Physics-informed machine learning approach for reduced-order modeling of integrally bladed rotors: Theory and application

Integrally bladed rotors are commonly used in aircraft and rocket turbomachinery and known to exhibit complex dynamics when subject to operational loading conditions. Though nominally cyclic-symmetric structures, in practice, cyclic symmetry is destroyed due to mistuning caused by random sector-to-s...

Full description

Saved in:
Bibliographic Details
Published inJournal of sound and vibration Vol. 596; p. 118773
Main Authors Kelly, Sean T., Epureanu, Bogdan I.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.02.2025
Subjects
Online AccessGet full text
ISSN0022-460X
DOI10.1016/j.jsv.2024.118773

Cover

Loading…
Abstract Integrally bladed rotors are commonly used in aircraft and rocket turbomachinery and known to exhibit complex dynamics when subject to operational loading conditions. Though nominally cyclic-symmetric structures, in practice, cyclic symmetry is destroyed due to mistuning caused by random sector-to-sector imperfections in material properties and geometry. Simulating mistuned blisk dynamics using high-fidelity models can be computationally expensive, thus, a variety of physics-based reduced-order models have been previously developed. However, these models cannot easily incorporate experimental data nor leverage potential benefits of data-driven and machine-learning-based approaches. Here, we present a novel first-of-its-kind physics-informed machine learning modeling approach that incorporates physical laws directly into a novel network architecture while maintaining a sector-level viewpoint. The approach is combined with an assembly procedure resulting in a significantly smaller linear system based on blade-alone response data, and can directly incorporate physical response data like that measured with blade tip timing and/or traveling-wave excitation. Validation is shown using a large-scale finite-element model, with multiple traveling-wave forced-response predictions and response selection cases considered. Using only as little as a single degree of freedom per sector from the blade tip, this approach shows high accuracy relative to high-fidelity simulations. •Novel reduced-order model for large-scale integrally bladed rotors.•Based on sector-level physics-informed neural networks using blade tip data only.•Maintains derived analytical relationships and known mistuned system dynamics.•Integrated with numerical techniques to improve accuracy and robustness.•Extensively validated and generalized for as little as 1 degree of freedom per blade.
AbstractList Integrally bladed rotors are commonly used in aircraft and rocket turbomachinery and known to exhibit complex dynamics when subject to operational loading conditions. Though nominally cyclic-symmetric structures, in practice, cyclic symmetry is destroyed due to mistuning caused by random sector-to-sector imperfections in material properties and geometry. Simulating mistuned blisk dynamics using high-fidelity models can be computationally expensive, thus, a variety of physics-based reduced-order models have been previously developed. However, these models cannot easily incorporate experimental data nor leverage potential benefits of data-driven and machine-learning-based approaches. Here, we present a novel first-of-its-kind physics-informed machine learning modeling approach that incorporates physical laws directly into a novel network architecture while maintaining a sector-level viewpoint. The approach is combined with an assembly procedure resulting in a significantly smaller linear system based on blade-alone response data, and can directly incorporate physical response data like that measured with blade tip timing and/or traveling-wave excitation. Validation is shown using a large-scale finite-element model, with multiple traveling-wave forced-response predictions and response selection cases considered. Using only as little as a single degree of freedom per sector from the blade tip, this approach shows high accuracy relative to high-fidelity simulations. •Novel reduced-order model for large-scale integrally bladed rotors.•Based on sector-level physics-informed neural networks using blade tip data only.•Maintains derived analytical relationships and known mistuned system dynamics.•Integrated with numerical techniques to improve accuracy and robustness.•Extensively validated and generalized for as little as 1 degree of freedom per blade.
ArticleNumber 118773
Author Kelly, Sean T.
Epureanu, Bogdan I.
Author_xml – sequence: 1
  givenname: Sean T.
  orcidid: 0000-0002-5911-7559
  surname: Kelly
  fullname: Kelly, Sean T.
  email: seantk@umich.edu
– sequence: 2
  givenname: Bogdan I.
  surname: Epureanu
  fullname: Epureanu, Bogdan I.
  email: epureanu@umich.edu
BookMark eNp9kMtqwzAQRbVIoUnaD-hOP2BXsmRbblcl9AWBdpFCd0KWRomMIwXJDfjva5OuuxoY7rnMnBVa-OABoTtKckpodd_lXTrnBSl4Tqmoa7ZAS0KKIuMV-b5Gq5Q6QkjDGV-i8fMwJqdT5rwN8QgGH5U-OA-4BxW983usTqcYpiWeAjiC-dFgshANRHwMBvo5Eyx2foB9VH0_4rZXZmqKYQgxPeDdAUIcsfJm7uqdVoML_gZdWdUnuP2ba_T18rzbvGXbj9f3zdM20wVvhsy2lRBAOLScCWg4N1BXpbVEl5bYsqpEybgWvNQlaxvgtq6AM6YEYdRY0bA1opdeHUNKEaw8RXdUcZSUyNmX7OTkS86-5MXXxDxeGJgOOzuIMmkHfnrcRdCDNMH9Q_8Cgdt59Q
Cites_doi 10.1007/s10915-022-01939-z
10.1115/1.1447236
10.1115/1.4000805
10.1016/j.cma.2015.03.018
10.1016/j.ymssp.2016.03.020
10.1061/(ASCE)EM.1943-7889.0001556
10.1063/1.5128231
10.2514/1.J051140
10.1115/1.2987237
10.2514/1.16345
10.1007/BF00012667
10.1137/18M1177846
10.1016/j.ymssp.2023.110308
10.1016/j.cma.2020.112989
10.1016/0893-6080(89)90020-8
10.1063/5.0038929
10.1115/1.2749293
10.2514/1.13172
10.1016/j.engstruct.2020.110704
10.1115/1.4042079
10.1115/1.4044642
10.1016/j.cma.2020.113226
10.1061/(ASCE)0893-1321(2001)14:4(127)
10.1115/1.4049014
10.1016/j.engappai.2020.103947
10.1146/annurev-fluid-030121-015835
10.1038/s42254-021-00314-5
10.1016/j.patcog.2017.10.013
10.1007/978-3-031-04086-3_4
10.1016/j.ymssp.2013.08.027
10.2514/1.J060117
10.1115/1.4043083
10.2514/1.J060209
10.1017/S0022112010001217
10.2514/1.37314
10.1007/s11831-016-9183-2
10.1115/1.4027722
10.2514/1.J062215
10.1016/j.ijnonlinmec.2010.10.001
10.1115/1.0002942V
10.1061/(ASCE)EM.1943-7889.0001971
10.1115/1.3269170
10.1115/1.2889743
10.2514/2.6089
10.1115/1.4007783
10.1016/j.matcom.2020.07.017
10.1115/1.4052503
10.1115/1.1385197
10.2514/1.J058682
10.1016/j.jcp.2018.10.045
10.1115/1.1508384
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jsv.2024.118773
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_jsv_2024_118773
S0022460X24005352
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
E.L
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSQ
SST
SSZ
T5K
TN5
XPP
ZMT
~G-
29L
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHPGS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
H~9
IHE
LG5
M24
M37
M41
NDZJH
R2-
RIG
SMS
SPG
SSH
T9H
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c249t-fb688e04eb438e944de765ff0c5f0f5668534c845c53b9e4f76e433a8031df893
IEDL.DBID .~1
ISSN 0022-460X
IngestDate Tue Jul 01 03:32:22 EDT 2025
Wed Dec 04 16:49:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Structural dynamics
Turbomachinery
Reduced-order modeling
Physics-informed neural networks
Blisks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-fb688e04eb438e944de765ff0c5f0f5668534c845c53b9e4f76e433a8031df893
ORCID 0000-0002-5911-7559
ParticipantIDs crossref_primary_10_1016_j_jsv_2024_118773
elsevier_sciencedirect_doi_10_1016_j_jsv_2024_118773
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-05
PublicationDateYYYYMMDD 2025-02-05
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-05
  day: 05
PublicationDecade 2020
PublicationTitle Journal of sound and vibration
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Lin, Hu, Chen, Yang, Xu (b49) 2016; 81
Castanier, Ottarsson, Pierre (b19) 1997; 119
Wu, Jahanshahi (b25) 2018; 145
Cuomo, Di Cola, Giampaolo, Rozza, Raissi, Piccialli (b5) 2022; 92
Sinha (b42) 2009; 131
Firrone, Zucca, Gola (b12) 2011; 46
Fitzner, Epureanu, Filippi (b18) 2014; 42
Avrutskiy (b59) 2017
Schmid (b27) 2010; 656
Stoffel, Gulakala, Bamer, Markert (b23) 2020; 364
Simpson, Dervilis, Chatzi (b36) 2021; 147
Kingma, Ba (b63) 2014
Griffin, Hoosac (b9) 1984; 106
Kelly, Lupini, Epureanu (b38) 2021; 59
Bertalan, Dietrich, Mezić, Kevrekidis (b7) 2019; 29
Krack, Salles, Thouverez (b11) 2017; 24
Zhou, Berruti (b20) 2023; 195
Bladh, Pierre, Castanier, Kruse (b52) 2002; 124
Rahmoune, Hafaifa, Kouzou, Chen, Chaibet (b32) 2021; 179
Wang, Wu, Ling, Iaccarino, Xiao (b2) 2017
Kurstak, D’Souza (b48) 2021; 143
Kelly, Lupini, Epureanu (b54) 2022; 144
Mbaye, Soize, Ousty (b17) 2010; 132
Olson, Shaw, Shi, Pierre, Parker (b21) 2014; 66
.
Hornik, Stinchcombe, White (b60) 1989; 2
Castanier, Pierre (b8) 2006; 22
Kelly (b51) 2023
Feiner, Griffin (b14) 2002; 124
Zhang, Liu, Sun (b24) 2020; 215
Gillaugh, Kaszynski, Brown, Beck, Slater (b41) 2019; 141
Lim, Bladh, Castanier, Pierre (b15) 2007; 45
Jones, Cross (b40) 2003; 19
Bassey, Qian, Li (b56) 2021
Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai, Chen (b57) 2018; 77
Cowles (b10) 1996; 80
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b62) 2015
Liang, Yao, Jia, Cao, Liu, Jing (b39) 2023; 61
Tu (b28) 2013
Bhartiya, Sinha (b46) 2013; 135
Zhang, Liu, Sun (b30) 2020; 369
O. Azencot, N.B. Erichson, V. Lin, M. Mahoney, Forecasting sequential data using consistent Koopman autoencoders, in: Proceedings of the 37th International Conference on Machine Learning, Virtual, Online, 2020, pp. 475–485.
B. Beirow, F. Figaschewsky, A. Kühhorn, An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning. Part 2: application to Blisks at Rest, in: Proceedings of the 15th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines, University of Oxford, UK, 24-27 September 2018.
L. Carassale, F. Coletti, R. Guida, M. Marrè-Brunenghi, E. Rizzetto, Multi-Channel Spectral Analysis of Non-Synchronous Vibrations of Bladed Disks Measured by Blade Tip Timing, in: Turbo Expo: Power for Land, Sea, and Air, vol. 84232, Virtual, Online, 2020, p. V011T30A033
D.A. Najera-Flores, M.D. Todd, Ensemble of Numerics-Informed Neural Networks with Embedded Hamiltonian Constraints for Modeling Nonlinear Structural Dynamics, in: Nonlinear Structures & Systems, Volume 1: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022, Orlando, FL United States, 2023, pp. 27–30
Madden, Castanier, Epureanu (b22) 2008; 46
Lupini, Shim, Callan, Epureanu (b55) 2021
D’Souza, Kurstak, Ruff, Dunn (b61) 2020; 58
Raissi, Perdikaris, Karniadakis (b4) 2019; 378
Carassale, Cavicchi, Bruzzone, Marrè Brunenghi (b47) 2019; 141
Wang, Yu (b34) 2021
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b1) 2021; 3
Schmid (b29) 2022; 54
Otto, Rowley (b6) 2019; 18
Pawar, San, Aksoylu, Rasheed, Kvamsdal (b3) 2021; 33
Feng, Zhang, Khandelwal (b26) 2021
Aggarwal (b58) 2018
Yu, Yao, Liu (b31) 2020; 96
Yang, Griffin (b13) 2001; 123
Sinha, Hall, Cassenti, Hilbert (b44) 2008; 130
Mitra, Epureanu (b43) 2019
Peherstorfer, Willcox (b37) 2015; 291
Ghiocel (b45) 2001; 14
Madden, Epureanu, Filippi (b16) 2012; 50
Carassale (10.1016/j.jsv.2024.118773_b47) 2019; 141
Zhang (10.1016/j.jsv.2024.118773_b30) 2020; 369
Bassey (10.1016/j.jsv.2024.118773_b56) 2021
Madden (10.1016/j.jsv.2024.118773_b16) 2012; 50
Pawar (10.1016/j.jsv.2024.118773_b3) 2021; 33
Kurstak (10.1016/j.jsv.2024.118773_b48) 2021; 143
Kingma (10.1016/j.jsv.2024.118773_b63) 2014
Karniadakis (10.1016/j.jsv.2024.118773_b1) 2021; 3
Lim (10.1016/j.jsv.2024.118773_b15) 2007; 45
Olson (10.1016/j.jsv.2024.118773_b21) 2014; 66
Bhartiya (10.1016/j.jsv.2024.118773_b46) 2013; 135
Mitra (10.1016/j.jsv.2024.118773_b43) 2019
Otto (10.1016/j.jsv.2024.118773_b6) 2019; 18
Avrutskiy (10.1016/j.jsv.2024.118773_b59) 2017
Feiner (10.1016/j.jsv.2024.118773_b14) 2002; 124
Kelly (10.1016/j.jsv.2024.118773_b51) 2023
Firrone (10.1016/j.jsv.2024.118773_b12) 2011; 46
Gu (10.1016/j.jsv.2024.118773_b57) 2018; 77
Yu (10.1016/j.jsv.2024.118773_b31) 2020; 96
10.1016/j.jsv.2024.118773_b50
Peherstorfer (10.1016/j.jsv.2024.118773_b37) 2015; 291
10.1016/j.jsv.2024.118773_b53
Mbaye (10.1016/j.jsv.2024.118773_b17) 2010; 132
Simpson (10.1016/j.jsv.2024.118773_b36) 2021; 147
D’Souza (10.1016/j.jsv.2024.118773_b61) 2020; 58
Yang (10.1016/j.jsv.2024.118773_b13) 2001; 123
Wu (10.1016/j.jsv.2024.118773_b25) 2018; 145
Schmid (10.1016/j.jsv.2024.118773_b27) 2010; 656
Sinha (10.1016/j.jsv.2024.118773_b42) 2009; 131
Aggarwal (10.1016/j.jsv.2024.118773_b58) 2018
Lin (10.1016/j.jsv.2024.118773_b49) 2016; 81
Tu (10.1016/j.jsv.2024.118773_b28) 2013
Ghiocel (10.1016/j.jsv.2024.118773_b45) 2001; 14
Abadi (10.1016/j.jsv.2024.118773_b62) 2015
Liang (10.1016/j.jsv.2024.118773_b39) 2023; 61
Zhou (10.1016/j.jsv.2024.118773_b20) 2023; 195
Jones (10.1016/j.jsv.2024.118773_b40) 2003; 19
Stoffel (10.1016/j.jsv.2024.118773_b23) 2020; 364
Fitzner (10.1016/j.jsv.2024.118773_b18) 2014; 42
Kelly (10.1016/j.jsv.2024.118773_b38) 2021; 59
Cowles (10.1016/j.jsv.2024.118773_b10) 1996; 80
Wang (10.1016/j.jsv.2024.118773_b34) 2021
Wang (10.1016/j.jsv.2024.118773_b2) 2017
Bertalan (10.1016/j.jsv.2024.118773_b7) 2019; 29
Griffin (10.1016/j.jsv.2024.118773_b9) 1984; 106
Castanier (10.1016/j.jsv.2024.118773_b19) 1997; 119
Gillaugh (10.1016/j.jsv.2024.118773_b41) 2019; 141
10.1016/j.jsv.2024.118773_b33
Raissi (10.1016/j.jsv.2024.118773_b4) 2019; 378
10.1016/j.jsv.2024.118773_b35
Sinha (10.1016/j.jsv.2024.118773_b44) 2008; 130
Krack (10.1016/j.jsv.2024.118773_b11) 2017; 24
Castanier (10.1016/j.jsv.2024.118773_b8) 2006; 22
Madden (10.1016/j.jsv.2024.118773_b22) 2008; 46
Kelly (10.1016/j.jsv.2024.118773_b54) 2022; 144
Zhang (10.1016/j.jsv.2024.118773_b24) 2020; 215
Hornik (10.1016/j.jsv.2024.118773_b60) 1989; 2
Bladh (10.1016/j.jsv.2024.118773_b52) 2002; 124
Cuomo (10.1016/j.jsv.2024.118773_b5) 2022; 92
Rahmoune (10.1016/j.jsv.2024.118773_b32) 2021; 179
Feng (10.1016/j.jsv.2024.118773_b26) 2021
Schmid (10.1016/j.jsv.2024.118773_b29) 2022; 54
Lupini (10.1016/j.jsv.2024.118773_b55) 2021
References_xml – year: 2013
  ident: b28
  article-title: Dynamic Mode Decomposition: Theory and Applications
– reference: O. Azencot, N.B. Erichson, V. Lin, M. Mahoney, Forecasting sequential data using consistent Koopman autoencoders, in: Proceedings of the 37th International Conference on Machine Learning, Virtual, Online, 2020, pp. 475–485.
– volume: 58
  start-page: 2682
  year: 2020
  end-page: 2690
  ident: b61
  article-title: A new experimental facility for characterizing bladed disk dynamics at design speed
  publication-title: AIAA J.
– volume: 143
  year: 2021
  ident: b48
  article-title: An experimental and computational investigation of a pulsed air-jet excitation system on a rotating bladed disk
  publication-title: J. Eng. Gas Turb. Power
– volume: 369
  year: 2020
  ident: b30
  article-title: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 50
  start-page: 366
  year: 2012
  end-page: 374
  ident: b16
  article-title: Reduced-order modeling approach for blisks with large mass, stiffness, and geometric mistuning
  publication-title: AIAA J.
– volume: 141
  year: 2019
  ident: b47
  article-title: Probabilistic response of a bladed disk with uncertain geometry
  publication-title: J. Eng. Gas Turb. Power
– reference: L. Carassale, F. Coletti, R. Guida, M. Marrè-Brunenghi, E. Rizzetto, Multi-Channel Spectral Analysis of Non-Synchronous Vibrations of Bladed Disks Measured by Blade Tip Timing, in: Turbo Expo: Power for Land, Sea, and Air, vol. 84232, Virtual, Online, 2020, p. V011T30A033,
– volume: 123
  start-page: 893
  year: 2001
  end-page: 900
  ident: b13
  article-title: A reduced-order model of mistuning using a subset of nominal system modes
  publication-title: J. Eng. Gas Turb. Power
– volume: 141
  year: 2019
  ident: b41
  article-title: Mistuning evaluation comparison via as-manufactured models, traveling wave excitation, and compressor rigs
  publication-title: J. Eng. Gas Turb. Power
– volume: 19
  start-page: 135
  year: 2003
  end-page: 141
  ident: b40
  article-title: Traveling wave excitation system for bladed disks
  publication-title: J. Propuls. Power
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: b60
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– volume: 92
  start-page: 88
  year: 2022
  ident: b5
  article-title: Scientific machine learning through physics–informed neural networks: where we are and what’s next
  publication-title: J. Sci. Comput.
– volume: 29
  year: 2019
  ident: b7
  article-title: On learning Hamiltonian systems from data
  publication-title: Chaos
– year: 2018
  ident: b58
  article-title: Neural Networks and Deep Learning: A Textbook
– volume: 33
  year: 2021
  ident: b3
  article-title: Physics guided machine learning using simplified theories
  publication-title: Phys. Fluids
– volume: 18
  start-page: 558
  year: 2019
  end-page: 593
  ident: b6
  article-title: Linearly recurrent autoencoder networks for learning dynamics
  publication-title: SIAM J. Appl. Dyn. Syst.
– volume: 42
  start-page: 167
  year: 2014
  end-page: 180
  ident: b18
  article-title: Nodal energy weighted transformation: A mistuning projection and its application to flade™ turbines
  publication-title: Mech. Syst. Signal Process.
– volume: 119
  start-page: 439
  year: 1997
  end-page: 447
  ident: b19
  article-title: A reduced order modeling technique for mistuned bladed disks
  publication-title: J. Vib. Acoust.
– volume: 46
  start-page: 363
  year: 2011
  end-page: 375
  ident: b12
  article-title: The effect of underplatform dampers on the forced response of bladed disks by a coupled static/dynamic harmonic balance method
  publication-title: Int. J. Non-Linear Mech.
– volume: 106
  start-page: 204
  year: 1984
  end-page: 210
  ident: b9
  article-title: Model development and statistical investigation of turbine blade mistuning
  publication-title: J. Vib. Acoust. Stress Reliab. Des.
– volume: 291
  start-page: 21
  year: 2015
  end-page: 41
  ident: b37
  article-title: Dynamic data-driven reduced-order models
  publication-title: Comput. Methods Appl. Mech. Engrg.
– reference: D.A. Najera-Flores, M.D. Todd, Ensemble of Numerics-Informed Neural Networks with Embedded Hamiltonian Constraints for Modeling Nonlinear Structural Dynamics, in: Nonlinear Structures & Systems, Volume 1: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022, Orlando, FL United States, 2023, pp. 27–30,
– volume: 364
  year: 2020
  ident: b23
  article-title: Artificial neural networks in structural dynamics: a new modular radial basis function approach vs. convolutional and feedforward topologies
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 124
  start-page: 311
  year: 2002
  end-page: 324
  ident: b52
  article-title: Dynamic response predictions for a mistuned industrial turbomachinery rotor using reduced-order modeling
  publication-title: J. Eng. Gas Turb. Power
– volume: 145
  year: 2018
  ident: b25
  article-title: Deep convolutional neural network for structural dynamic response estimation and system identification
  publication-title: J. Eng. Mech.
– year: 2021
  ident: b34
  article-title: Physics-guided deep learning for dynamical systems: A survey
– year: 2017
  ident: b59
  article-title: Backpropagation generalized for output derivatives
– volume: 77
  start-page: 354
  year: 2018
  end-page: 377
  ident: b57
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
– volume: 195
  year: 2023
  ident: b20
  article-title: A novel model reduction approach for blisks with blend repairs and small mistuning
  publication-title: Mech. Syst. Signal Process.
– volume: 46
  start-page: 2890
  year: 2008
  end-page: 2898
  ident: b22
  article-title: Reduced-order model construction procedure for robust mistuning identification of blisks
  publication-title: AIAA J.
– volume: 147
  year: 2021
  ident: b36
  article-title: Machine learning approach to model order reduction of nonlinear systems via autoencoder and LSTM networks
  publication-title: J. Eng. Mech.
– volume: 61
  start-page: 391
  year: 2023
  end-page: 405
  ident: b39
  article-title: Novel neural network for predicting the vibration response of mistuned bladed disks
  publication-title: AIAA J.
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: b1
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
– volume: 656
  start-page: 5
  year: 2010
  end-page: 28
  ident: b27
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J. Fluid Mech.
– volume: 96
  year: 2020
  ident: b31
  article-title: Structural dynamics simulation using a novel physics-guided machine learning method
  publication-title: Eng. Appl. Artif. Intell.
– volume: 81
  start-page: 250
  year: 2016
  end-page: 258
  ident: b49
  article-title: Sparse reconstruction of blade tip-timing signals for multi-mode blade vibration monitoring
  publication-title: Mech. Syst. Signal Process.
– volume: 135
  year: 2013
  ident: b46
  article-title: Reduced order modeling of a bladed rotor with geometric mistuning via estimated deviations in mass and stiffness matrices
  publication-title: J. Eng. Gas Turb. Power
– year: 2017
  ident: b2
  article-title: A comprehensive physics-informed machine learning framework for predictive turbulence modeling
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b4
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 124
  start-page: 597
  year: 2002
  end-page: 605
  ident: b14
  article-title: A fundamental model of mistuning for a single family of modes
  publication-title: J. Turbomach.
– volume: 54
  start-page: 225
  year: 2022
  end-page: 254
  ident: b29
  article-title: Dynamic mode decomposition and its variants
  publication-title: Annu. Rev. Fluid Mech.
– year: 2023
  ident: b51
  article-title: Data-Driven Models of Blisk Structures
– year: 2021
  ident: b26
  article-title: On the application of data-driven deep neural networks in linear and nonlinear structural dynamics
– volume: 144
  year: 2022
  ident: b54
  article-title: Data-driven approach for identifying mistuning in as-manufactured blisks
  publication-title: J. Eng. Gas Turb. Power
– volume: 22
  start-page: 384
  year: 2006
  end-page: 396
  ident: b8
  article-title: Modeling and analysis of mistuned bladed disk vibration: current status and emerging directions
  publication-title: J. Propuls. Power
– year: 2021
  ident: b56
  article-title: A survey of complex-valued neural networks
– volume: 80
  start-page: 147
  year: 1996
  end-page: 163
  ident: b10
  article-title: High cycle fatigue in aircraft gas turbines—an industry perspective
  publication-title: Int. J. Fract.
– volume: 131
  year: 2009
  ident: b42
  article-title: Reduced-order model of a bladed rotor with geometric mistuning
  publication-title: J. Turbomach.
– year: 2019
  ident: b43
  article-title: Dynamic modeling and projection-based reduction methods for bladed disks with nonlinear frictional and intermittent contact interfaces
  publication-title: Appl. Mech. Rev.
– volume: 66
  year: 2014
  ident: b21
  article-title: Circulant matrices and their application to vibration analysis
  publication-title: Appl. Mech. Rev.
– volume: 14
  start-page: 127
  year: 2001
  end-page: 139
  ident: b45
  article-title: Stochastic field models for aircraft jet engine applications
  publication-title: J. Aerosp. Eng.
– volume: 45
  start-page: 2285
  year: 2007
  end-page: 2298
  ident: b15
  article-title: Compact, generalized component mode mistuning representation for modeling bladed disk vibration
  publication-title: AIAA J.
– volume: 215
  year: 2020
  ident: b24
  article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
  publication-title: Eng. Struct.
– year: 2014
  ident: b63
  article-title: Adam: A method for stochastic optimization
– reference: .
– volume: 132
  year: 2010
  ident: b17
  article-title: A reduced-order model of detuned cyclic dynamical systems with geometric modifications using a basis of cyclic modes
  publication-title: J. Eng. Gas Turb. Power
– start-page: 1
  year: 2021
  end-page: 9
  ident: b55
  article-title: Mistuning identification technique based on blisk detuning
  publication-title: AIAA J.
– year: 2015
  ident: b62
  article-title: TensorFlow: large-scale machine learning on heterogeneous systems
– volume: 179
  start-page: 23
  year: 2021
  end-page: 47
  ident: b32
  article-title: Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling
  publication-title: Math. Comput. Simulation
– volume: 59
  start-page: 2684
  year: 2021
  end-page: 2696
  ident: b38
  article-title: Data-driven modeling approach for mistuned cyclic structures
  publication-title: AIAA J.
– volume: 130
  year: 2008
  ident: b44
  article-title: Vibratory parameters of blades from coordinate measurement machine data
  publication-title: J. Turbomach.
– reference: B. Beirow, F. Figaschewsky, A. Kühhorn, An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning. Part 2: application to Blisks at Rest, in: Proceedings of the 15th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines, University of Oxford, UK, 24-27 September 2018.
– volume: 24
  start-page: 589
  year: 2017
  end-page: 636
  ident: b11
  article-title: Vibration prediction of bladed disks coupled by friction joints
  publication-title: Arch. Comput. Methods Eng.
– volume: 92
  start-page: 88
  issue: 3
  year: 2022
  ident: 10.1016/j.jsv.2024.118773_b5
  article-title: Scientific machine learning through physics–informed neural networks: where we are and what’s next
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-01939-z
– year: 2014
  ident: 10.1016/j.jsv.2024.118773_b63
– volume: 124
  start-page: 311
  issue: 2
  year: 2002
  ident: 10.1016/j.jsv.2024.118773_b52
  article-title: Dynamic response predictions for a mistuned industrial turbomachinery rotor using reduced-order modeling
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.1447236
– volume: 132
  issue: 11
  year: 2010
  ident: 10.1016/j.jsv.2024.118773_b17
  article-title: A reduced-order model of detuned cyclic dynamical systems with geometric modifications using a basis of cyclic modes
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.4000805
– volume: 291
  start-page: 21
  year: 2015
  ident: 10.1016/j.jsv.2024.118773_b37
  article-title: Dynamic data-driven reduced-order models
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2015.03.018
– volume: 81
  start-page: 250
  year: 2016
  ident: 10.1016/j.jsv.2024.118773_b49
  article-title: Sparse reconstruction of blade tip-timing signals for multi-mode blade vibration monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.03.020
– volume: 145
  issue: 1
  year: 2018
  ident: 10.1016/j.jsv.2024.118773_b25
  article-title: Deep convolutional neural network for structural dynamic response estimation and system identification
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001556
– volume: 29
  issue: 12
  year: 2019
  ident: 10.1016/j.jsv.2024.118773_b7
  article-title: On learning Hamiltonian systems from data
  publication-title: Chaos
  doi: 10.1063/1.5128231
– year: 2017
  ident: 10.1016/j.jsv.2024.118773_b59
– volume: 50
  start-page: 366
  issue: 2
  year: 2012
  ident: 10.1016/j.jsv.2024.118773_b16
  article-title: Reduced-order modeling approach for blisks with large mass, stiffness, and geometric mistuning
  publication-title: AIAA J.
  doi: 10.2514/1.J051140
– volume: 131
  issue: 3
  year: 2009
  ident: 10.1016/j.jsv.2024.118773_b42
  article-title: Reduced-order model of a bladed rotor with geometric mistuning
  publication-title: J. Turbomach.
  doi: 10.1115/1.2987237
– year: 2015
  ident: 10.1016/j.jsv.2024.118773_b62
– year: 2021
  ident: 10.1016/j.jsv.2024.118773_b34
– volume: 22
  start-page: 384
  issue: 2
  year: 2006
  ident: 10.1016/j.jsv.2024.118773_b8
  article-title: Modeling and analysis of mistuned bladed disk vibration: current status and emerging directions
  publication-title: J. Propuls. Power
  doi: 10.2514/1.16345
– volume: 80
  start-page: 147
  issue: 2
  year: 1996
  ident: 10.1016/j.jsv.2024.118773_b10
  article-title: High cycle fatigue in aircraft gas turbines—an industry perspective
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00012667
– volume: 18
  start-page: 558
  issue: 1
  year: 2019
  ident: 10.1016/j.jsv.2024.118773_b6
  article-title: Linearly recurrent autoencoder networks for learning dynamics
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/18M1177846
– volume: 195
  year: 2023
  ident: 10.1016/j.jsv.2024.118773_b20
  article-title: A novel model reduction approach for blisks with blend repairs and small mistuning
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110308
– volume: 364
  year: 2020
  ident: 10.1016/j.jsv.2024.118773_b23
  article-title: Artificial neural networks in structural dynamics: a new modular radial basis function approach vs. convolutional and feedforward topologies
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.112989
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.jsv.2024.118773_b60
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 33
  issue: 1
  year: 2021
  ident: 10.1016/j.jsv.2024.118773_b3
  article-title: Physics guided machine learning using simplified theories
  publication-title: Phys. Fluids
  doi: 10.1063/5.0038929
– volume: 130
  issue: 1
  year: 2008
  ident: 10.1016/j.jsv.2024.118773_b44
  article-title: Vibratory parameters of blades from coordinate measurement machine data
  publication-title: J. Turbomach.
  doi: 10.1115/1.2749293
– volume: 45
  start-page: 2285
  issue: 9
  year: 2007
  ident: 10.1016/j.jsv.2024.118773_b15
  article-title: Compact, generalized component mode mistuning representation for modeling bladed disk vibration
  publication-title: AIAA J.
  doi: 10.2514/1.13172
– volume: 215
  year: 2020
  ident: 10.1016/j.jsv.2024.118773_b24
  article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110704
– volume: 141
  issue: 6
  year: 2019
  ident: 10.1016/j.jsv.2024.118773_b41
  article-title: Mistuning evaluation comparison via as-manufactured models, traveling wave excitation, and compressor rigs
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.4042079
– volume: 141
  issue: 10
  year: 2019
  ident: 10.1016/j.jsv.2024.118773_b47
  article-title: Probabilistic response of a bladed disk with uncertain geometry
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.4044642
– year: 2018
  ident: 10.1016/j.jsv.2024.118773_b58
– volume: 369
  year: 2020
  ident: 10.1016/j.jsv.2024.118773_b30
  article-title: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113226
– volume: 14
  start-page: 127
  issue: 4
  year: 2001
  ident: 10.1016/j.jsv.2024.118773_b45
  article-title: Stochastic field models for aircraft jet engine applications
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)0893-1321(2001)14:4(127)
– volume: 143
  issue: 1
  year: 2021
  ident: 10.1016/j.jsv.2024.118773_b48
  article-title: An experimental and computational investigation of a pulsed air-jet excitation system on a rotating bladed disk
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.4049014
– volume: 96
  year: 2020
  ident: 10.1016/j.jsv.2024.118773_b31
  article-title: Structural dynamics simulation using a novel physics-guided machine learning method
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103947
– volume: 54
  start-page: 225
  year: 2022
  ident: 10.1016/j.jsv.2024.118773_b29
  article-title: Dynamic mode decomposition and its variants
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-030121-015835
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  ident: 10.1016/j.jsv.2024.118773_b1
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 77
  start-page: 354
  year: 2018
  ident: 10.1016/j.jsv.2024.118773_b57
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– ident: 10.1016/j.jsv.2024.118773_b35
  doi: 10.1007/978-3-031-04086-3_4
– year: 2013
  ident: 10.1016/j.jsv.2024.118773_b28
– volume: 42
  start-page: 167
  issue: 1–2
  year: 2014
  ident: 10.1016/j.jsv.2024.118773_b18
  article-title: Nodal energy weighted transformation: A mistuning projection and its application to flade™ turbines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.08.027
– year: 2021
  ident: 10.1016/j.jsv.2024.118773_b56
– volume: 59
  start-page: 2684
  issue: 7
  year: 2021
  ident: 10.1016/j.jsv.2024.118773_b38
  article-title: Data-driven modeling approach for mistuned cyclic structures
  publication-title: AIAA J.
  doi: 10.2514/1.J060117
– year: 2019
  ident: 10.1016/j.jsv.2024.118773_b43
  article-title: Dynamic modeling and projection-based reduction methods for bladed disks with nonlinear frictional and intermittent contact interfaces
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4043083
– start-page: 1
  year: 2021
  ident: 10.1016/j.jsv.2024.118773_b55
  article-title: Mistuning identification technique based on blisk detuning
  publication-title: AIAA J.
  doi: 10.2514/1.J060209
– year: 2021
  ident: 10.1016/j.jsv.2024.118773_b26
– volume: 656
  start-page: 5
  year: 2010
  ident: 10.1016/j.jsv.2024.118773_b27
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010001217
– volume: 46
  start-page: 2890
  issue: 11
  year: 2008
  ident: 10.1016/j.jsv.2024.118773_b22
  article-title: Reduced-order model construction procedure for robust mistuning identification of blisks
  publication-title: AIAA J.
  doi: 10.2514/1.37314
– volume: 24
  start-page: 589
  issue: 3
  year: 2017
  ident: 10.1016/j.jsv.2024.118773_b11
  article-title: Vibration prediction of bladed disks coupled by friction joints
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-016-9183-2
– ident: 10.1016/j.jsv.2024.118773_b53
– year: 2023
  ident: 10.1016/j.jsv.2024.118773_b51
– volume: 66
  issue: 4
  year: 2014
  ident: 10.1016/j.jsv.2024.118773_b21
  article-title: Circulant matrices and their application to vibration analysis
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4027722
– volume: 61
  start-page: 391
  issue: 1
  year: 2023
  ident: 10.1016/j.jsv.2024.118773_b39
  article-title: Novel neural network for predicting the vibration response of mistuned bladed disks
  publication-title: AIAA J.
  doi: 10.2514/1.J062215
– volume: 46
  start-page: 363
  issue: 2
  year: 2011
  ident: 10.1016/j.jsv.2024.118773_b12
  article-title: The effect of underplatform dampers on the forced response of bladed disks by a coupled static/dynamic harmonic balance method
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2010.10.001
– ident: 10.1016/j.jsv.2024.118773_b50
  doi: 10.1115/1.0002942V
– volume: 147
  issue: 10
  year: 2021
  ident: 10.1016/j.jsv.2024.118773_b36
  article-title: Machine learning approach to model order reduction of nonlinear systems via autoencoder and LSTM networks
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001971
– volume: 106
  start-page: 204
  issue: 2
  year: 1984
  ident: 10.1016/j.jsv.2024.118773_b9
  article-title: Model development and statistical investigation of turbine blade mistuning
  publication-title: J. Vib. Acoust. Stress Reliab. Des.
  doi: 10.1115/1.3269170
– volume: 119
  start-page: 439
  issue: 3
  year: 1997
  ident: 10.1016/j.jsv.2024.118773_b19
  article-title: A reduced order modeling technique for mistuned bladed disks
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.2889743
– volume: 19
  start-page: 135
  issue: 1
  year: 2003
  ident: 10.1016/j.jsv.2024.118773_b40
  article-title: Traveling wave excitation system for bladed disks
  publication-title: J. Propuls. Power
  doi: 10.2514/2.6089
– volume: 135
  issue: 5
  year: 2013
  ident: 10.1016/j.jsv.2024.118773_b46
  article-title: Reduced order modeling of a bladed rotor with geometric mistuning via estimated deviations in mass and stiffness matrices
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.4007783
– volume: 179
  start-page: 23
  year: 2021
  ident: 10.1016/j.jsv.2024.118773_b32
  article-title: Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2020.07.017
– volume: 144
  issue: 5
  year: 2022
  ident: 10.1016/j.jsv.2024.118773_b54
  article-title: Data-driven approach for identifying mistuning in as-manufactured blisks
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.4052503
– volume: 123
  start-page: 893
  issue: 4
  year: 2001
  ident: 10.1016/j.jsv.2024.118773_b13
  article-title: A reduced-order model of mistuning using a subset of nominal system modes
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.1385197
– year: 2017
  ident: 10.1016/j.jsv.2024.118773_b2
– volume: 58
  start-page: 2682
  issue: 6
  year: 2020
  ident: 10.1016/j.jsv.2024.118773_b61
  article-title: A new experimental facility for characterizing bladed disk dynamics at design speed
  publication-title: AIAA J.
  doi: 10.2514/1.J058682
– ident: 10.1016/j.jsv.2024.118773_b33
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.jsv.2024.118773_b4
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 124
  start-page: 597
  issue: 4
  year: 2002
  ident: 10.1016/j.jsv.2024.118773_b14
  article-title: A fundamental model of mistuning for a single family of modes
  publication-title: J. Turbomach.
  doi: 10.1115/1.1508384
SSID ssj0009434
Score 2.4609547
Snippet Integrally bladed rotors are commonly used in aircraft and rocket turbomachinery and known to exhibit complex dynamics when subject to operational loading...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 118773
SubjectTerms Blisks
Physics-informed neural networks
Reduced-order modeling
Structural dynamics
Turbomachinery
Title Physics-informed machine learning approach for reduced-order modeling of integrally bladed rotors: Theory and application
URI https://dx.doi.org/10.1016/j.jsv.2024.118773
Volume 596
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48CdvG7iOJt1IsVbEnC72FfUpLTUtbhV787e5sEqygF28hzIYw2Xwzw37zDULXQqbCxx1LVGQMYTr1OMitI0pIKXVsnAqn589DMRixxzEf11Cv6oUBWmWJ_QWmB7Qu77RLb7YXkwn0-IIYWjQGFiSIlEAHO4thl7c-v2keoH9WKYaDdXWyGThe09WHLxE7rAVDt2P6e2zaijf9A7RfJoq4W7zLIarZ_AjtBsKmXh2jTXlFCuVTa_BboEVaXM6BeMWVXDj2BngJEq3WkCC1icP8G7CZO1wKRsxmG6xm0vgnLecwgucOF337WOYGb51zn6BR__6lNyDlGAWifW21Jk6JJLERs4rRxKaMGRsL7lykuYucT-d8xGY6YVxzqlLLXCwso1Qm_n83zuczp6iez3N7hjDnVGgpjOtQyoz2xZXWt9rDQuRxSsm0gW4qB2aLQi0jq2hk08x7OwNvZ4W3G4hVLs5-fPLMo_nfy87_t-wC7XVgdC8Qrvklqq-X7_bK5xNr1Qwbpol2ug9Pg-EXKH3McA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qi-hFfGJ97sGTEBu7jyTeilha-zi10FvYp7TUtrRV6L93N9lgBb14C2EnhNnkmxn2m28A7hhPmI07OhChUgGRicVBqk0gGOdcRsqI7PS812etIXkd0VEJnoteGEer9NifY3qG1v5OzXuzthiPXY-vE0MLR44F6URKdqDi1KloGSqNdqfV_9beJZgUouHOoDjczGhek9WnrRLr5MHN3Y7w7-FpK-Q0D-HA54qokb_OEZT07Bh2M86mXJ3Axl8FufipVug9Y0Zq5EdBvKFCMRzZBWjpVFq1CjK1TZSNwHFr5gZ5zYjpdIPElCv7pOXcTeF5QnnrPuIzhbaOuk9h2HwZPLcCP0khkLa8WgdGsDjWIdGC4FgnhCgdMWpMKKkJjc3obNAmMiZUUiwSTUzENMGYx_aXV8amNGdQns1n-hwQpZhJzpSpY0yUtPWVlI_SIkNooUrwpAr3hQPTRS6YkRZMsklqvZ06b6e5t6tAChenP3Y9tYD-t9nF_8xuYa816HXTbrvfuYT9upvk6_jX9ArK6-WHvrbpxVrc-M_nCznlzyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+machine+learning+approach+for+reduced-order+modeling+of+integrally+bladed+rotors%3A+Theory+and+application&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Kelly%2C+Sean+T.&rft.au=Epureanu%2C+Bogdan+I.&rft.date=2025-02-05&rft.pub=Elsevier+Ltd&rft.issn=0022-460X&rft.volume=596&rft_id=info:doi/10.1016%2Fj.jsv.2024.118773&rft.externalDocID=S0022460X24005352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon