Onion-Hash: A Compact and Robust 3D Perceptual Hash for Asset Authentication
The digitalization of manufacturing processes and recent trends, such as the Industrial Metaverse, are continuously increasing in adoption in various critical industries, resulting in a surging demand for 3D CAD models and their exchange. Following this, it becomes necessary to protect the intellect...
Saved in:
Published in | Computer aided design Vol. 175; p. 103752 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-4485 1879-2685 |
DOI | 10.1016/j.cad.2024.103752 |
Cover
Loading…
Abstract | The digitalization of manufacturing processes and recent trends, such as the Industrial Metaverse, are continuously increasing in adoption in various critical industries, resulting in a surging demand for 3D CAD models and their exchange. Following this, it becomes necessary to protect the intellectual property of content designers in increasingly decentralized production environments where 3D assets are repeatedly shared online within the ecosystem. CAD models can be protected by traditional security methods such as watermarking, which embeds additional information into the file. Nevertheless, malicious actors may find ways to remove the information from a file. To authenticate and protect 3D models without relying on additional information, we propose a robust 3D perceptual hash generated based on the prevalent geometric features. Furthermore, our geometry-based approach generates compact and tamper-resistant fingerprints for a 3D model by projecting multiple spherical sliced layers of intersection points into cluster distances. The resulting hash links the 3D model to an owner, supporting the detection of counterfeits. The approach was benchmarked for similarity search and evaluated against established state-of-the-art shape retrieval techniques. The results show promising resistance against arbitrary transformations and manipulations, with our approach detecting 25.6% more malicious tampering attacks than the baseline.
•A compact geometry-based approach for creating 3D perceptual hashes.•Evaluation of tamper resistance against various 3D mesh manipulations.•Evaluation of rotation and scale resistance against state-of-the-art methods.•Benchmarking of the 3D shape retrieval performance with industrial parts. |
---|---|
AbstractList | The digitalization of manufacturing processes and recent trends, such as the Industrial Metaverse, are continuously increasing in adoption in various critical industries, resulting in a surging demand for 3D CAD models and their exchange. Following this, it becomes necessary to protect the intellectual property of content designers in increasingly decentralized production environments where 3D assets are repeatedly shared online within the ecosystem. CAD models can be protected by traditional security methods such as watermarking, which embeds additional information into the file. Nevertheless, malicious actors may find ways to remove the information from a file. To authenticate and protect 3D models without relying on additional information, we propose a robust 3D perceptual hash generated based on the prevalent geometric features. Furthermore, our geometry-based approach generates compact and tamper-resistant fingerprints for a 3D model by projecting multiple spherical sliced layers of intersection points into cluster distances. The resulting hash links the 3D model to an owner, supporting the detection of counterfeits. The approach was benchmarked for similarity search and evaluated against established state-of-the-art shape retrieval techniques. The results show promising resistance against arbitrary transformations and manipulations, with our approach detecting 25.6% more malicious tampering attacks than the baseline.
•A compact geometry-based approach for creating 3D perceptual hashes.•Evaluation of tamper resistance against various 3D mesh manipulations.•Evaluation of rotation and scale resistance against state-of-the-art methods.•Benchmarking of the 3D shape retrieval performance with industrial parts. |
ArticleNumber | 103752 |
Author | Kosch, Harald Prummer, Michael Regnath, Emanuel |
Author_xml | – sequence: 1 givenname: Michael orcidid: 0000-0003-4358-6972 surname: Prummer fullname: Prummer, Michael email: michael.prummer@siemens.com organization: Siemens AG, Otto-Hahn-Ring, Munich, 81739, Germany – sequence: 2 givenname: Emanuel surname: Regnath fullname: Regnath, Emanuel email: emanuel.regnath@siemens.com organization: Siemens AG, Otto-Hahn-Ring, Munich, 81739, Germany – sequence: 3 givenname: Harald surname: Kosch fullname: Kosch, Harald email: kosch@fim.uni-passau.de organization: University of Passau, Innstraße 41, Passau, 94032, Germany |
BookMark | eNp9kM1KAzEUhYNUsK0-gLu8wNSbZDJJdDVUa4VCRXQd0vzQKe2kJKng2zulrl1dDtzvcPgmaNTH3iN0T2BGgDQPu5k1bkaB1kNmgtMrNCZSqIo2ko_QGIBAVdeS36BJzjsAoISpMVqt-y721dLk7SNu8TwejsYWbHqHP-LmlAtmz_jdJ-uP5WT2-PyIQ0y4zdkX3J7K1vels6YMNbfoOph99nd_d4q-Fi-f82W1Wr--zdtVZWmtShWE8NIRAg2ACBCkA7phgVolHFGS1g1XdbCCE-acB8u5bSSoTZCMccUNmyJy6bUp5px80MfUHUz60QT0WYfe6UGHPuvQFx0D83Rh_DDsu_NJZ9v53nrXJW-LdrH7h_4FA3xnsg |
Cites_doi | 10.1080/17517575.2023.2180776 10.1007/s11042-013-1643-1 10.1109/78.120795 10.1007/s00371-015-1071-5 10.1109/MC.2020.3032148 10.1109/SMI.2004.1314504 10.1145/2980179.2980232 10.1145/3068335 10.1016/j.cad.2022.103417 10.1145/2671188.2749380 10.1007/11526018_37 10.1109/TMM.2006.886359 10.1016/j.procir.2016.04.173 10.54501/jots.v1i1.24 10.1109/CVPR.2010.5539838 10.1016/j.cag.2018.12.003 10.1016/j.cad.2005.10.011 10.1016/j.cad.2021.103125 10.1016/j.ijpe.2018.09.009 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cad.2024.103752 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
ExternalDocumentID | 10_1016_j_cad_2024_103752 S0010448524000794 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c249t-f77e8d1106007f0f8d02b3f2c97d198246594fc7513dde0c55c6809bf833595a3 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Tue Jul 01 03:34:37 EDT 2025 Sat Jul 20 16:35:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 3D model authentication 3D perceptual hash Shape retrieval Tamper detection Intellectual property |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-f77e8d1106007f0f8d02b3f2c97d198246594fc7513dde0c55c6809bf833595a3 |
ORCID | 0000-0003-4358-6972 |
ParticipantIDs | crossref_primary_10_1016_j_cad_2024_103752 elsevier_sciencedirect_doi_10_1016_j_cad_2024_103752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 2024-10-00 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computer aided design |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Furuya, Ohbuchi (b12) 2015 Liu M, Shi R, Han S, Kuang K, Cai H, Su H et al. OpenShape: Scaling Up 3D shape representation towards open-world understanding. Engelmann F, Holland M, Nigischer C. Intellectual property protection and licensing of 3D print with blockchain technology. Lee, Hwang, Kwon (b15) 2014; 73 Starly (b23) 2019 Chan, Guo, Zeng, Chen, Xiao, Griffin (b30) 2023; 17 Blair (b3) 2017 Farid (b7) 2021; 1 Veilleux-Lepage Y. CTRL, HATE, PRINT: Terrorists and the appeal of 3D-Printed weapons. Wang, Liu, Tong (b29) 2016; 35 Ansary, Daoudi, Vandeborre (b10) 2007; 9 Reuter, Wolter, Peinecke (b14) 2006; 38 Prummer, Regnath, Singh, Kosch (b2) 2024 Research (b4) 2021 Luciano, Ben Hamza (b17) 2019 Bickel, Schleich, Wartzack (b9) 2023; 154 Ramasubramanian, Paliwal (b22) 1992; 40 Shilane, Min, Kazhdan, Funkhouser (b27) 2004 Piroumian (b1) 2021; 54 (b25) 2009; vol. 5702 Ye, Yu (b16) 2016; 32 Chan, Griffin, Lim, Zeng, Chiu (b6) 2018; 205 Pakkanen, Huhtala, Juuti, Lehtonen (b5) 2016; 50 Lee, Kim, Choi (b20) 2005 Bronstein MM, Kokkinos I. Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE computer society conference on computer vision and pattern recognition. 2010. Chen, Ilies, Ding (b11) 2022; 143 Chang, Funkhouser, Guibas, Hanrahan, Huang, Li (b28) 2015 Mouris, Tsoutsos (b21) 2022 Schubert, Sander, Ester, Kriegel, Xu (b24) 2017; 42 Tarmissi (b13) 2011 Zhou, Wang, Ma, Liu, Huang, Wang (b18) 2023 Furuya (10.1016/j.cad.2024.103752_b12) 2015 Chen (10.1016/j.cad.2024.103752_b11) 2022; 143 10.1016/j.cad.2024.103752_b8 Lee (10.1016/j.cad.2024.103752_b20) 2005 Zhou (10.1016/j.cad.2024.103752_b18) 2023 Research (10.1016/j.cad.2024.103752_b4) 2021 Pakkanen (10.1016/j.cad.2024.103752_b5) 2016; 50 Chan (10.1016/j.cad.2024.103752_b30) 2023; 17 Wang (10.1016/j.cad.2024.103752_b29) 2016; 35 Shilane (10.1016/j.cad.2024.103752_b27) 2004 Ansary (10.1016/j.cad.2024.103752_b10) 2007; 9 10.1016/j.cad.2024.103752_b26 Bickel (10.1016/j.cad.2024.103752_b9) 2023; 154 Mouris (10.1016/j.cad.2024.103752_b21) 2022 10.1016/j.cad.2024.103752_b19 Farid (10.1016/j.cad.2024.103752_b7) 2021; 1 Reuter (10.1016/j.cad.2024.103752_b14) 2006; 38 Lee (10.1016/j.cad.2024.103752_b15) 2014; 73 Luciano (10.1016/j.cad.2024.103752_b17) 2019 Chang (10.1016/j.cad.2024.103752_b28) 2015 (10.1016/j.cad.2024.103752_b25) 2009; vol. 5702 Ramasubramanian (10.1016/j.cad.2024.103752_b22) 1992; 40 Starly (10.1016/j.cad.2024.103752_b23) 2019 Ye (10.1016/j.cad.2024.103752_b16) 2016; 32 Tarmissi (10.1016/j.cad.2024.103752_b13) 2011 10.1016/j.cad.2024.103752_b31 Piroumian (10.1016/j.cad.2024.103752_b1) 2021; 54 Schubert (10.1016/j.cad.2024.103752_b24) 2017; 42 Chan (10.1016/j.cad.2024.103752_b6) 2018; 205 Prummer (10.1016/j.cad.2024.103752_b2) 2024 Blair (10.1016/j.cad.2024.103752_b3) 2017 |
References_xml | – volume: 35 year: 2016 ident: b29 article-title: Mesh denoising via cascaded normal regression. publication-title: ACM Trans. Graph. – volume: 54 start-page: 61 year: 2021 end-page: 69 ident: b1 article-title: Digital twins: Universal interoperability for the digital age publication-title: Computer – volume: 154 year: 2023 ident: b9 article-title: A novel shape retrieval method for 3D mechanical components based on object projection, pre-trained deep learning models and autoencoder publication-title: Comput Aided Des – year: 2017 ident: b3 article-title: The commission on the theft of American intellectual property – volume: 1 year: 2021 ident: b7 article-title: An overview of perceptual hashing publication-title: J Online Trust Saf – start-page: 171 year: 2015 end-page: 178 ident: b12 article-title: Diffusion-on-manifold aggregation of local features for shape-based 3D model retrieval publication-title: Proceedings of the 5th ACM on international conference on multimedia retrieval – year: 2004 ident: b27 article-title: The princeton shape benchmark publication-title: Proceedings shape modeling applications, 2004 – reference: Liu M, Shi R, Han S, Kuang K, Cai H, Su H et al. OpenShape: Scaling Up 3D shape representation towards open-world understanding. – volume: vol. 5702 year: 2009 ident: b25 article-title: Isometric deformation modelling for object recognition publication-title: Computer analysis of images and patterns – volume: 205 start-page: 156 year: 2018 end-page: 162 ident: b6 article-title: The impact of 3D printing technology on the supply chain: Manufacturing and legal perspectives publication-title: Int J Prod Econ – year: 2023 ident: b18 article-title: Uni3D: Exploring unified 3D representation at scale – volume: 40 start-page: 518 year: 1992 end-page: 531 ident: b22 article-title: Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding publication-title: IEEE Trans Signal Process – year: 2022 ident: b21 article-title: NFTs for 3D models: Sustaining ownership in industry 4.0 publication-title: IEEE Consum Electron Mag – volume: 9 start-page: 78 year: 2007 end-page: 88 ident: b10 article-title: A Bayesian 3-D search engine using adaptive views clustering publication-title: IEEE Trans Multimedia – volume: 32 start-page: 553 year: 2016 end-page: 568 ident: b16 article-title: A fast modal space transform for robust nonrigid shape retrieval publication-title: Vis Comput – volume: 143 year: 2022 ident: b11 article-title: Graph-based shape analysis for heterogeneous geometric datasets: Similarity, retrieval and substructure matching publication-title: Comput Aided Des – volume: 38 start-page: 342 year: 2006 end-page: 366 ident: b14 article-title: Laplace–Beltrami spectra as ‘shape-DNA’ of surfaces and solids publication-title: Comput Aided Des – year: 2019 ident: b23 article-title: FabWave CAD repository categorized part classes - CAD 16 through 24 classes (part 2/3) – start-page: 592 year: 2024 end-page: 613 ident: b2 article-title: From virtual worlds to real-world impact: An industrial metaverse survey publication-title: Future of information and communication conference – year: 2019 ident: b17 article-title: A global geometric framework for 3D shape retrieval using deep learning publication-title: Comput Graph – start-page: 250 year: 2021 ident: b4 article-title: 3D printing market size, share & trends analysis publication-title: Grand View Res – volume: 42 start-page: 1 year: 2017 end-page: 21 ident: b24 article-title: DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN publication-title: ACM Trans Database Syst – year: 2015 ident: b28 article-title: ShapeNet: An Information-Rich 3D Model Repository – volume: 17 year: 2023 ident: b30 article-title: Blockchain-enabled authentication platform for the protection of 3D printing intellectual property: a conceptual framework study publication-title: Enterprise Information Systems – reference: Bronstein MM, Kokkinos I. Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE computer society conference on computer vision and pattern recognition. 2010. – start-page: 376 year: 2005 end-page: 386 ident: b20 article-title: Efficient 3D model retrieval method using geometric characteristics in intersected meshes publication-title: Modeling decisions for artificial intelligence – reference: Veilleux-Lepage Y. CTRL, HATE, PRINT: Terrorists and the appeal of 3D-Printed weapons. – reference: Engelmann F, Holland M, Nigischer C. Intellectual property protection and licensing of 3D print with blockchain technology. – year: 2011 ident: b13 article-title: Topological approaches for 3D object processing and applications – volume: 73 year: 2014 ident: b15 article-title: Perceptual 3D model hashing using key-dependent shape feature publication-title: Multimedia Tools Appl – volume: 50 start-page: 8 year: 2016 end-page: 13 ident: b5 article-title: Achieving benefits with design reuse in manufacturing industry publication-title: Procedia CIRP – volume: 17 issue: 11 year: 2023 ident: 10.1016/j.cad.2024.103752_b30 article-title: Blockchain-enabled authentication platform for the protection of 3D printing intellectual property: a conceptual framework study publication-title: Enterprise Information Systems doi: 10.1080/17517575.2023.2180776 – volume: 73 issue: 3 year: 2014 ident: 10.1016/j.cad.2024.103752_b15 article-title: Perceptual 3D model hashing using key-dependent shape feature publication-title: Multimedia Tools Appl doi: 10.1007/s11042-013-1643-1 – volume: 40 start-page: 518 issue: 3 year: 1992 ident: 10.1016/j.cad.2024.103752_b22 article-title: Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding publication-title: IEEE Trans Signal Process doi: 10.1109/78.120795 – volume: 32 start-page: 553 issue: 5 year: 2016 ident: 10.1016/j.cad.2024.103752_b16 article-title: A fast modal space transform for robust nonrigid shape retrieval publication-title: Vis Comput doi: 10.1007/s00371-015-1071-5 – volume: 54 start-page: 61 issue: 1 year: 2021 ident: 10.1016/j.cad.2024.103752_b1 article-title: Digital twins: Universal interoperability for the digital age publication-title: Computer doi: 10.1109/MC.2020.3032148 – year: 2004 ident: 10.1016/j.cad.2024.103752_b27 article-title: The princeton shape benchmark doi: 10.1109/SMI.2004.1314504 – year: 2015 ident: 10.1016/j.cad.2024.103752_b28 – year: 2017 ident: 10.1016/j.cad.2024.103752_b3 – volume: 35 issue: 6 year: 2016 ident: 10.1016/j.cad.2024.103752_b29 article-title: Mesh denoising via cascaded normal regression. publication-title: ACM Trans. Graph. doi: 10.1145/2980179.2980232 – year: 2019 ident: 10.1016/j.cad.2024.103752_b23 – volume: 42 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.cad.2024.103752_b24 article-title: DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN publication-title: ACM Trans Database Syst doi: 10.1145/3068335 – volume: 154 issn: 00104485 year: 2023 ident: 10.1016/j.cad.2024.103752_b9 article-title: A novel shape retrieval method for 3D mechanical components based on object projection, pre-trained deep learning models and autoencoder publication-title: Comput Aided Des doi: 10.1016/j.cad.2022.103417 – year: 2022 ident: 10.1016/j.cad.2024.103752_b21 article-title: NFTs for 3D models: Sustaining ownership in industry 4.0 publication-title: IEEE Consum Electron Mag – start-page: 171 year: 2015 ident: 10.1016/j.cad.2024.103752_b12 article-title: Diffusion-on-manifold aggregation of local features for shape-based 3D model retrieval doi: 10.1145/2671188.2749380 – volume: vol. 5702 year: 2009 ident: 10.1016/j.cad.2024.103752_b25 article-title: Isometric deformation modelling for object recognition – start-page: 376 year: 2005 ident: 10.1016/j.cad.2024.103752_b20 article-title: Efficient 3D model retrieval method using geometric characteristics in intersected meshes doi: 10.1007/11526018_37 – ident: 10.1016/j.cad.2024.103752_b19 – year: 2023 ident: 10.1016/j.cad.2024.103752_b18 – volume: 9 start-page: 78 issn: 1520-9210 issue: 1 year: 2007 ident: 10.1016/j.cad.2024.103752_b10 article-title: A Bayesian 3-D search engine using adaptive views clustering publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2006.886359 – volume: 50 start-page: 8 issn: 22128271 year: 2016 ident: 10.1016/j.cad.2024.103752_b5 article-title: Achieving benefits with design reuse in manufacturing industry publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.04.173 – start-page: 250 year: 2021 ident: 10.1016/j.cad.2024.103752_b4 article-title: 3D printing market size, share & trends analysis publication-title: Grand View Res – ident: 10.1016/j.cad.2024.103752_b8 – volume: 1 issn: 2770-3142 issue: 1 year: 2021 ident: 10.1016/j.cad.2024.103752_b7 article-title: An overview of perceptual hashing publication-title: J Online Trust Saf doi: 10.54501/jots.v1i1.24 – year: 2011 ident: 10.1016/j.cad.2024.103752_b13 – ident: 10.1016/j.cad.2024.103752_b26 doi: 10.1109/CVPR.2010.5539838 – ident: 10.1016/j.cad.2024.103752_b31 – start-page: 592 year: 2024 ident: 10.1016/j.cad.2024.103752_b2 article-title: From virtual worlds to real-world impact: An industrial metaverse survey – year: 2019 ident: 10.1016/j.cad.2024.103752_b17 article-title: A global geometric framework for 3D shape retrieval using deep learning publication-title: Comput Graph doi: 10.1016/j.cag.2018.12.003 – volume: 38 start-page: 342 issn: 00104485 issue: 4 year: 2006 ident: 10.1016/j.cad.2024.103752_b14 article-title: Laplace–Beltrami spectra as ‘shape-DNA’ of surfaces and solids publication-title: Comput Aided Des doi: 10.1016/j.cad.2005.10.011 – volume: 143 year: 2022 ident: 10.1016/j.cad.2024.103752_b11 article-title: Graph-based shape analysis for heterogeneous geometric datasets: Similarity, retrieval and substructure matching publication-title: Comput Aided Des doi: 10.1016/j.cad.2021.103125 – volume: 205 start-page: 156 issn: 09255273 year: 2018 ident: 10.1016/j.cad.2024.103752_b6 article-title: The impact of 3D printing technology on the supply chain: Manufacturing and legal perspectives publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2018.09.009 |
SSID | ssj0002139 |
Score | 2.4264138 |
Snippet | The digitalization of manufacturing processes and recent trends, such as the Industrial Metaverse, are continuously increasing in adoption in various critical... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103752 |
SubjectTerms | 3D model authentication 3D perceptual hash Intellectual property Shape retrieval Tamper detection |
Title | Onion-Hash: A Compact and Robust 3D Perceptual Hash for Asset Authentication |
URI | https://dx.doi.org/10.1016/j.cad.2024.103752 |
Volume | 175 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH6qygID4hTlqDwwIYXmsOOErSpU5SoIUalb5PgQZUgrmq78dvziRBQJFsZYthV9sd9hf-8LwDnnkUkElV6gdYyi2nbPBbHxUkExGfNzVUlsPI7j0YTeTdm0BYOmFgZplbXtdza9stZ1S69Gs7eYzbDG16YSNGHIgvTtssIKdspRP__y85vmEQaRC4GtvcHezc1mxfGSAsVCQ1qVnrPwd9-05m-GO7BdB4qk795lF1q62IOtNfnAfXh4Kiyq3kgs365In1RbW5ZEFIq8zPPVsiTRNXl2zJWVnQs7EhukErzpLQmejiFXyB3aHcBkePM6GHn13xE8aVOm0jOc60RZ740K88Y3ifLDPDKhTLkK0iSkMUupkZwFkTVhvmRMxomf5gbLrFImokNoF_NCHwEReSisp0oVk5piwhZzibrxjCpDtTIduGhwyRZOBCNr2GHvmQUxQxAzB2IHaINc9uNLZtZI_z3s-H_DTmATnxy97hTa5cdKn9kwocy71Trowkb_9n40_gIECbhk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGYABcYpyemBCCuSw44StKlQF2oJQK3WzHB-iDGlF05Xfjl-ciCLBwprYUfTl-R32974gdMlYZBJBpBdoHYOotl1zQWy8VBAoxvxMlRIbg2HcG5PHCZ00UKfuhQFaZeX7nU8vvXV15aZC82Y-nUKPry0lSEKBBelbs1pD64RGDEz7-vOb5xEGkcuBrcOB4fXRZknykgLUQkNS9p7T8PfgtBJwujtou8oUcdu9zC5q6HwPba3oB-6j_nNuYfV6YvF2i9u4XNuywCJX-HWWLRcFju7wi6OuLO2zYCC2WSqGo94Cw_YYkIXcrt0BGnfvR52eV_0ewZO2Zio8w5hOlA3fIDFvfJMoP8wiE8qUqSBNQhLTlBjJaBBZH-ZLSmWc-GlmoM8qpSI6RM18lusjhEUWChuqUkWlJlCxxUyCcDwlyhCtTAtd1bjwuVPB4DU97J1bEDmAyB2ILURq5PiPT8mtl_572vH_pl2gjd5o0Of9h-HTCdqEO45rd4qaxcdSn9mcocjOS5v4Apj1ufo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Onion-Hash%3A+A+Compact+and+Robust+3D+Perceptual+Hash+for+Asset+Authentication&rft.jtitle=Computer+aided+design&rft.au=Prummer%2C+Michael&rft.au=Regnath%2C+Emanuel&rft.au=Kosch%2C+Harald&rft.date=2024-10-01&rft.issn=0010-4485&rft.volume=175&rft.spage=103752&rft_id=info:doi/10.1016%2Fj.cad.2024.103752&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cad_2024_103752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |