou, Berruti (b20) 2023; 195 Bladh, Pierre, Castanier, Kruse (b52) 2002; 124 Rahmoune, Hafaifa, Kouzou, Chen, Chaibet (b32) 2021; 179 Wang, Wu, Ling, Iaccarino, Xiao (b2) 2017 Kurstak, D’Souza (b48) 2021; 143 Kelly, Lupini, Epureanu (b54) 2022; 144 Mbaye, Soize, Ousty (b17) 2010; 132 Olson, Shaw, Shi, Pierre, Parker (b21) 2014; 66 . Hornik, Stinchcombe, White (b60) 1989; 2 Castanier, Pierre (b8) 2006; 22 Kelly (b51) 2023 Feiner, Griffin (b14) 2002; 124 Zhang, Liu, Sun (b24) 2020; 215 Gillaugh, Kaszynski, Brown, Beck, Slater (b41) 2019; 141 Lim, Bladh, Castanier, Pierre (b15) 2007; 45 Jones, Cross (b40) 2003; 19 Bassey, Qian, Li (b56) 2021 Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai, Chen (b57) 2018; 77 Cowles (b10) 1996; 80 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b62) 2015 Liang, Yao, Jia, Cao, Liu, Jing (b39) 2023; 61 Tu (b28) 2013 Bhartiya, Sinha (b46) 2013; 135 Zhang, Liu, Sun (b30) 2020; 369 O. Azencot, N.B. Erichson, V. Lin, M. Mahoney, Forecasting sequential data using consistent Koopman autoencoders, in: Proceedings of the 37th International Conference on Machine Learning, Virtual, Online, 2020, pp. 475–485. B. Beirow, F. Figaschewsky, A. Kühhorn, An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning. Part 2: application to Blisks at Rest, in: Proceedings of the 15th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines, University of Oxford, UK, 24-27 September 2018. L. Carassale, F. Coletti, R. Guida, M. Marrè-Brunenghi, E. Rizzetto, Multi-Channel Spectral Analysis of Non-Synchronous Vibrations of Bladed Disks Measured by Blade Tip Timing, in: Turbo Expo: Power for Land, Sea, and Air, vol. 84232, Virtual, Online, 2020, p. V011T30A033 D.A. Najera-Flores, M.D. Todd, Ensemble of Numerics-Informed Neural Networks with Embedded Hamiltonian Constraints for Modeling Nonlinear Structural Dynamics, in: Nonlinear Structures & Systems, Volume 1: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022, Orlando, FL United States, 2023, pp. 27–30 Madden, Castanier, Epureanu (b22) 2008; 46 Lupini, Shim, Callan, Epureanu (b55) 2021 D’Souza, Kurstak, Ruff, Dunn (b61) 2020; 58 Raissi, Perdikaris, Karniadakis (b4) 2019; 378 Carassale, Cavicchi, Bruzzone, Marrè Brunenghi (b47) 2019; 141 Wang, Yu (b34) 2021 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b1) 2021; 3 Schmid (b29) 2022; 54 Otto, Rowley (b6) 2019; 18 Pawar, San, Aksoylu, Rasheed, Kvamsdal (b3) 2021; 33 Feng, Zhang, Khandelwal (b26) 2021 Aggarwal (b58) 2018 Yu, Yao, Liu (b31) 2020; 96 Yang, Griffin (b13) 2001; 123 Sinha, Hall, Cassenti, Hilbert (b44) 2008; 130 Mitra, Epureanu (b43) 2019 Peherstorfer, Willcox (b37) 2015; 291 Ghiocel (b45) 2001; 14 Madden, Epureanu, Filippi (b16) 2012; 50 Carassale (10.1016/j.jsv.2024.118773_b47) 2019; 141 Zhang (10.1016/j.jsv.2024.118773_b30) 2020; 369 Bassey (10.1016/j.jsv.2024.118773_b56) 2021 Madden (10.1016/j.jsv.2024.118773_b16) 2012; 50 Pawar (10.1016/j.jsv.2024.118773_b3) 2021; 33 Kurstak (10.1016/j.jsv.2024.118773_b48) 2021; 143 Kingma (10.1016/j.jsv.2024.118773_b63) 2014 Karniadakis (10.1016/j.jsv.2024.118773_b1) 2021; 3 Lim (10.1016/j.jsv.2024.118773_b15) 2007; 45 Olson (10.1016/j.jsv.2024.118773_b21) 2014; 66 Bhartiya (10.1016/j.jsv.2024.118773_b46) 2013; 135 Mitra (10.1016/j.jsv.2024.118773_b43) 2019 Otto (10.1016/j.jsv.2024.118773_b6) 2019; 18 Avrutskiy (10.1016/j.jsv.2024.118773_b59) 2017 Feiner (10.1016/j.jsv.2024.118773_b14) 2002; 124 Kelly (10.1016/j.jsv.2024.118773_b51) 2023 Firrone (10.1016/j.jsv.2024.118773_b12) 2011; 46 Gu (10.1016/j.jsv.2024.118773_b57) 2018; 77 Yu (10.1016/j.jsv.2024.118773_b31) 2020; 96 10.1016/j.jsv.2024.118773_b50 Peherstorfer (10.1016/j.jsv.2024.118773_b37) 2015; 291 10.1016/j.jsv.2024.118773_b53 Mbaye (10.1016/j.jsv.2024.118773_b17) 2010; 132 Simpson (10.1016/j.jsv.2024.118773_b36) 2021; 147 D’Souza (10.1016/j.jsv.2024.118773_b61) 2020; 58 Yang (10.1016/j.jsv.2024.118773_b13) 2001; 123 Wu (10.1016/j.jsv.2024.118773_b25) 2018; 145 Schmid (10.1016/j.jsv.2024.118773_b27) 2010; 656 Sinha (10.1016/j.jsv.2024.118773_b42) 2009; 131 Aggarwal (10.1016/j.jsv.2024.118773_b58) 2018 Lin (10.1016/j.jsv.2024.118773_b49) 2016; 81 Tu (10.1016/j.jsv.2024.118773_b28) 2013 Ghiocel (10.1016/j.jsv.2024.118773_b45) 2001; 14 Abadi (10.1016/j.jsv.2024.118773_b62) 2015 Liang (10.1016/j.jsv.2024.118773_b39) 2023; 61 Zhou (10.1016/j.jsv.2024.118773_b20) 2023; 195 Jones (10.1016/j.jsv.2024.118773_b40) 2003; 19 Stoffel (10.1016/j.jsv.2024.118773_b23) 2020; 364 Fitzner (10.1016/j.jsv.2024.118773_b18) 2014; 42 Kelly (10.1016/j.jsv.2024.118773_b38) 2021; 59 Cowles (10.1016/j.jsv.2024.118773_b10) 1996; 80 Wang (10.1016/j.jsv.2024.118773_b34) 2021 Wang (10.1016/j.jsv.2024.118773_b2) 2017 Bertalan (10.1016/j.jsv.2024.118773_b7) 2019; 29 Griffin (10.1016/j.jsv.2024.118773_b9) 1984; 106 Castanier (10.1016/j.jsv.2024.118773_b19) 1997; 119 Gillaugh (10.1016/j.jsv.2024.118773_b41) 2019; 141 10.1016/j.jsv.2024.118773_b33 Raissi (10.1016/j.jsv.2024.118773_b4) 2019; 378 10.1016/j.jsv.2024.118773_b35 Sinha (10.1016/j.jsv.2024.118773_b44) 2008; 130 Krack (10.1016/j.jsv.2024.118773_b11) 2017; 24 Castanier (10.1016/j.jsv.2024.118773_b8) 2006; 22 Madden (10.1016/j.jsv.2024.118773_b22) 2008; 46 Kelly (10.1016/j.jsv.2024.118773_b54) 2022; 144 Zhang (10.1016/j.jsv.2024.118773_b24) 2020; 215 Hornik (10.1016/j.jsv.2024.118773_b60) 1989; 2 Bladh (10.1016/j.jsv.2024.118773_b52) 2002; 124 Cuomo (10.1016/j.jsv.2024.118773_b5) 2022; 92 Rahmoune (10.1016/j.jsv.2024.118773_b32) 2021; 179 Feng (10.1016/j.jsv.2024.118773_b26) 2021 Schmid (10.1016/j.jsv.2024.118773_b29) 2022; 54 Lupini (10.1016/j.jsv.2024.118773_b55) 2021 |
References_xml | – year: 2013 ident: b28 article-title: Dynamic Mode Decomposition: Theory and Applications – reference: O. Azencot, N.B. Erichson, V. Lin, M. Mahoney, Forecasting sequential data using consistent Koopman autoencoders, in: Proceedings of the 37th International Conference on Machine Learning, Virtual, Online, 2020, pp. 475–485. – volume: 58 start-page: 2682 year: 2020 end-page: 2690 ident: b61 article-title: A new experimental facility for characterizing bladed disk dynamics at design speed publication-title: AIAA J. – volume: 143 year: 2021 ident: b48 article-title: An experimental and computational investigation of a pulsed air-jet excitation system on a rotating bladed disk publication-title: J. Eng. Gas Turb. Power – volume: 369 year: 2020 ident: b30 article-title: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 50 start-page: 366 year: 2012 end-page: 374 ident: b16 article-title: Reduced-order modeling approach for blisks with large mass, stiffness, and geometric mistuning publication-title: AIAA J. – volume: 141 year: 2019 ident: b47 article-title: Probabilistic response of a bladed disk with uncertain geometry publication-title: J. Eng. Gas Turb. Power – reference: L. Carassale, F. Coletti, R. Guida, M. Marrè-Brunenghi, E. Rizzetto, Multi-Channel Spectral Analysis of Non-Synchronous Vibrations of Bladed Disks Measured by Blade Tip Timing, in: Turbo Expo: Power for Land, Sea, and Air, vol. 84232, Virtual, Online, 2020, p. V011T30A033, – volume: 123 start-page: 893 year: 2001 end-page: 900 ident: b13 article-title: A reduced-order model of mistuning using a subset of nominal system modes publication-title: J. Eng. Gas Turb. Power – volume: 141 year: 2019 ident: b41 article-title: Mistuning evaluation comparison via as-manufactured models, traveling wave excitation, and compressor rigs publication-title: J. Eng. Gas Turb. Power – volume: 19 start-page: 135 year: 2003 end-page: 141 ident: b40 article-title: Traveling wave excitation system for bladed disks publication-title: J. Propuls. Power – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: b60 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. – volume: 92 start-page: 88 year: 2022 ident: b5 article-title: Scientific machine learning through physics–informed neural networks: where we are and what’s next publication-title: J. Sci. Comput. – volume: 29 year: 2019 ident: b7 article-title: On learning Hamiltonian systems from data publication-title: Chaos – year: 2018 ident: b58 article-title: Neural Networks and Deep Learning: A Textbook – volume: 33 year: 2021 ident: b3 article-title: Physics guided machine learning using simplified theories publication-title: Phys. Fluids – volume: 18 start-page: 558 year: 2019 end-page: 593 ident: b6 article-title: Linearly recurrent autoencoder networks for learning dynamics publication-title: SIAM J. Appl. Dyn. Syst. – volume: 42 start-page: 167 year: 2014 end-page: 180 ident: b18 article-title: Nodal energy weighted transformation: A mistuning projection and its application to flade™ turbines publication-title: Mech. Syst. Signal Process. – volume: 119 start-page: 439 year: 1997 end-page: 447 ident: b19 article-title: A reduced order modeling technique for mistuned bladed disks publication-title: J. Vib. Acoust. – volume: 46 start-page: 363 year: 2011 end-page: 375 ident: b12 article-title: The effect of underplatform dampers on the forced response of bladed disks by a coupled static/dynamic harmonic balance method publication-title: Int. J. Non-Linear Mech. – volume: 106 start-page: 204 year: 1984 end-page: 210 ident: b9 article-title: Model development and statistical investigation of turbine blade mistuning publication-title: J. Vib. Acoust. Stress Reliab. Des. – volume: 291 start-page: 21 year: 2015 end-page: 41 ident: b37 article-title: Dynamic data-driven reduced-order models publication-title: Comput. Methods Appl. Mech. Engrg. – reference: D.A. Najera-Flores, M.D. Todd, Ensemble of Numerics-Informed Neural Networks with Embedded Hamiltonian Constraints for Modeling Nonlinear Structural Dynamics, in: Nonlinear Structures & Systems, Volume 1: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022, Orlando, FL United States, 2023, pp. 27–30, – volume: 364 year: 2020 ident: b23 article-title: Artificial neural networks in structural dynamics: a new modular radial basis function approach vs. convolutional and feedforward topologies publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 124 start-page: 311 year: 2002 end-page: 324 ident: b52 article-title: Dynamic response predictions for a mistuned industrial turbomachinery rotor using reduced-order modeling publication-title: J. Eng. Gas Turb. Power – volume: 145 year: 2018 ident: b25 article-title: Deep convolutional neural network for structural dynamic response estimation and system identification publication-title: J. Eng. Mech. – year: 2021 ident: b34 article-title: Physics-guided deep learning for dynamical systems: A survey – year: 2017 ident: b59 article-title: Backpropagation generalized for output derivatives – volume: 77 start-page: 354 year: 2018 end-page: 377 ident: b57 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. – volume: 195 year: 2023 ident: b20 article-title: A novel model reduction approach for blisks with blend repairs and small mistuning publication-title: Mech. Syst. Signal Process. – volume: 46 start-page: 2890 year: 2008 end-page: 2898 ident: b22 article-title: Reduced-order model construction procedure for robust mistuning identification of blisks publication-title: AIAA J. – volume: 147 year: 2021 ident: b36 article-title: Machine learning approach to model order reduction of nonlinear systems via autoencoder and LSTM networks publication-title: J. Eng. Mech. – volume: 61 start-page: 391 year: 2023 end-page: 405 ident: b39 article-title: Novel neural network for predicting the vibration response of mistuned bladed disks publication-title: AIAA J. – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: b1 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. – volume: 656 start-page: 5 year: 2010 end-page: 28 ident: b27 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. – volume: 96 year: 2020 ident: b31 article-title: Structural dynamics simulation using a novel physics-guided machine learning method publication-title: Eng. Appl. Artif. Intell. – volume: 81 start-page: 250 year: 2016 end-page: 258 ident: b49 article-title: Sparse reconstruction of blade tip-timing signals for multi-mode blade vibration monitoring publication-title: Mech. Syst. Signal Process. – volume: 135 year: 2013 ident: b46 article-title: Reduced order modeling of a bladed rotor with geometric mistuning via estimated deviations in mass and stiffness matrices publication-title: J. Eng. Gas Turb. Power – year: 2017 ident: b2 article-title: A comprehensive physics-informed machine learning framework for predictive turbulence modeling – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b4 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 124 start-page: 597 year: 2002 end-page: 605 ident: b14 article-title: A fundamental model of mistuning for a single family of modes publication-title: J. Turbomach. – volume: 54 start-page: 225 year: 2022 end-page: 254 ident: b29 article-title: Dynamic mode decomposition and its variants publication-title: Annu. Rev. Fluid Mech. – year: 2023 ident: b51 article-title: Data-Driven Models of Blisk Structures – year: 2021 ident: b26 article-title: On the application of data-driven deep neural networks in linear and nonlinear structural dynamics – volume: 144 year: 2022 ident: b54 article-title: Data-driven approach for identifying mistuning in as-manufactured blisks publication-title: J. Eng. Gas Turb. Power – volume: 22 start-page: 384 year: 2006 end-page: 396 ident: b8 article-title: Modeling and analysis of mistuned bladed disk vibration: current status and emerging directions publication-title: J. Propuls. Power – year: 2021 ident: b56 article-title: A survey of complex-valued neural networks – volume: 80 start-page: 147 year: 1996 end-page: 163 ident: b10 article-title: High cycle fatigue in aircraft gas turbines—an industry perspective publication-title: Int. J. Fract. – volume: 131 year: 2009 ident: b42 article-title: Reduced-order model of a bladed rotor with geometric mistuning publication-title: J. Turbomach. – year: 2019 ident: b43 article-title: Dynamic modeling and projection-based reduction methods for bladed disks with nonlinear frictional and intermittent contact interfaces publication-title: Appl. Mech. Rev. – volume: 66 year: 2014 ident: b21 article-title: Circulant matrices and their application to vibration analysis publication-title: Appl. Mech. Rev. – volume: 14 start-page: 127 year: 2001 end-page: 139 ident: b45 article-title: Stochastic field models for aircraft jet engine applications publication-title: J. Aerosp. Eng. – volume: 45 start-page: 2285 year: 2007 end-page: 2298 ident: b15 article-title: Compact, generalized component mode mistuning representation for modeling bladed disk vibration publication-title: AIAA J. – volume: 215 year: 2020 ident: b24 article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling publication-title: Eng. Struct. – year: 2014 ident: b63 article-title: Adam: A method for stochastic optimization – reference: . – volume: 132 year: 2010 ident: b17 article-title: A reduced-order model of detuned cyclic dynamical systems with geometric modifications using a basis of cyclic modes publication-title: J. Eng. Gas Turb. Power – start-page: 1 year: 2021 end-page: 9 ident: b55 article-title: Mistuning identification technique based on blisk detuning publication-title: AIAA J. – year: 2015 ident: b62 article-title: TensorFlow: large-scale machine learning on heterogeneous systems – volume: 179 start-page: 23 year: 2021 end-page: 47 ident: b32 article-title: Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling publication-title: Math. Comput. Simulation – volume: 59 start-page: 2684 year: 2021 end-page: 2696 ident: b38 article-title: Data-driven modeling approach for mistuned cyclic structures publication-title: AIAA J. – volume: 130 year: 2008 ident: b44 article-title: Vibratory parameters of blades from coordinate measurement machine data publication-title: J. Turbomach. – reference: B. Beirow, F. Figaschewsky, A. Kühhorn, An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning. Part 2: application to Blisks at Rest, in: Proceedings of the 15th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines, University of Oxford, UK, 24-27 September 2018. – volume: 24 start-page: 589 year: 2017 end-page: 636 ident: b11 article-title: Vibration prediction of bladed disks coupled by friction joints publication-title: Arch. Comput. Methods Eng. – volume: 92 start-page: 88 issue: 3 year: 2022 ident: 10.1016/j.jsv.2024.118773_b5 article-title: Scientific machine learning through physics–informed neural networks: where we are and what’s next publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-01939-z – year: 2014 ident: 10.1016/j.jsv.2024.118773_b63 – volume: 124 start-page: 311 issue: 2 year: 2002 ident: 10.1016/j.jsv.2024.118773_b52 article-title: Dynamic response predictions for a mistuned industrial turbomachinery rotor using reduced-order modeling publication-title: J. Eng. Gas Turb. Power doi: 10.1115/1.1447236 – volume: 132 issue: 11 year: 2010 ident: 10.1016/j.jsv.2024.118773_b17 article-title: A reduced-order model of detuned cyclic dynamical systems with geometric modifications using a basis of cyclic modes publication-title: J. Eng. Gas Turb. Power doi: 10.1115/1.4000805 – volume: 291 start-page: 21 year: 2015 ident: 10.1016/j.jsv.2024.118773_b37 article-title: Dynamic data-driven reduced-order models publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2015.03.018 – volume: 81 start-page: 250 year: 2016 ident: 10.1016/j.jsv.2024.118773_b49 article-title: Sparse reconstruction of blade tip-timing signals for multi-mode blade vibration monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.03.020 – volume: 145 issue: 1 year: 2018 ident: 10.1016/j.jsv.2024.118773_b25 article-title: Deep convolutional neural network for structural dynamic response estimation and system identification publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001556 – volume: 29 issue: 12 year: 2019 ident: 10.1016/j.jsv.2024.118773_b7 article-title: On learning Hamiltonian systems from data publication-title: Chaos doi: 10.1063/1.5128231 – year: 2017 ident: 10.1016/j.jsv.2024.118773_b59 – volume: 50 start-page: 366 issue: 2 year: 2012 ident: 10.1016/j.jsv.2024.118773_b16 article-title: Reduced-order modeling approach for blisks with large mass, stiffness, and geometric mistuning publication-title: AIAA J. doi: 10.2514/1.J051140 – volume: 131 issue: 3 year: 2009 ident: 10.1016/j.jsv.2024.118773_b42 article-title: Reduced-order model of a bladed rotor with geometric mistuning publication-title: J. Turbomach. doi: 10.1115/1.2987237 – year: 2015 ident: 10.1016/j.jsv.2024.118773_b62 – year: 2021 ident: 10.1016/j.jsv.2024.118773_b34 – volume: 22 start-page: 384 issue: 2 year: 2006 ident: 10.1016/j.jsv.2024.118773_b8 article-title: Modeling and analysis of mistuned bladed disk vibration: current status and emerging directions publication-title: J. Propuls. Power doi: 10.2514/1.16345 – volume: 80 start-page: 147 issue: 2 year: 1996 ident: 10.1016/j.jsv.2024.118773_b10 article-title: High cycle fatigue in aircraft gas turbines—an industry perspective publication-title: Int. J. Fract. doi: 10.1007/BF00012667 – volume: 18 start-page: 558 issue: 1 year: 2019 ident: 10.1016/j.jsv.2024.118773_b6 article-title: Linearly recurrent autoencoder networks for learning dynamics publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/18M1177846 – volume: 195 year: 2023 ident: 10.1016/j.jsv.2024.118773_b20 article-title: A novel model reduction approach for blisks with blend repairs and small mistuning publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110308 – volume: 364 year: 2020 ident: 10.1016/j.jsv.2024.118773_b23 article-title: Artificial neural networks in structural dynamics: a new modular radial basis function approach vs. convolutional and feedforward topologies publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.112989 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.jsv.2024.118773_b60 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 33 issue: 1 year: 2021 ident: 10.1016/j.jsv.2024.118773_b3 article-title: Physics guided machine learning using simplified theories publication-title: Phys. Fluids doi: 10.1063/5.0038929 – volume: 130 issue: 1 year: 2008 ident: 10.1016/j.jsv.2024.118773_b44 article-title: Vibratory parameters of blades from coordinate measurement machine data publication-title: J. Turbomach. doi: 10.1115/1.2749293 – volume: 45 start-page: 2285 issue: 9 year: 2007 ident: 10.1016/j.jsv.2024.118773_b15 article-title: Compact, generalized component mode mistuning representation for modeling bladed disk vibration publication-title: AIAA J. doi: 10.2514/1.13172 – volume: 215 year: 2020 ident: 10.1016/j.jsv.2024.118773_b24 article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110704 – volume: 141 issue: 6 year: 2019 ident: 10.1016/j.jsv.2024.118773_b41 article-title: Mistuning evaluation comparison via as-manufactured models, traveling wave excitation, and compressor rigs publication-title: J. Eng. Gas Turb. Power doi: 10.1115/1.4042079 – volume: 141 issue: 10 year: 2019 ident: 10.1016/j.jsv.2024.118773_b47 article-title: Probabilistic response of a bladed disk with uncertain geometry publication-title: J. Eng. Gas Turb. Power doi: 10.1115/1.4044642 – year: 2018 ident: 10.1016/j.jsv.2024.118773_b58 – volume: 369 year: 2020 ident: 10.1016/j.jsv.2024.118773_b30 article-title: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113226 – volume: 14 start-page: 127 issue: 4 year: 2001 ident: 10.1016/j.jsv.2024.118773_b45 article-title: Stochastic field models for aircraft jet engine applications publication-title: J. Aerosp. Eng. doi: 10.1061/(ASCE)0893-1321(2001)14:4(127) – volume: 143 issue: 1 year: 2021 ident: 10.1016/j.jsv.2024.118773_b48 article-title: An experimental and computational investigation of a pulsed air-jet excitation system on a rotating bladed disk publication-title: J. Eng. Gas Turb. Power doi: 10.1115/1.4049014 – volume: 96 year: 2020 ident: 10.1016/j.jsv.2024.118773_b31 article-title: Structural dynamics simulation using a novel physics-guided machine learning method publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103947 – volume: 54 start-page: 225 year: 2022 ident: 10.1016/j.jsv.2024.118773_b29 article-title: Dynamic mode decomposition and its variants publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-030121-015835 – volume: 3 start-page: 422 issue: 6 year: 2021 ident: 10.1016/j.jsv.2024.118773_b1 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – volume: 77 start-page: 354 year: 2018 ident: 10.1016/j.jsv.2024.118773_b57 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – ident: 10.1016/j.jsv.2024.118773_b35 doi: 10.1007/978-3-031-04086-3_4 – year: 2013 ident: 10.1016/j.jsv.2024.118773_b28 – volume: 42 start-page: 167 issue: 1–2 year: 2014 ident: 10.1016/j.jsv.2024.118773_b18 article-title: Nodal energy weighted transformation: A mistuning projection and its application to flade™ turbines publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.08.027 – year: 2021 ident: 10.1016/j.jsv.2024.118773_b56 – volume: 59 start-page: 2684 issue: 7 year: 2021 ident: 10.1016/j.jsv.2024.118773_b38 article-title: Data-driven modeling approach for mistuned cyclic structures publication-title: AIAA J. doi: 10.2514/1.J060117 – year: 2019 ident: 10.1016/j.jsv.2024.118773_b43 article-title: Dynamic modeling and projection-based reduction methods for bladed disks with nonlinear frictional and intermittent contact interfaces publication-title: Appl. Mech. Rev. doi: 10.1115/1.4043083 – start-page: 1 year: 2021 ident: 10.1016/j.jsv.2024.118773_b55 article-title: Mistuning identification technique based on blisk detuning publication-title: AIAA J. doi: 10.2514/1.J060209 – year: 2021 ident: 10.1016/j.jsv.2024.118773_b26 – volume: 656 start-page: 5 year: 2010 ident: 10.1016/j.jsv.2024.118773_b27 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. doi: 10.1017/S0022112010001217 – volume: 46 start-page: 2890 issue: 11 year: 2008 ident: 10.1016/j.jsv.2024.118773_b22 article-title: Reduced-order model construction procedure for robust mistuning identification of blisks publication-title: AIAA J. doi: 10.2514/1.37314 – volume: 24 start-page: 589 issue: 3 year: 2017 ident: 10.1016/j.jsv.2024.118773_b11 article-title: Vibration prediction of bladed disks coupled by friction joints publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-016-9183-2 – ident: 10.1016/j.jsv.2024.118773_b53 – year: 2023 ident: 10.1016/j.jsv.2024.118773_b51 – volume: 66 issue: 4 year: 2014 ident: 10.1016/j.jsv.2024.118773_b21 article-title: Circulant matrices and their application to vibration analysis publication-title: Appl. Mech. Rev. doi: 10.1115/1.4027722 – volume: 61 start-page: 391 issue: 1 year: 2023 ident: 10.1016/j.jsv.2024.118773_b39 article-title: Novel neural network for predicting the vibration response of mistuned bladed disks publication-title: AIAA J. doi: 10.2514/1.J062215 – volume: 46 start-page: 363 issue: 2 year: 2011 ident: 10.1016/j.jsv.2024.118773_b12 article-title: The effect of underplatform dampers on the forced response of bladed disks by a coupled static/dynamic harmonic balance method publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2010.10.001 – ident: 10.1016/j.jsv.2024.118773_b50 doi: 10.1115/1.0002942V – volume: 147 issue: 10 year: 2021 ident: 10.1016/j.jsv.2024.118773_b36 article-title: Machine learning approach to model order reduction of nonlinear systems via autoencoder and LSTM networks publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001971 – volume: 106 start-page: 204 issue: 2 year: 1984 ident: 10.1016/j.jsv.2024.118773_b9 article-title: Model development and statistical investigation of turbine blade mistuning publication-title: J. Vib. Acoust. Stress Reliab. Des. doi: 10.1115/1.3269170 – volume: 119 start-page: 439 issue: 3 year: 1997 ident: 10.1016/j.jsv.2024.118773_b19 article-title: A reduced order modeling technique for mistuned bladed disks publication-title: J. Vib. Acoust. doi: 10.1115/1.2889743 – volume: 19 start-page: 135 issue: 1 year: 2003 ident: 10.1016/j.jsv.2024.118773_b40 article-title: Traveling wave excitation system for bladed disks publication-title: J. Propuls. Power doi: 10.2514/2.6089 – volume: 135 issue: 5 year: 2013 ident: 10.1016/j.jsv.2024.118773_b46 article-title: Reduced order modeling of a bladed rotor with geometric mistuning via estimated deviations in mass and stiffness matrices publication-title: J. Eng. Gas Turb. Power doi: 10.1115/1.4007783 – volume: 179 start-page: 23 year: 2021 ident: 10.1016/j.jsv.2024.118773_b32 article-title: Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2020.07.017 – volume: 144 issue: 5 year: 2022 ident: 10.1016/j.jsv.2024.118773_b54 article-title: Data-driven approach for identifying mistuning in as-manufactured blisks publication-title: J. Eng. Gas Turb. Power doi: 10.1115/1.4052503 – volume: 123 start-page: 893 issue: 4 year: 2001 ident: 10.1016/j.jsv.2024.118773_b13 article-title: A reduced-order model of mistuning using a subset of nominal system modes publication-title: J. Eng. Gas Turb. Power doi: 10.1115/1.1385197 – year: 2017 ident: 10.1016/j.jsv.2024.118773_b2 – volume: 58 start-page: 2682 issue: 6 year: 2020 ident: 10.1016/j.jsv.2024.118773_b61 article-title: A new experimental facility for characterizing bladed disk dynamics at design speed publication-title: AIAA J. doi: 10.2514/1.J058682 – ident: 10.1016/j.jsv.2024.118773_b33 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.jsv.2024.118773_b4 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 124 start-page: 597 issue: 4 year: 2002 ident: 10.1016/j.jsv.2024.118773_b14 article-title: A fundamental model of mistuning for a single family of modes publication-title: J. Turbomach. doi: 10.1115/1.1508384 |
SSID | ssj0009434 |
Score | 2.4609547 |
Snippet | Integrally bladed rotors are commonly used in aircraft and rocket turbomachinery and known to exhibit complex dynamics when subject to operational loading... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 118773 |
SubjectTerms | Blisks Physics-informed neural networks Reduced-order modeling Structural dynamics Turbomachinery |
Title | Physics-informed machine learning approach for reduced-order modeling of integrally bladed rotors: Theory and application |
URI | https://dx.doi.org/10.1016/j.jsv.2024.118773 |
Volume | 596 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48CdvG7iOJt1IsVbEnC72FfUpLTUtbhV787e5sEqygF28hzIYw2Xwzw37zDULXQqbCxx1LVGQMYTr1OMitI0pIKXVsnAqn589DMRixxzEf11Cv6oUBWmWJ_QWmB7Qu77RLb7YXkwn0-IIYWjQGFiSIlEAHO4thl7c-v2keoH9WKYaDdXWyGThe09WHLxE7rAVDt2P6e2zaijf9A7RfJoq4W7zLIarZ_AjtBsKmXh2jTXlFCuVTa_BboEVaXM6BeMWVXDj2BngJEq3WkCC1icP8G7CZO1wKRsxmG6xm0vgnLecwgucOF337WOYGb51zn6BR__6lNyDlGAWifW21Jk6JJLERs4rRxKaMGRsL7lykuYucT-d8xGY6YVxzqlLLXCwso1Qm_n83zuczp6iez3N7hjDnVGgpjOtQyoz2xZXWt9rDQuRxSsm0gW4qB2aLQi0jq2hk08x7OwNvZ4W3G4hVLs5-fPLMo_nfy87_t-wC7XVgdC8Qrvklqq-X7_bK5xNr1Qwbpol2ug9Pg-EXKH3McA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qi-hFfGJ97sGTEBu7jyTeilha-zi10FvYp7TUtrRV6L93N9lgBb14C2EnhNnkmxn2m28A7hhPmI07OhChUgGRicVBqk0gGOdcRsqI7PS812etIXkd0VEJnoteGEer9NifY3qG1v5OzXuzthiPXY-vE0MLR44F6URKdqDi1KloGSqNdqfV_9beJZgUouHOoDjczGhek9WnrRLr5MHN3Y7w7-FpK-Q0D-HA54qokb_OEZT07Bh2M86mXJ3Axl8FufipVug9Y0Zq5EdBvKFCMRzZBWjpVFq1CjK1TZSNwHFr5gZ5zYjpdIPElCv7pOXcTeF5QnnrPuIzhbaOuk9h2HwZPLcCP0khkLa8WgdGsDjWIdGC4FgnhCgdMWpMKKkJjc3obNAmMiZUUiwSTUzENMGYx_aXV8amNGdQns1n-hwQpZhJzpSpY0yUtPWVlI_SIkNooUrwpAr3hQPTRS6YkRZMsklqvZ06b6e5t6tAChenP3Y9tYD-t9nF_8xuYa816HXTbrvfuYT9upvk6_jX9ArK6-WHvrbpxVrc-M_nCznlzyE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+machine+learning+approach+for+reduced-order+modeling+of+integrally+bladed+rotors%3A+Theory+and+application&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Kelly%2C+Sean+T.&rft.au=Epureanu%2C+Bogdan+I.&rft.date=2025-02-05&rft.pub=Elsevier+Ltd&rft.issn=0022-460X&rft.volume=596&rft_id=info:doi/10.1016%2Fj.jsv.2024.118773&rft.externalDocID=S0022460X24005352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon |