Onion-Hash: A Compact and Robust 3D Perceptual Hash for Asset Authentication

The digitalization of manufacturing processes and recent trends, such as the Industrial Metaverse, are continuously increasing in adoption in various critical industries, resulting in a surging demand for 3D CAD models and their exchange. Following this, it becomes necessary to protect the intellect...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 175; p. 103752
Main Authors Prummer, Michael, Regnath, Emanuel, Kosch, Harald
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text
ISSN0010-4485
1879-2685
DOI10.1016/j.cad.2024.103752

Cover

Loading…
Abstract The digitalization of manufacturing processes and recent trends, such as the Industrial Metaverse, are continuously increasing in adoption in various critical industries, resulting in a surging demand for 3D CAD models and their exchange. Following this, it becomes necessary to protect the intellectual property of content designers in increasingly decentralized production environments where 3D assets are repeatedly shared online within the ecosystem. CAD models can be protected by traditional security methods such as watermarking, which embeds additional information into the file. Nevertheless, malicious actors may find ways to remove the information from a file. To authenticate and protect 3D models without relying on additional information, we propose a robust 3D perceptual hash generated based on the prevalent geometric features. Furthermore, our geometry-based approach generates compact and tamper-resistant fingerprints for a 3D model by projecting multiple spherical sliced layers of intersection points into cluster distances. The resulting hash links the 3D model to an owner, supporting the detection of counterfeits. The approach was benchmarked for similarity search and evaluated against established state-of-the-art shape retrieval techniques. The results show promising resistance against arbitrary transformations and manipulations, with our approach detecting 25.6% more malicious tampering attacks than the baseline. •A compact geometry-based approach for creating 3D perceptual hashes.•Evaluation of tamper resistance against various 3D mesh manipulations.•Evaluation of rotation and scale resistance against state-of-the-art methods.•Benchmarking of the 3D shape retrieval performance with industrial parts.
AbstractList The digitalization of manufacturing processes and recent trends, such as the Industrial Metaverse, are continuously increasing in adoption in various critical industries, resulting in a surging demand for 3D CAD models and their exchange. Following this, it becomes necessary to protect the intellectual property of content designers in increasingly decentralized production environments where 3D assets are repeatedly shared online within the ecosystem. CAD models can be protected by traditional security methods such as watermarking, which embeds additional information into the file. Nevertheless, malicious actors may find ways to remove the information from a file. To authenticate and protect 3D models without relying on additional information, we propose a robust 3D perceptual hash generated based on the prevalent geometric features. Furthermore, our geometry-based approach generates compact and tamper-resistant fingerprints for a 3D model by projecting multiple spherical sliced layers of intersection points into cluster distances. The resulting hash links the 3D model to an owner, supporting the detection of counterfeits. The approach was benchmarked for similarity search and evaluated against established state-of-the-art shape retrieval techniques. The results show promising resistance against arbitrary transformations and manipulations, with our approach detecting 25.6% more malicious tampering attacks than the baseline. •A compact geometry-based approach for creating 3D perceptual hashes.•Evaluation of tamper resistance against various 3D mesh manipulations.•Evaluation of rotation and scale resistance against state-of-the-art methods.•Benchmarking of the 3D shape retrieval performance with industrial parts.
ArticleNumber 103752
Author Kosch, Harald
Prummer, Michael
Regnath, Emanuel
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0003-4358-6972
  surname: Prummer
  fullname: Prummer, Michael
  email: michael.prummer@siemens.com
  organization: Siemens AG, Otto-Hahn-Ring, Munich, 81739, Germany
– sequence: 2
  givenname: Emanuel
  surname: Regnath
  fullname: Regnath, Emanuel
  email: emanuel.regnath@siemens.com
  organization: Siemens AG, Otto-Hahn-Ring, Munich, 81739, Germany
– sequence: 3
  givenname: Harald
  surname: Kosch
  fullname: Kosch, Harald
  email: kosch@fim.uni-passau.de
  organization: University of Passau, Innstraße 41, Passau, 94032, Germany
BookMark eNp9kM1KAzEUhYNUsK0-gLu8wNSbZDJJdDVUa4VCRXQd0vzQKe2kJKng2zulrl1dDtzvcPgmaNTH3iN0T2BGgDQPu5k1bkaB1kNmgtMrNCZSqIo2ko_QGIBAVdeS36BJzjsAoISpMVqt-y721dLk7SNu8TwejsYWbHqHP-LmlAtmz_jdJ-uP5WT2-PyIQ0y4zdkX3J7K1vels6YMNbfoOph99nd_d4q-Fi-f82W1Wr--zdtVZWmtShWE8NIRAg2ACBCkA7phgVolHFGS1g1XdbCCE-acB8u5bSSoTZCMccUNmyJy6bUp5px80MfUHUz60QT0WYfe6UGHPuvQFx0D83Rh_DDsu_NJZ9v53nrXJW-LdrH7h_4FA3xnsg
Cites_doi 10.1080/17517575.2023.2180776
10.1007/s11042-013-1643-1
10.1109/78.120795
10.1007/s00371-015-1071-5
10.1109/MC.2020.3032148
10.1109/SMI.2004.1314504
10.1145/2980179.2980232
10.1145/3068335
10.1016/j.cad.2022.103417
10.1145/2671188.2749380
10.1007/11526018_37
10.1109/TMM.2006.886359
10.1016/j.procir.2016.04.173
10.54501/jots.v1i1.24
10.1109/CVPR.2010.5539838
10.1016/j.cag.2018.12.003
10.1016/j.cad.2005.10.011
10.1016/j.cad.2021.103125
10.1016/j.ijpe.2018.09.009
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cad.2024.103752
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
ExternalDocumentID 10_1016_j_cad_2024_103752
S0010448524000794
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c249t-f77e8d1106007f0f8d02b3f2c97d198246594fc7513dde0c55c6809bf833595a3
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Tue Jul 01 03:34:37 EDT 2025
Sat Jul 20 16:35:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords 3D model authentication
3D perceptual hash
Shape retrieval
Tamper detection
Intellectual property
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-f77e8d1106007f0f8d02b3f2c97d198246594fc7513dde0c55c6809bf833595a3
ORCID 0000-0003-4358-6972
ParticipantIDs crossref_primary_10_1016_j_cad_2024_103752
elsevier_sciencedirect_doi_10_1016_j_cad_2024_103752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Computer aided design
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Furuya, Ohbuchi (b12) 2015
Liu M, Shi R, Han S, Kuang K, Cai H, Su H et al. OpenShape: Scaling Up 3D shape representation towards open-world understanding.
Engelmann F, Holland M, Nigischer C. Intellectual property protection and licensing of 3D print with blockchain technology.
Lee, Hwang, Kwon (b15) 2014; 73
Starly (b23) 2019
Chan, Guo, Zeng, Chen, Xiao, Griffin (b30) 2023; 17
Blair (b3) 2017
Farid (b7) 2021; 1
Veilleux-Lepage Y. CTRL, HATE, PRINT: Terrorists and the appeal of 3D-Printed weapons.
Wang, Liu, Tong (b29) 2016; 35
Ansary, Daoudi, Vandeborre (b10) 2007; 9
Reuter, Wolter, Peinecke (b14) 2006; 38
Prummer, Regnath, Singh, Kosch (b2) 2024
Research (b4) 2021
Luciano, Ben Hamza (b17) 2019
Bickel, Schleich, Wartzack (b9) 2023; 154
Ramasubramanian, Paliwal (b22) 1992; 40
Shilane, Min, Kazhdan, Funkhouser (b27) 2004
Piroumian (b1) 2021; 54
(b25) 2009; vol. 5702
Ye, Yu (b16) 2016; 32
Chan, Griffin, Lim, Zeng, Chiu (b6) 2018; 205
Pakkanen, Huhtala, Juuti, Lehtonen (b5) 2016; 50
Lee, Kim, Choi (b20) 2005
Bronstein MM, Kokkinos I. Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE computer society conference on computer vision and pattern recognition. 2010.
Chen, Ilies, Ding (b11) 2022; 143
Chang, Funkhouser, Guibas, Hanrahan, Huang, Li (b28) 2015
Mouris, Tsoutsos (b21) 2022
Schubert, Sander, Ester, Kriegel, Xu (b24) 2017; 42
Tarmissi (b13) 2011
Zhou, Wang, Ma, Liu, Huang, Wang (b18) 2023
Furuya (10.1016/j.cad.2024.103752_b12) 2015
Chen (10.1016/j.cad.2024.103752_b11) 2022; 143
10.1016/j.cad.2024.103752_b8
Lee (10.1016/j.cad.2024.103752_b20) 2005
Zhou (10.1016/j.cad.2024.103752_b18) 2023
Research (10.1016/j.cad.2024.103752_b4) 2021
Pakkanen (10.1016/j.cad.2024.103752_b5) 2016; 50
Chan (10.1016/j.cad.2024.103752_b30) 2023; 17
Wang (10.1016/j.cad.2024.103752_b29) 2016; 35
Shilane (10.1016/j.cad.2024.103752_b27) 2004
Ansary (10.1016/j.cad.2024.103752_b10) 2007; 9
10.1016/j.cad.2024.103752_b26
Bickel (10.1016/j.cad.2024.103752_b9) 2023; 154
Mouris (10.1016/j.cad.2024.103752_b21) 2022
10.1016/j.cad.2024.103752_b19
Farid (10.1016/j.cad.2024.103752_b7) 2021; 1
Reuter (10.1016/j.cad.2024.103752_b14) 2006; 38
Lee (10.1016/j.cad.2024.103752_b15) 2014; 73
Luciano (10.1016/j.cad.2024.103752_b17) 2019
Chang (10.1016/j.cad.2024.103752_b28) 2015
(10.1016/j.cad.2024.103752_b25) 2009; vol. 5702
Ramasubramanian (10.1016/j.cad.2024.103752_b22) 1992; 40
Starly (10.1016/j.cad.2024.103752_b23) 2019
Ye (10.1016/j.cad.2024.103752_b16) 2016; 32
Tarmissi (10.1016/j.cad.2024.103752_b13) 2011
10.1016/j.cad.2024.103752_b31
Piroumian (10.1016/j.cad.2024.103752_b1) 2021; 54
Schubert (10.1016/j.cad.2024.103752_b24) 2017; 42
Chan (10.1016/j.cad.2024.103752_b6) 2018; 205
Prummer (10.1016/j.cad.2024.103752_b2) 2024
Blair (10.1016/j.cad.2024.103752_b3) 2017
References_xml – volume: 35
  year: 2016
  ident: b29
  article-title: Mesh denoising via cascaded normal regression.
  publication-title: ACM Trans. Graph.
– volume: 54
  start-page: 61
  year: 2021
  end-page: 69
  ident: b1
  article-title: Digital twins: Universal interoperability for the digital age
  publication-title: Computer
– volume: 154
  year: 2023
  ident: b9
  article-title: A novel shape retrieval method for 3D mechanical components based on object projection, pre-trained deep learning models and autoencoder
  publication-title: Comput Aided Des
– year: 2017
  ident: b3
  article-title: The commission on the theft of American intellectual property
– volume: 1
  year: 2021
  ident: b7
  article-title: An overview of perceptual hashing
  publication-title: J Online Trust Saf
– start-page: 171
  year: 2015
  end-page: 178
  ident: b12
  article-title: Diffusion-on-manifold aggregation of local features for shape-based 3D model retrieval
  publication-title: Proceedings of the 5th ACM on international conference on multimedia retrieval
– year: 2004
  ident: b27
  article-title: The princeton shape benchmark
  publication-title: Proceedings shape modeling applications, 2004
– reference: Liu M, Shi R, Han S, Kuang K, Cai H, Su H et al. OpenShape: Scaling Up 3D shape representation towards open-world understanding.
– volume: vol. 5702
  year: 2009
  ident: b25
  article-title: Isometric deformation modelling for object recognition
  publication-title: Computer analysis of images and patterns
– volume: 205
  start-page: 156
  year: 2018
  end-page: 162
  ident: b6
  article-title: The impact of 3D printing technology on the supply chain: Manufacturing and legal perspectives
  publication-title: Int J Prod Econ
– year: 2023
  ident: b18
  article-title: Uni3D: Exploring unified 3D representation at scale
– volume: 40
  start-page: 518
  year: 1992
  end-page: 531
  ident: b22
  article-title: Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding
  publication-title: IEEE Trans Signal Process
– year: 2022
  ident: b21
  article-title: NFTs for 3D models: Sustaining ownership in industry 4.0
  publication-title: IEEE Consum Electron Mag
– volume: 9
  start-page: 78
  year: 2007
  end-page: 88
  ident: b10
  article-title: A Bayesian 3-D search engine using adaptive views clustering
  publication-title: IEEE Trans Multimedia
– volume: 32
  start-page: 553
  year: 2016
  end-page: 568
  ident: b16
  article-title: A fast modal space transform for robust nonrigid shape retrieval
  publication-title: Vis Comput
– volume: 143
  year: 2022
  ident: b11
  article-title: Graph-based shape analysis for heterogeneous geometric datasets: Similarity, retrieval and substructure matching
  publication-title: Comput Aided Des
– volume: 38
  start-page: 342
  year: 2006
  end-page: 366
  ident: b14
  article-title: Laplace–Beltrami spectra as ‘shape-DNA’ of surfaces and solids
  publication-title: Comput Aided Des
– year: 2019
  ident: b23
  article-title: FabWave CAD repository categorized part classes - CAD 16 through 24 classes (part 2/3)
– start-page: 592
  year: 2024
  end-page: 613
  ident: b2
  article-title: From virtual worlds to real-world impact: An industrial metaverse survey
  publication-title: Future of information and communication conference
– year: 2019
  ident: b17
  article-title: A global geometric framework for 3D shape retrieval using deep learning
  publication-title: Comput Graph
– start-page: 250
  year: 2021
  ident: b4
  article-title: 3D printing market size, share & trends analysis
  publication-title: Grand View Res
– volume: 42
  start-page: 1
  year: 2017
  end-page: 21
  ident: b24
  article-title: DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN
  publication-title: ACM Trans Database Syst
– year: 2015
  ident: b28
  article-title: ShapeNet: An Information-Rich 3D Model Repository
– volume: 17
  year: 2023
  ident: b30
  article-title: Blockchain-enabled authentication platform for the protection of 3D printing intellectual property: a conceptual framework study
  publication-title: Enterprise Information Systems
– reference: Bronstein MM, Kokkinos I. Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE computer society conference on computer vision and pattern recognition. 2010.
– start-page: 376
  year: 2005
  end-page: 386
  ident: b20
  article-title: Efficient 3D model retrieval method using geometric characteristics in intersected meshes
  publication-title: Modeling decisions for artificial intelligence
– reference: Veilleux-Lepage Y. CTRL, HATE, PRINT: Terrorists and the appeal of 3D-Printed weapons.
– reference: Engelmann F, Holland M, Nigischer C. Intellectual property protection and licensing of 3D print with blockchain technology.
– year: 2011
  ident: b13
  article-title: Topological approaches for 3D object processing and applications
– volume: 73
  year: 2014
  ident: b15
  article-title: Perceptual 3D model hashing using key-dependent shape feature
  publication-title: Multimedia Tools Appl
– volume: 50
  start-page: 8
  year: 2016
  end-page: 13
  ident: b5
  article-title: Achieving benefits with design reuse in manufacturing industry
  publication-title: Procedia CIRP
– volume: 17
  issue: 11
  year: 2023
  ident: 10.1016/j.cad.2024.103752_b30
  article-title: Blockchain-enabled authentication platform for the protection of 3D printing intellectual property: a conceptual framework study
  publication-title: Enterprise Information Systems
  doi: 10.1080/17517575.2023.2180776
– volume: 73
  issue: 3
  year: 2014
  ident: 10.1016/j.cad.2024.103752_b15
  article-title: Perceptual 3D model hashing using key-dependent shape feature
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-013-1643-1
– volume: 40
  start-page: 518
  issue: 3
  year: 1992
  ident: 10.1016/j.cad.2024.103752_b22
  article-title: Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.120795
– volume: 32
  start-page: 553
  issue: 5
  year: 2016
  ident: 10.1016/j.cad.2024.103752_b16
  article-title: A fast modal space transform for robust nonrigid shape retrieval
  publication-title: Vis Comput
  doi: 10.1007/s00371-015-1071-5
– volume: 54
  start-page: 61
  issue: 1
  year: 2021
  ident: 10.1016/j.cad.2024.103752_b1
  article-title: Digital twins: Universal interoperability for the digital age
  publication-title: Computer
  doi: 10.1109/MC.2020.3032148
– year: 2004
  ident: 10.1016/j.cad.2024.103752_b27
  article-title: The princeton shape benchmark
  doi: 10.1109/SMI.2004.1314504
– year: 2015
  ident: 10.1016/j.cad.2024.103752_b28
– year: 2017
  ident: 10.1016/j.cad.2024.103752_b3
– volume: 35
  issue: 6
  year: 2016
  ident: 10.1016/j.cad.2024.103752_b29
  article-title: Mesh denoising via cascaded normal regression.
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2980179.2980232
– year: 2019
  ident: 10.1016/j.cad.2024.103752_b23
– volume: 42
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.cad.2024.103752_b24
  article-title: DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN
  publication-title: ACM Trans Database Syst
  doi: 10.1145/3068335
– volume: 154
  issn: 00104485
  year: 2023
  ident: 10.1016/j.cad.2024.103752_b9
  article-title: A novel shape retrieval method for 3D mechanical components based on object projection, pre-trained deep learning models and autoencoder
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2022.103417
– year: 2022
  ident: 10.1016/j.cad.2024.103752_b21
  article-title: NFTs for 3D models: Sustaining ownership in industry 4.0
  publication-title: IEEE Consum Electron Mag
– start-page: 171
  year: 2015
  ident: 10.1016/j.cad.2024.103752_b12
  article-title: Diffusion-on-manifold aggregation of local features for shape-based 3D model retrieval
  doi: 10.1145/2671188.2749380
– volume: vol. 5702
  year: 2009
  ident: 10.1016/j.cad.2024.103752_b25
  article-title: Isometric deformation modelling for object recognition
– start-page: 376
  year: 2005
  ident: 10.1016/j.cad.2024.103752_b20
  article-title: Efficient 3D model retrieval method using geometric characteristics in intersected meshes
  doi: 10.1007/11526018_37
– ident: 10.1016/j.cad.2024.103752_b19
– year: 2023
  ident: 10.1016/j.cad.2024.103752_b18
– volume: 9
  start-page: 78
  issn: 1520-9210
  issue: 1
  year: 2007
  ident: 10.1016/j.cad.2024.103752_b10
  article-title: A Bayesian 3-D search engine using adaptive views clustering
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2006.886359
– volume: 50
  start-page: 8
  issn: 22128271
  year: 2016
  ident: 10.1016/j.cad.2024.103752_b5
  article-title: Achieving benefits with design reuse in manufacturing industry
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.04.173
– start-page: 250
  year: 2021
  ident: 10.1016/j.cad.2024.103752_b4
  article-title: 3D printing market size, share & trends analysis
  publication-title: Grand View Res
– ident: 10.1016/j.cad.2024.103752_b8
– volume: 1
  issn: 2770-3142
  issue: 1
  year: 2021
  ident: 10.1016/j.cad.2024.103752_b7
  article-title: An overview of perceptual hashing
  publication-title: J Online Trust Saf
  doi: 10.54501/jots.v1i1.24
– year: 2011
  ident: 10.1016/j.cad.2024.103752_b13
– ident: 10.1016/j.cad.2024.103752_b26
  doi: 10.1109/CVPR.2010.5539838
– ident: 10.1016/j.cad.2024.103752_b31
– start-page: 592
  year: 2024
  ident: 10.1016/j.cad.2024.103752_b2
  article-title: From virtual worlds to real-world impact: An industrial metaverse survey
– year: 2019
  ident: 10.1016/j.cad.2024.103752_b17
  article-title: A global geometric framework for 3D shape retrieval using deep learning
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2018.12.003
– volume: 38
  start-page: 342
  issn: 00104485
  issue: 4
  year: 2006
  ident: 10.1016/j.cad.2024.103752_b14
  article-title: Laplace–Beltrami spectra as ‘shape-DNA’ of surfaces and solids
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2005.10.011
– volume: 143
  year: 2022
  ident: 10.1016/j.cad.2024.103752_b11
  article-title: Graph-based shape analysis for heterogeneous geometric datasets: Similarity, retrieval and substructure matching
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2021.103125
– volume: 205
  start-page: 156
  issn: 09255273
  year: 2018
  ident: 10.1016/j.cad.2024.103752_b6
  article-title: The impact of 3D printing technology on the supply chain: Manufacturing and legal perspectives
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2018.09.009
SSID ssj0002139
Score 2.4264138
Snippet The digitalization of manufacturing processes and recent trends, such as the Industrial Metaverse, are continuously increasing in adoption in various critical...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103752
SubjectTerms 3D model authentication
3D perceptual hash
Intellectual property
Shape retrieval
Tamper detection
Title Onion-Hash: A Compact and Robust 3D Perceptual Hash for Asset Authentication
URI https://dx.doi.org/10.1016/j.cad.2024.103752
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH6qygID4hTlqDwwIYXmsOOErSpU5SoIUalb5PgQZUgrmq78dvziRBQJFsZYthV9sd9hf-8LwDnnkUkElV6gdYyi2nbPBbHxUkExGfNzVUlsPI7j0YTeTdm0BYOmFgZplbXtdza9stZ1S69Gs7eYzbDG16YSNGHIgvTtssIKdspRP__y85vmEQaRC4GtvcHezc1mxfGSAsVCQ1qVnrPwd9-05m-GO7BdB4qk795lF1q62IOtNfnAfXh4Kiyq3kgs365In1RbW5ZEFIq8zPPVsiTRNXl2zJWVnQs7EhukErzpLQmejiFXyB3aHcBkePM6GHn13xE8aVOm0jOc60RZ740K88Y3ifLDPDKhTLkK0iSkMUupkZwFkTVhvmRMxomf5gbLrFImokNoF_NCHwEReSisp0oVk5piwhZzibrxjCpDtTIduGhwyRZOBCNr2GHvmQUxQxAzB2IHaINc9uNLZtZI_z3s-H_DTmATnxy97hTa5cdKn9kwocy71Trowkb_9n40_gIECbhk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGYABcYpyemBCCuSw44StKlQF2oJQK3WzHB-iDGlF05Xfjl-ciCLBwprYUfTl-R32974gdMlYZBJBpBdoHYOotl1zQWy8VBAoxvxMlRIbg2HcG5PHCZ00UKfuhQFaZeX7nU8vvXV15aZC82Y-nUKPry0lSEKBBelbs1pD64RGDEz7-vOb5xEGkcuBrcOB4fXRZknykgLUQkNS9p7T8PfgtBJwujtou8oUcdu9zC5q6HwPba3oB-6j_nNuYfV6YvF2i9u4XNuywCJX-HWWLRcFju7wi6OuLO2zYCC2WSqGo94Cw_YYkIXcrt0BGnfvR52eV_0ewZO2Zio8w5hOlA3fIDFvfJMoP8wiE8qUqSBNQhLTlBjJaBBZH-ZLSmWc-GlmoM8qpSI6RM18lusjhEUWChuqUkWlJlCxxUyCcDwlyhCtTAtd1bjwuVPB4DU97J1bEDmAyB2ILURq5PiPT8mtl_572vH_pl2gjd5o0Of9h-HTCdqEO45rd4qaxcdSn9mcocjOS5v4Apj1ufo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Onion-Hash%3A+A+Compact+and+Robust+3D+Perceptual+Hash+for+Asset+Authentication&rft.jtitle=Computer+aided+design&rft.au=Prummer%2C+Michael&rft.au=Regnath%2C+Emanuel&rft.au=Kosch%2C+Harald&rft.date=2024-10-01&rft.issn=0010-4485&rft.volume=175&rft.spage=103752&rft_id=info:doi/10.1016%2Fj.cad.2024.103752&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cad_2024_103752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon