Additive Gaussian noise removal based on generative adversarial network model and semi-soft thresholding approach
In digital image analysis and processing field of study, noise reduction and suppression have been stated as a common query. However, it is mostly essential issue to demesne the fine edges and ridges and tiny texture while suppressing the noise in processing of the digital images. In order to avoid...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 5; pp. 7757 - 7777 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In digital image analysis and processing field of study, noise reduction and suppression have been stated as a common query. However, it is mostly essential issue to demesne the fine edges and ridges and tiny texture while suppressing the noise in processing of the digital images. In order to avoid causing “Over-strangling” phenomenon, semi-soft thresholding model is exploited to classify the sharp edges of the contaminated images. In this study, a self-adjusting generative adversarial network GAN is utilized. This procedure is used to extract the fine edge of the noised digital images in order to improve the actual signal in the high frequency components where the main parts of the clean pixels may consider as noise pixels, and as a result delete the unwanted noise from the tested image that might cause over smoothing to the resulted images. In order to further denoise the contaminated digital image, adaptive learning GAN model throughout scoring machine is exploited. Therefore, it preserves the information of input image and feature maps, learns the correlation between global and local features, improves image restoration performance, and suppresses phenomena such as over-smoothing that tend to occur in wavelets-based denoising. The proposed method is an end-to-end network structure with CNN-based preprocessing methods. Experimental results demonstrate that, in comparison with state-of-the-art noise removal techniques, the proposed method has better visual quality, and the proposed method improves PSNR by 2.27 dB and 0.85 dB on average compared with state-of-the-art- denoising methods. In addition, the proposed method could shorten the processing time noticeably. |
---|---|
AbstractList | In digital image analysis and processing field of study, noise reduction and suppression have been stated as a common query. However, it is mostly essential issue to demesne the fine edges and ridges and tiny texture while suppressing the noise in processing of the digital images. In order to avoid causing “Over-strangling” phenomenon, semi-soft thresholding model is exploited to classify the sharp edges of the contaminated images. In this study, a self-adjusting generative adversarial network GAN is utilized. This procedure is used to extract the fine edge of the noised digital images in order to improve the actual signal in the high frequency components where the main parts of the clean pixels may consider as noise pixels, and as a result delete the unwanted noise from the tested image that might cause over smoothing to the resulted images. In order to further denoise the contaminated digital image, adaptive learning GAN model throughout scoring machine is exploited. Therefore, it preserves the information of input image and feature maps, learns the correlation between global and local features, improves image restoration performance, and suppresses phenomena such as over-smoothing that tend to occur in wavelets-based denoising. The proposed method is an end-to-end network structure with CNN-based preprocessing methods. Experimental results demonstrate that, in comparison with state-of-the-art noise removal techniques, the proposed method has better visual quality, and the proposed method improves PSNR by 2.27 dB and 0.85 dB on average compared with state-of-the-art- denoising methods. In addition, the proposed method could shorten the processing time noticeably. In digital image analysis and processing field of study, noise reduction and suppression have been stated as a common query. However, it is mostly essential issue to demesne the fine edges and ridges and tiny texture while suppressing the noise in processing of the digital images. In order to avoid causing “Over-strangling” phenomenon, semi-soft thresholding model is exploited to classify the sharp edges of the contaminated images. In this study, a self-adjusting generative adversarial network GAN is utilized. This procedure is used to extract the fine edge of the noised digital images in order to improve the actual signal in the high frequency components where the main parts of the clean pixels may consider as noise pixels, and as a result delete the unwanted noise from the tested image that might cause over smoothing to the resulted images. In order to further denoise the contaminated digital image, adaptive learning GAN model throughout scoring machine is exploited. Therefore, it preserves the information of input image and feature maps, learns the correlation between global and local features, improves image restoration performance, and suppresses phenomena such as over-smoothing that tend to occur in wavelets-based denoising. The proposed method is an end-to-end network structure with CNN-based preprocessing methods. Experimental results demonstrate that, in comparison with state-of-the-art noise removal techniques, the proposed method has better visual quality, and the proposed method improves PSNR by 2.27 dB and 0.85 dB on average compared with state-of-the-art- denoising methods. In addition, the proposed method could shorten the processing time noticeably. |
Author | Khmag, Asem |
Author_xml | – sequence: 1 givenname: Asem orcidid: 0000-0002-1360-5346 surname: Khmag fullname: Khmag, Asem email: khmaj2002@gmail.com, a.khmag@zu.edu.ly organization: Department of Computer Systems Engineering, Faculty of Engineering, University of Zawia |
BookMark | eNp9kE1PAyEQhompiZ9_wBOJZxRYPnaPjdFqYuJFz4RdZlt0Cy1sa_z3omti4kEukMzzMDPvCZqFGAChC0avGKX6OjNGBSeUc8IqqRqiDtAxk7oiWnM2K--qpkRLyo7QSc6vlDIluThG27lzfvR7wAu7y9nbgEP0GXCCddzbAbc2g8Mx4CUESPYbtW4PKdvkSz3A-B7TG15HBwO2weEMa09y7Ec8rhLkVRycD0tsN5sUbbc6Q4e9HTKc_9yn6OXu9vnmnjw-LR5u5o-k46IZSa-ZaLvGCdHrphzBWydBUi6Uq1mtlRasbhVvOiYboRjVjZSq6mtNLUhbVafocvq3tN3uII_mNe5SKC0N16opHJWyUPVEdSnmnKA3nR_LljGMyfrBMGq-AjZTwKYEbL4DNqqo_I-6SX5t08f_UjVJucBhCel3qn-sT5zrkBk |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3309418 crossref_primary_10_1109_ACCESS_2024_3515455 crossref_primary_10_23919_cje_2022_00_138 crossref_primary_10_1038_s41598_024_69412_5 crossref_primary_10_1371_journal_pone_0302492 crossref_primary_10_1109_JSEN_2024_3421337 crossref_primary_10_1155_2023_1111301 crossref_primary_10_1049_ell2_70111 crossref_primary_10_1007_s44163_024_00134_3 crossref_primary_10_1007_s10462_025_11138_5 crossref_primary_10_1080_03081079_2024_2429593 crossref_primary_10_1007_s00530_022_01035_0 crossref_primary_10_1038_s41598_025_89451_w crossref_primary_10_3390_coatings14101271 crossref_primary_10_1007_s00371_025_03840_w crossref_primary_10_1007_s11227_024_06576_x crossref_primary_10_3390_s23177543 crossref_primary_10_3390_math13010042 crossref_primary_10_1016_j_measurement_2024_115508 crossref_primary_10_1038_s41598_025_86860_9 crossref_primary_10_1038_s41598_024_59785_y crossref_primary_10_1371_journal_pone_0315424 crossref_primary_10_1109_LGRS_2024_3372600 crossref_primary_10_1016_j_neucom_2025_129667 crossref_primary_10_1038_s41598_024_74777_8 crossref_primary_10_1109_JSTARS_2024_3422175 crossref_primary_10_1038_s41598_025_92283_3 crossref_primary_10_1007_s11554_024_01575_w crossref_primary_10_1016_j_fraope_2024_100149 crossref_primary_10_1007_s00371_023_02786_1 crossref_primary_10_1007_s11760_024_03338_3 crossref_primary_10_1016_j_ijft_2024_100982 crossref_primary_10_1080_23080477_2024_2363031 crossref_primary_10_1109_ACCESS_2023_3243829 crossref_primary_10_1109_ACCESS_2023_3252894 crossref_primary_10_3390_sym17030337 crossref_primary_10_1109_ACCESS_2024_3365489 crossref_primary_10_1109_ACCESS_2023_3264605 crossref_primary_10_1016_j_ijcce_2025_01_005 crossref_primary_10_1080_1206212X_2024_2380665 crossref_primary_10_1016_j_eswa_2024_126300 crossref_primary_10_1155_2022_8553330 crossref_primary_10_1155_2024_9266585 crossref_primary_10_1007_s11760_024_03093_5 crossref_primary_10_1109_ACCESS_2022_3217243 crossref_primary_10_1155_2024_2606485 crossref_primary_10_1109_ACCESS_2023_3295253 crossref_primary_10_1109_ACCESS_2025_3545830 crossref_primary_10_3390_electronics12051218 crossref_primary_10_1007_s42979_024_03217_1 crossref_primary_10_1109_JSEN_2024_3510613 crossref_primary_10_1109_ACCESS_2024_3525181 crossref_primary_10_1007_s11760_023_02861_z crossref_primary_10_1109_ACCESS_2024_3408805 crossref_primary_10_1007_s11042_024_20239_2 crossref_primary_10_1109_TCE_2023_3332471 crossref_primary_10_1038_s41598_023_47089_6 crossref_primary_10_1109_ACCESS_2023_3306836 |
Cites_doi | 10.1109/LSP.2017.2681159 10.1002/tee.22223 10.1109/ACCESS.2019.2939578 10.1016/j.jvcir.2022.103483 10.1109/ACCESS.2019.2921451 10.1016/j.cam.2021.113605 10.1007/s11042-022-12774-7 10.1016/j.mri.2021.03.013 10.1109/TIP.2017.2662206 10.1016/j.neunet.2021.01.010 10.1109/ACCESS.2022.3169131 10.1016/j.sigpro.2018.07.018 10.1007/s00371-016-1273-5 10.1007/s00371-017-1439-9 10.1007/s00371-017-1406-5 10.1007/s11263-008-0197-6 10.1109/CVPR.2014.366 10.1109/CVPR.2018.00262 10.1007/978-981-16-7118-0_70 10.1109/GlobalSIP.2014.7032166 10.1201/9781003111290-1-2 10.1109/ICASSP.2019.8683788 10.1109/CVPRW.2017.148 10.1109/ICCT46177.2019.8969036 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-022-13569-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 7777 |
ExternalDocumentID | 10_1007_s11042_022_13569_6 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c249t-f714bc9d44f7999942bd5e50246d818767418b629c1594610795563f870ae5a33 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Aug 29 04:48:49 EDT 2025 Tue Jul 01 04:13:16 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 21 02:44:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Generative adversarial networks Second-generation wavelets Image enhancement Thresholding optimization Image denoising |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-f714bc9d44f7999942bd5e50246d818767418b629c1594610795563f870ae5a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1360-5346 |
PQID | 2769870055 |
PQPubID | 54626 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2769870055 crossref_citationtrail_10_1007_s11042_022_13569_6 crossref_primary_10_1007_s11042_022_13569_6 springer_journals_10_1007_s11042_022_13569_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230200 2023-02-00 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Khmag, Al Haddad, Ramlee, Kamarudin, Malallah (CR17) 2018; 34 Liu, Ma, Pang (CR19) 2018; 39 Roth, Black (CR23) 2009; 82 Xinxin, Shiyu, Qiang, Yunjie, Wu (CR35) 2020; 32 GAO, LI, KANG (CR5) 2011; 32 Tan, Queler, Lin (CR29) 2021; 79 Wang, Yang, Jiang, Wang (CR34) 2021; 42 CR39 Dantas, Costa, Lopes (CR4) 2017; 24 Park, Jeong (CR22) 2019; 7 Yang, Luo, Yang (CR36) 2009; 32 CR10 CR31 Jin, Jiao, Liu (CR11) 2007; 03 CR30 Ubhi, Aggarwal (CR32) 2022; 85 Wang, Zhu, Lv, Su, Song (CR33) 2018; 41 Khmag, Al Haddad, Kalantr (CR18) 2018; 34 CR2 Chen, Zhou, Wang (CR3) 2004; 02 Khmag, Ramli, bin Hashim, Al Haddad (CR15) 2017; 11 Sailaja, Rupa, Chakravarthy (CR24) 2017; 34 Liu, Zhang, Lian, Zuo (CR20) 2019; 7 CR6 He, Yang (CR8) 2021; 12 Shitong (CR27) 2014; 35 CR7 CR28 CR9 Khmag, Al Haddad, Suhimi, Kamarudin (CR16) 2017; 33 Jurovic (CR13) 2016; 13 Yu, Liu (CR37) 2021; 137 Jing, Biao, Wang, Licheng (CR12) 2008; 07 Zhang, Zuo, Chen, Meng, Zhang (CR38) 2017; 26 Zhou, Chen, Zhao (CR40) 2021; 120 Meng, Zhang (CR21) 2022; 10 Khmag (CR14) 2022; 81 Seghouane, Iqbal (CR25) 2018; 153 Shi (CR26) 2021; 395 Cao, Jia, Chen (CR1) 2018; 23 13569_CR28 Y He (13569_CR8) 2021; 12 A Khmag (13569_CR15) 2017; 11 AK Seghouane (13569_CR25) 2018; 153 H Chen (13569_CR3) 2004; 02 C Yang (13569_CR36) 2009; 32 K Liu (13569_CR19) 2018; 39 H Wang (13569_CR34) 2021; 42 JS Ubhi (13569_CR32) 2022; 85 13569_CR9 C Xinxin (13569_CR35) 2020; 32 DI Jurovic (13569_CR13) 2016; 13 Y Shitong (13569_CR27) 2014; 35 H-Y Jin (13569_CR11) 2007; 03 A Khmag (13569_CR16) 2017; 33 J Yu (13569_CR37) 2021; 137 ET Tan (13569_CR29) 2021; 79 Y Zhou (13569_CR40) 2021; 120 13569_CR39 FC Dantas (13569_CR4) 2017; 24 X-H Wang (13569_CR33) 2018; 41 Y Meng (13569_CR21) 2022; 10 W GAO (13569_CR5) 2011; 32 B Park (13569_CR22) 2019; 7 13569_CR31 13569_CR10 13569_CR6 13569_CR7 A Khmag (13569_CR14) 2022; 81 A Khmag (13569_CR17) 2018; 34 13569_CR30 13569_CR2 S Roth (13569_CR23) 2009; 82 P Liu (13569_CR20) 2019; 7 K Shi (13569_CR26) 2021; 395 Y Cao (13569_CR1) 2018; 23 A Khmag (13569_CR18) 2018; 34 R Sailaja (13569_CR24) 2017; 34 K Zhang (13569_CR38) 2017; 26 B Jing (13569_CR12) 2008; 07 |
References_xml | – volume: 24 start-page: 559 issue: 5 year: 2017 end-page: 563 ident: CR4 article-title: Learning dictionaries as a sum of kronecker products publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2017.2681159 – volume: 03 start-page: 491 year: 2007 end-page: 497 ident: CR11 article-title: SAR Image De-noising Based on Curvelet Domain Hidden Markov Tree Models publication-title: Chin J Comput – volume: 23 start-page: 1433 issue: 10 year: 2018 end-page: 1449 ident: CR1 article-title: Review of computer vision based on generative adversarial networks publication-title: J Image and Graph – volume: 32 start-page: 751 issue: 05 year: 2020 end-page: 758 ident: CR35 article-title: Structure preservation generative adversarial network for noise reduction in SD-OCT images publication-title: J Comput-Aided Des Comput Graph – volume: 11 start-page: 339 issue: 3 year: 2017 end-page: 347 ident: CR15 article-title: Additive noise reduction in natural images using second-generation wavelet transform hidden Markov models publication-title: IEEJ Trans Electr Electron Eng doi: 10.1002/tee.22223 – volume: 7 start-page: 128076 year: 2019 end-page: 128085 ident: CR22 article-title: Color filter array demosaicking using densely connected residual network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939578 – volume: 34 start-page: 45 year: 2017 end-page: 55 ident: CR24 article-title: Robust and indiscernible multimedia watermarking using light weight mutational methodology publication-title: J Citation Rep – volume: 85 start-page: 103483 year: 2022 ident: CR32 article-title: Neural style transfer for image within images and conditional GANs for destylization publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2022.103483 – ident: CR39 – ident: CR2 – volume: 35 start-page: 571 issue: 04 year: 2014 end-page: 576 ident: CR27 article-title: Image enhancement algorithm combining with threshold De-noising and edge optimization publication-title: J Graph – ident: CR30 – volume: 02 start-page: 116 year: 2004 end-page: 119 ident: CR3 article-title: Research Based on Mathematics Morphology Image Chirp Method publication-title: J Eng Graph – ident: CR10 – volume: 7 start-page: 74973 year: 2019 end-page: 74985 ident: CR20 article-title: Multi-level wavelet convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921451 – volume: 395 start-page: 113605 issue: 7 year: 2021 ident: CR26 article-title: Image denoising by nonlinear nonlocal diffusion equations publication-title: J Comput Appl Math doi: 10.1016/j.cam.2021.113605 – volume: 32 start-page: 2260 issue: 11 year: 2009 end-page: 2264 ident: CR36 article-title: Hybrid linear model based image Denoising publication-title: Chin J Comput – volume: 81 start-page: 16645 year: 2022 end-page: 16660 ident: CR14 article-title: Digital image noise removal based on collaborative filtering approach and singular value decomposition publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12774-7 – ident: CR6 – volume: 39 start-page: 1048 issue: 06 year: 2018 end-page: 1054 ident: CR19 article-title: A detail enhancement and Denoising algorithm of high dynamic range infrared image based on double guided image filter publication-title: J Graph – volume: 41 start-page: 2496 issue: 11 year: 2018 end-page: 2508 ident: CR33 article-title: Cauchy distribution NSST-HMT model and its applications in image Denoising publication-title: Chin J Comput – volume: 79 start-page: 103 year: 2021 end-page: 111 ident: CR29 article-title: Improved nerve conspicuity with water weighting and denoising in two-point Dixon magnetic resonance neurography publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2021.03.013 – volume: 26 start-page: 3142 issue: 7 year: 2017 end-page: 3155 ident: CR38 article-title: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising publication-title: IEEE Trans Img Proc doi: 10.1109/TIP.2017.2662206 – volume: 137 start-page: 31 year: 2021 end-page: 42 ident: CR37 article-title: Extracting and inserting knowledge into stacked denoising auto-encoders publication-title: Neural Netw doi: 10.1016/j.neunet.2021.01.010 – volume: 42 start-page: 229 issue: 03 year: 2021 end-page: 237 ident: CR34 article-title: Image denoising algorithm based on multi-channel GAN publication-title: J Commun – volume: 07 start-page: 1234 year: 2008 end-page: 1241 ident: CR12 article-title: SAR image Denoising based on lifting Directionlet domain Gaussian scale mixtures model publication-title: Chin J Comput – volume: 10 start-page: 49657 year: 2022 end-page: 49676 ident: CR21 article-title: An image Denoising method using symmetric dilation residual network in the high noise level environment publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3169131 – volume: 32 start-page: 84 issue: 04 year: 2011 end-page: 89 ident: CR5 article-title: A hybrid mesh Denoising algorithm based on the mean Normal filter publication-title: J Eng Graph – volume: 12 start-page: 87 year: 2021 end-page: 91 ident: CR8 article-title: OCT image Denoising method based on generative confrontation network publication-title: Modern Comput – volume: 153 start-page: 300 year: 2018 end-page: 310 ident: CR25 article-title: Consistent adaptive sequential dictionary learning publication-title: Signal Process doi: 10.1016/j.sigpro.2018.07.018 – ident: CR31 – ident: CR9 – ident: CR7 – volume: 33 start-page: 1141 issue: 9 year: 2017 end-page: 1154 ident: CR16 article-title: Denoising of natural images through robust wavelet thresholding and genetic programming publication-title: Vis Comput doi: 10.1007/s00371-016-1273-5 – ident: CR28 – volume: 34 start-page: 1661 issue: 12 year: 2018 end-page: 1675 ident: CR17 article-title: Natural image noise removal using nonlocal means and hidden Markov models in transform domain publication-title: Vis Comput doi: 10.1007/s00371-017-1439-9 – volume: 120 start-page: 108 issue: 81 year: 2021 end-page: 128 ident: CR40 article-title: Point cloud denoising using non-local collaborative projections publication-title: Pattern Recogn – volume: 34 start-page: 675 issue: 5 year: 2018 end-page: 688 ident: CR18 article-title: Single dehazing using second generation wavelet transformas and the mean vector L2-norm publication-title: Vis Comput doi: 10.1007/s00371-017-1406-5 – volume: 82 start-page: 205 issue: 2 year: 2009 end-page: 229 ident: CR23 article-title: Fields of experts publication-title: Int J Comput Vis doi: 10.1007/s11263-008-0197-6 – volume: 13 start-page: 1 year: 2016 end-page: 11 ident: CR13 article-title: BM3D filter in salt-and-pepper noise removal publication-title: EURASIP J Image Video Proc – ident: 13569_CR6 doi: 10.1109/CVPR.2014.366 – volume: 79 start-page: 103 year: 2021 ident: 13569_CR29 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2021.03.013 – volume: 85 start-page: 103483 year: 2022 ident: 13569_CR32 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2022.103483 – volume: 33 start-page: 1141 issue: 9 year: 2017 ident: 13569_CR16 publication-title: Vis Comput doi: 10.1007/s00371-016-1273-5 – volume: 41 start-page: 2496 issue: 11 year: 2018 ident: 13569_CR33 publication-title: Chin J Comput – volume: 35 start-page: 571 issue: 04 year: 2014 ident: 13569_CR27 publication-title: J Graph – volume: 34 start-page: 675 issue: 5 year: 2018 ident: 13569_CR18 publication-title: Vis Comput doi: 10.1007/s00371-017-1406-5 – ident: 13569_CR39 doi: 10.1109/CVPR.2018.00262 – volume: 13 start-page: 1 year: 2016 ident: 13569_CR13 publication-title: EURASIP J Image Video Proc – ident: 13569_CR31 doi: 10.1007/978-981-16-7118-0_70 – volume: 39 start-page: 1048 issue: 06 year: 2018 ident: 13569_CR19 publication-title: J Graph – volume: 7 start-page: 74973 year: 2019 ident: 13569_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921451 – ident: 13569_CR9 doi: 10.1109/GlobalSIP.2014.7032166 – volume: 12 start-page: 87 year: 2021 ident: 13569_CR8 publication-title: Modern Comput – volume: 32 start-page: 84 issue: 04 year: 2011 ident: 13569_CR5 publication-title: J Eng Graph – volume: 82 start-page: 205 issue: 2 year: 2009 ident: 13569_CR23 publication-title: Int J Comput Vis doi: 10.1007/s11263-008-0197-6 – volume: 395 start-page: 113605 issue: 7 year: 2021 ident: 13569_CR26 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2021.113605 – ident: 13569_CR2 doi: 10.1201/9781003111290-1-2 – volume: 11 start-page: 339 issue: 3 year: 2017 ident: 13569_CR15 publication-title: IEEJ Trans Electr Electron Eng doi: 10.1002/tee.22223 – volume: 137 start-page: 31 year: 2021 ident: 13569_CR37 publication-title: Neural Netw doi: 10.1016/j.neunet.2021.01.010 – volume: 7 start-page: 128076 year: 2019 ident: 13569_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939578 – volume: 34 start-page: 45 year: 2017 ident: 13569_CR24 publication-title: J Citation Rep – volume: 120 start-page: 108 issue: 81 year: 2021 ident: 13569_CR40 publication-title: Pattern Recogn – ident: 13569_CR10 doi: 10.1109/ICASSP.2019.8683788 – ident: 13569_CR7 doi: 10.1109/CVPRW.2017.148 – volume: 81 start-page: 16645 year: 2022 ident: 13569_CR14 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12774-7 – ident: 13569_CR30 doi: 10.1109/ICCT46177.2019.8969036 – ident: 13569_CR28 – volume: 07 start-page: 1234 year: 2008 ident: 13569_CR12 publication-title: Chin J Comput – volume: 23 start-page: 1433 issue: 10 year: 2018 ident: 13569_CR1 publication-title: J Image and Graph – volume: 03 start-page: 491 year: 2007 ident: 13569_CR11 publication-title: Chin J Comput – volume: 26 start-page: 3142 issue: 7 year: 2017 ident: 13569_CR38 publication-title: IEEE Trans Img Proc doi: 10.1109/TIP.2017.2662206 – volume: 34 start-page: 1661 issue: 12 year: 2018 ident: 13569_CR17 publication-title: Vis Comput doi: 10.1007/s00371-017-1439-9 – volume: 32 start-page: 2260 issue: 11 year: 2009 ident: 13569_CR36 publication-title: Chin J Comput – volume: 02 start-page: 116 year: 2004 ident: 13569_CR3 publication-title: J Eng Graph – volume: 153 start-page: 300 year: 2018 ident: 13569_CR25 publication-title: Signal Process doi: 10.1016/j.sigpro.2018.07.018 – volume: 24 start-page: 559 issue: 5 year: 2017 ident: 13569_CR4 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2017.2681159 – volume: 10 start-page: 49657 year: 2022 ident: 13569_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3169131 – volume: 42 start-page: 229 issue: 03 year: 2021 ident: 13569_CR34 publication-title: J Commun – volume: 32 start-page: 751 issue: 05 year: 2020 ident: 13569_CR35 publication-title: J Comput-Aided Des Comput Graph |
SSID | ssj0016524 |
Score | 2.5449898 |
Snippet | In digital image analysis and processing field of study, noise reduction and suppression have been stated as a common query. However, it is mostly essential... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7757 |
SubjectTerms | Adaptive learning Algorithms Computer Communication Networks Computer Science Data Structures and Information Theory Digital imaging Feature maps Generative adversarial networks Image analysis Image classification Image restoration Methods Multimedia Multimedia Information Systems Neural networks Noise reduction Pixels Random noise Smoothing Special Purpose and Application-Based Systems Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWDgUUAUCvLABha4iZ1kQgW1VEhUCFGpW5TYDqpEk7ZJ_z93idMCEsxxPPjO9_DdfR8hV742EkcYmStdSFASR7KYS82M8T3jQAChFA4nv4zkcOw-T8TEPrjltq2ytomlodaZwjfy264nIT1GyKj7-YIhaxRWVy2FxjZpggn2IflqPvRHr2_rOoIUltbWv2PgG7kdm6mG5ziOpmA3O3eEDJj86Zo28eavEmnpeQYHZM-GjLRXyfiQbJm0RfZrOgZqb2eL7H7DFjwii57WZV8QfYpWOY5K0jSb5oYuzSwD9aLovzTNUvpRIk-XSyOkZ84jVEqaVg3itOTKoVGqaW5mU5aD3aYFaEBuC1e0hiU_JuNB__1xyCy_AlOQdBUs8bgbq0C7buJBnBi43VgLI8BrSw1-HGF-uB_LbqAg5kFcdi9AOLEExBAZETnOCWmkWWpOCdVxYhQcZaAgQIsg6lQC5xsCEfFYCE-1Ca-PNlQWfBw5MD7DDWwyiiOEPcJSHKFsk-v1P_MKeuPf1Z1aYqG9hnm4UZo2uamluPn8925n_-92TnaQdr7q3u6QRrFcmQsITor40mrgF8VB3y0 priority: 102 providerName: ProQuest |
Title | Additive Gaussian noise removal based on generative adversarial network model and semi-soft thresholding approach |
URI | https://link.springer.com/article/10.1007/s11042-022-13569-6 https://www.proquest.com/docview/2769870055 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XODAGzEYUw7cINK6Nml73NAeAjEhxKRxqtokRZNYC-v4_9hdugECJE49NI2q2Im_yP4-A1wE2kiiMHJPenhBSV3JE0dqbkzgGxcBhFJETr4bysHIuxmLsSWFFVW1e5WSLE_qFdnNISoJVZ87rpAhl-uwKejujl48arWXuQMpbCvboMkxHjqWKvPzHF_D0QpjfkuLltGmtwc7Fiay9sKu-7BmsgPYrVowMLsjD2D7k57gIby1tS5rgVg_fi-IHsmyfFIYNjPTHF2KUczSLM_Yc6k2XQ6NqSVzEZMjsmxRFM7K_jgszjQrzHTCCzyr2RytXthkFaukyI9g1Os-Xg-47anAFV605jz1HS9Rofa81EdsGHqtRAsjMFJLjbGbpH2cIJGtUCHOIS12PyQJsRS3dWxE7LrHsJHlmTkBppPUKFzKUCEoixFpKkGchlDETiKEr2rgVEsbKSs4Tn0vXqKVVDKZI8I5otIckazB5fKb14Xcxp-j65XFIrv1iqjlyxD_tilEDa4qK65e_z7b6f-Gn8EWtZ5fVHDXYWM-ezfnCFDmSQPWg16_AZvtXqczpGf_6baLz053eP_QKL31A3C24C4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0hOAAHdkRZfYATWJDFTnJACAFtWU8gcQuJ7aBKNGmbIsRP8Y3MZKGABLee4ziSZzxLZuY9gF1fG0kjjNyVLiYoiSN5bEnNjfE942AAoRQNJ9_eyfaDe_UoHifgo56FobbK2iYWhlpniv6RH9qexPSYIKNOen1OrFFUXa0pNEq1uDbvb5iy5ceX5yjfPdtuXtyftXnFKsAVphpDnniWG6tAu27iYXQUuHashRHoq6RG70XgNpYfSztQ6OkJjdwLCEQrwY9HRkT0AxRN_pTrOAHdKL_Z-qpaSFGR6PpHHD2xVQ3plKN6Fg3CUO-85QgZcPnTEY6i218F2cLPNRdgrgpQ2WmpUYswYdIlmK_JH1hlC5Zg9huS4TL0T7UuupBYK3rNaTCTpVknN2xguhkqMyNvqVmWsucC57pYGhEZdB7RFWBp2Y7OCmYeFqWa5abb4Tl6CTZEfcurMhmrQdBX4GEs574Kk2mWmjVgOk6MwqMMFIaDEca4StA0RSAiKxbCUw2w6qMNVQV1TowbL-EIpJnEEeIeYSGOUDZg_-udXgn08e_qzVpiYXXp83Ckog04qKU4evz3buv_77YD0-3725vw5vLuegNmiPC-7BvfhMnh4NVsYVg0jLcLXWTwNG7l_wTk9xeA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5kBdGDb3F95qAnDdpuk24PIr7W9yKi4K22SSoL2rrbFfGv-eucaVNXBb15bhpK5us8MjPfAKw1tZHUwsg96WGAkjQkjx2puTFN3zTQgVCKmpMv2_Lk1ju7E3dD8F71wlBZZaUTC0WtM0V35FuuLzE8JsqorcSWRVwdtnafu5wmSFGmtRqnUULk3Ly9YviW75weoqzXXbd1dHNwwu2EAa4w7OjzxHe8WAXa8xIfPaXAc2MtjEC7JTVaMiK6cZqxdAOFVp-Yyf2ACLUS_JDIiIguQ1H9D_sYFW3XYHj_qH11_ZnDkMKO1G1uc7TLjm3ZKRv3HGqLoUp6pyFkwOV3szjwdX-kZwur15qEceuusr0SX1MwZNJpmKhGQTCrGaZh7Auv4Qx097QuapLYcfSSU5smS7NObljPPGUIbUa2U7MsZQ8F63WxNKLR0HlEPwRLy-J0VszpYVGqWW6eOjxHm8H6iL7cJs1YRYk-C7f_cvJzUEuz1MwD03FiFB5loNA5jNDjVYJ6KwIRObEQvqqDUx1tqCzxOc3feAwHlM0kjhD3CAtxhLIOG5_vPJe0H3-uXqokFloVkIcDwNZhs5Li4PHvuy38vdsqjCDww4vT9vkijLroc5VF5EtQ6_dezDL6SP14xYKRwf1_4_8D7j4dEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+Gaussian+noise+removal+based+on+generative+adversarial+network+model+and+semi-soft+thresholding+approach&rft.jtitle=Multimedia+tools+and+applications&rft.au=Khmag%2C+Asem&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=5&rft.spage=7757&rft.epage=7777&rft_id=info:doi/10.1007%2Fs11042-022-13569-6&rft.externalDocID=10_1007_s11042_022_13569_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |