Additive Gaussian noise removal based on generative adversarial network model and semi-soft thresholding approach

In digital image analysis and processing field of study, noise reduction and suppression have been stated as a common query. However, it is mostly essential issue to demesne the fine edges and ridges and tiny texture while suppressing the noise in processing of the digital images. In order to avoid...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 5; pp. 7757 - 7777
Main Author Khmag, Asem
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In digital image analysis and processing field of study, noise reduction and suppression have been stated as a common query. However, it is mostly essential issue to demesne the fine edges and ridges and tiny texture while suppressing the noise in processing of the digital images. In order to avoid causing “Over-strangling” phenomenon, semi-soft thresholding model is exploited to classify the sharp edges of the contaminated images. In this study, a self-adjusting generative adversarial network GAN is utilized. This procedure is used to extract the fine edge of the noised digital images in order to improve the actual signal in the high frequency components where the main parts of the clean pixels may consider as noise pixels, and as a result delete the unwanted noise from the tested image that might cause over smoothing to the resulted images. In order to further denoise the contaminated digital image, adaptive learning GAN model throughout scoring machine is exploited. Therefore, it preserves the information of input image and feature maps, learns the correlation between global and local features, improves image restoration performance, and suppresses phenomena such as over-smoothing that tend to occur in wavelets-based denoising. The proposed method is an end-to-end network structure with CNN-based preprocessing methods. Experimental results demonstrate that, in comparison with state-of-the-art noise removal techniques, the proposed method has better visual quality, and the proposed method improves PSNR by 2.27 dB and 0.85 dB on average compared with state-of-the-art- denoising methods. In addition, the proposed method could shorten the processing time noticeably.
AbstractList In digital image analysis and processing field of study, noise reduction and suppression have been stated as a common query. However, it is mostly essential issue to demesne the fine edges and ridges and tiny texture while suppressing the noise in processing of the digital images. In order to avoid causing “Over-strangling” phenomenon, semi-soft thresholding model is exploited to classify the sharp edges of the contaminated images. In this study, a self-adjusting generative adversarial network GAN is utilized. This procedure is used to extract the fine edge of the noised digital images in order to improve the actual signal in the high frequency components where the main parts of the clean pixels may consider as noise pixels, and as a result delete the unwanted noise from the tested image that might cause over smoothing to the resulted images. In order to further denoise the contaminated digital image, adaptive learning GAN model throughout scoring machine is exploited. Therefore, it preserves the information of input image and feature maps, learns the correlation between global and local features, improves image restoration performance, and suppresses phenomena such as over-smoothing that tend to occur in wavelets-based denoising. The proposed method is an end-to-end network structure with CNN-based preprocessing methods. Experimental results demonstrate that, in comparison with state-of-the-art noise removal techniques, the proposed method has better visual quality, and the proposed method improves PSNR by 2.27 dB and 0.85 dB on average compared with state-of-the-art- denoising methods. In addition, the proposed method could shorten the processing time noticeably.
In digital image analysis and processing field of study, noise reduction and suppression have been stated as a common query. However, it is mostly essential issue to demesne the fine edges and ridges and tiny texture while suppressing the noise in processing of the digital images. In order to avoid causing “Over-strangling” phenomenon, semi-soft thresholding model is exploited to classify the sharp edges of the contaminated images. In this study, a self-adjusting generative adversarial network GAN is utilized. This procedure is used to extract the fine edge of the noised digital images in order to improve the actual signal in the high frequency components where the main parts of the clean pixels may consider as noise pixels, and as a result delete the unwanted noise from the tested image that might cause over smoothing to the resulted images. In order to further denoise the contaminated digital image, adaptive learning GAN model throughout scoring machine is exploited. Therefore, it preserves the information of input image and feature maps, learns the correlation between global and local features, improves image restoration performance, and suppresses phenomena such as over-smoothing that tend to occur in wavelets-based denoising. The proposed method is an end-to-end network structure with CNN-based preprocessing methods. Experimental results demonstrate that, in comparison with state-of-the-art noise removal techniques, the proposed method has better visual quality, and the proposed method improves PSNR by 2.27 dB and 0.85 dB on average compared with state-of-the-art- denoising methods. In addition, the proposed method could shorten the processing time noticeably.
Author Khmag, Asem
Author_xml – sequence: 1
  givenname: Asem
  orcidid: 0000-0002-1360-5346
  surname: Khmag
  fullname: Khmag, Asem
  email: khmaj2002@gmail.com, a.khmag@zu.edu.ly
  organization: Department of Computer Systems Engineering, Faculty of Engineering, University of Zawia
BookMark eNp9kE1PAyEQhompiZ9_wBOJZxRYPnaPjdFqYuJFz4RdZlt0Cy1sa_z3omti4kEukMzzMDPvCZqFGAChC0avGKX6OjNGBSeUc8IqqRqiDtAxk7oiWnM2K--qpkRLyo7QSc6vlDIluThG27lzfvR7wAu7y9nbgEP0GXCCddzbAbc2g8Mx4CUESPYbtW4PKdvkSz3A-B7TG15HBwO2weEMa09y7Ec8rhLkVRycD0tsN5sUbbc6Q4e9HTKc_9yn6OXu9vnmnjw-LR5u5o-k46IZSa-ZaLvGCdHrphzBWydBUi6Uq1mtlRasbhVvOiYboRjVjZSq6mtNLUhbVafocvq3tN3uII_mNe5SKC0N16opHJWyUPVEdSnmnKA3nR_LljGMyfrBMGq-AjZTwKYEbL4DNqqo_I-6SX5t08f_UjVJucBhCel3qn-sT5zrkBk
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3309418
crossref_primary_10_1109_ACCESS_2024_3515455
crossref_primary_10_23919_cje_2022_00_138
crossref_primary_10_1038_s41598_024_69412_5
crossref_primary_10_1371_journal_pone_0302492
crossref_primary_10_1109_JSEN_2024_3421337
crossref_primary_10_1155_2023_1111301
crossref_primary_10_1049_ell2_70111
crossref_primary_10_1007_s44163_024_00134_3
crossref_primary_10_1007_s10462_025_11138_5
crossref_primary_10_1080_03081079_2024_2429593
crossref_primary_10_1007_s00530_022_01035_0
crossref_primary_10_1038_s41598_025_89451_w
crossref_primary_10_3390_coatings14101271
crossref_primary_10_1007_s00371_025_03840_w
crossref_primary_10_1007_s11227_024_06576_x
crossref_primary_10_3390_s23177543
crossref_primary_10_3390_math13010042
crossref_primary_10_1016_j_measurement_2024_115508
crossref_primary_10_1038_s41598_025_86860_9
crossref_primary_10_1038_s41598_024_59785_y
crossref_primary_10_1371_journal_pone_0315424
crossref_primary_10_1109_LGRS_2024_3372600
crossref_primary_10_1016_j_neucom_2025_129667
crossref_primary_10_1038_s41598_024_74777_8
crossref_primary_10_1109_JSTARS_2024_3422175
crossref_primary_10_1038_s41598_025_92283_3
crossref_primary_10_1007_s11554_024_01575_w
crossref_primary_10_1016_j_fraope_2024_100149
crossref_primary_10_1007_s00371_023_02786_1
crossref_primary_10_1007_s11760_024_03338_3
crossref_primary_10_1016_j_ijft_2024_100982
crossref_primary_10_1080_23080477_2024_2363031
crossref_primary_10_1109_ACCESS_2023_3243829
crossref_primary_10_1109_ACCESS_2023_3252894
crossref_primary_10_3390_sym17030337
crossref_primary_10_1109_ACCESS_2024_3365489
crossref_primary_10_1109_ACCESS_2023_3264605
crossref_primary_10_1016_j_ijcce_2025_01_005
crossref_primary_10_1080_1206212X_2024_2380665
crossref_primary_10_1016_j_eswa_2024_126300
crossref_primary_10_1155_2022_8553330
crossref_primary_10_1155_2024_9266585
crossref_primary_10_1007_s11760_024_03093_5
crossref_primary_10_1109_ACCESS_2022_3217243
crossref_primary_10_1155_2024_2606485
crossref_primary_10_1109_ACCESS_2023_3295253
crossref_primary_10_1109_ACCESS_2025_3545830
crossref_primary_10_3390_electronics12051218
crossref_primary_10_1007_s42979_024_03217_1
crossref_primary_10_1109_JSEN_2024_3510613
crossref_primary_10_1109_ACCESS_2024_3525181
crossref_primary_10_1007_s11760_023_02861_z
crossref_primary_10_1109_ACCESS_2024_3408805
crossref_primary_10_1007_s11042_024_20239_2
crossref_primary_10_1109_TCE_2023_3332471
crossref_primary_10_1038_s41598_023_47089_6
crossref_primary_10_1109_ACCESS_2023_3306836
Cites_doi 10.1109/LSP.2017.2681159
10.1002/tee.22223
10.1109/ACCESS.2019.2939578
10.1016/j.jvcir.2022.103483
10.1109/ACCESS.2019.2921451
10.1016/j.cam.2021.113605
10.1007/s11042-022-12774-7
10.1016/j.mri.2021.03.013
10.1109/TIP.2017.2662206
10.1016/j.neunet.2021.01.010
10.1109/ACCESS.2022.3169131
10.1016/j.sigpro.2018.07.018
10.1007/s00371-016-1273-5
10.1007/s00371-017-1439-9
10.1007/s00371-017-1406-5
10.1007/s11263-008-0197-6
10.1109/CVPR.2014.366
10.1109/CVPR.2018.00262
10.1007/978-981-16-7118-0_70
10.1109/GlobalSIP.2014.7032166
10.1201/9781003111290-1-2
10.1109/ICASSP.2019.8683788
10.1109/CVPRW.2017.148
10.1109/ICCT46177.2019.8969036
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-022-13569-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 7777
ExternalDocumentID 10_1007_s11042_022_13569_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c249t-f714bc9d44f7999942bd5e50246d818767418b629c1594610795563f870ae5a33
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Aug 29 04:48:49 EDT 2025
Tue Jul 01 04:13:16 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 21 02:44:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Generative adversarial networks
Second-generation wavelets
Image enhancement
Thresholding optimization
Image denoising
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-f714bc9d44f7999942bd5e50246d818767418b629c1594610795563f870ae5a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1360-5346
PQID 2769870055
PQPubID 54626
PageCount 21
ParticipantIDs proquest_journals_2769870055
crossref_citationtrail_10_1007_s11042_022_13569_6
crossref_primary_10_1007_s11042_022_13569_6
springer_journals_10_1007_s11042_022_13569_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Khmag, Al Haddad, Ramlee, Kamarudin, Malallah (CR17) 2018; 34
Liu, Ma, Pang (CR19) 2018; 39
Roth, Black (CR23) 2009; 82
Xinxin, Shiyu, Qiang, Yunjie, Wu (CR35) 2020; 32
GAO, LI, KANG (CR5) 2011; 32
Tan, Queler, Lin (CR29) 2021; 79
Wang, Yang, Jiang, Wang (CR34) 2021; 42
CR39
Dantas, Costa, Lopes (CR4) 2017; 24
Park, Jeong (CR22) 2019; 7
Yang, Luo, Yang (CR36) 2009; 32
CR10
CR31
Jin, Jiao, Liu (CR11) 2007; 03
CR30
Ubhi, Aggarwal (CR32) 2022; 85
Wang, Zhu, Lv, Su, Song (CR33) 2018; 41
Khmag, Al Haddad, Kalantr (CR18) 2018; 34
CR2
Chen, Zhou, Wang (CR3) 2004; 02
Khmag, Ramli, bin Hashim, Al Haddad (CR15) 2017; 11
Sailaja, Rupa, Chakravarthy (CR24) 2017; 34
Liu, Zhang, Lian, Zuo (CR20) 2019; 7
CR6
He, Yang (CR8) 2021; 12
Shitong (CR27) 2014; 35
CR7
CR28
CR9
Khmag, Al Haddad, Suhimi, Kamarudin (CR16) 2017; 33
Jurovic (CR13) 2016; 13
Yu, Liu (CR37) 2021; 137
Jing, Biao, Wang, Licheng (CR12) 2008; 07
Zhang, Zuo, Chen, Meng, Zhang (CR38) 2017; 26
Zhou, Chen, Zhao (CR40) 2021; 120
Meng, Zhang (CR21) 2022; 10
Khmag (CR14) 2022; 81
Seghouane, Iqbal (CR25) 2018; 153
Shi (CR26) 2021; 395
Cao, Jia, Chen (CR1) 2018; 23
13569_CR28
Y He (13569_CR8) 2021; 12
A Khmag (13569_CR15) 2017; 11
AK Seghouane (13569_CR25) 2018; 153
H Chen (13569_CR3) 2004; 02
C Yang (13569_CR36) 2009; 32
K Liu (13569_CR19) 2018; 39
H Wang (13569_CR34) 2021; 42
JS Ubhi (13569_CR32) 2022; 85
13569_CR9
C Xinxin (13569_CR35) 2020; 32
DI Jurovic (13569_CR13) 2016; 13
Y Shitong (13569_CR27) 2014; 35
H-Y Jin (13569_CR11) 2007; 03
A Khmag (13569_CR16) 2017; 33
J Yu (13569_CR37) 2021; 137
ET Tan (13569_CR29) 2021; 79
Y Zhou (13569_CR40) 2021; 120
13569_CR39
FC Dantas (13569_CR4) 2017; 24
X-H Wang (13569_CR33) 2018; 41
Y Meng (13569_CR21) 2022; 10
W GAO (13569_CR5) 2011; 32
B Park (13569_CR22) 2019; 7
13569_CR31
13569_CR10
13569_CR6
13569_CR7
A Khmag (13569_CR14) 2022; 81
A Khmag (13569_CR17) 2018; 34
13569_CR30
13569_CR2
S Roth (13569_CR23) 2009; 82
P Liu (13569_CR20) 2019; 7
K Shi (13569_CR26) 2021; 395
Y Cao (13569_CR1) 2018; 23
A Khmag (13569_CR18) 2018; 34
R Sailaja (13569_CR24) 2017; 34
K Zhang (13569_CR38) 2017; 26
B Jing (13569_CR12) 2008; 07
References_xml – volume: 24
  start-page: 559
  issue: 5
  year: 2017
  end-page: 563
  ident: CR4
  article-title: Learning dictionaries as a sum of kronecker products
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2017.2681159
– volume: 03
  start-page: 491
  year: 2007
  end-page: 497
  ident: CR11
  article-title: SAR Image De-noising Based on Curvelet Domain Hidden Markov Tree Models
  publication-title: Chin J Comput
– volume: 23
  start-page: 1433
  issue: 10
  year: 2018
  end-page: 1449
  ident: CR1
  article-title: Review of computer vision based on generative adversarial networks
  publication-title: J Image and Graph
– volume: 32
  start-page: 751
  issue: 05
  year: 2020
  end-page: 758
  ident: CR35
  article-title: Structure preservation generative adversarial network for noise reduction in SD-OCT images
  publication-title: J Comput-Aided Des Comput Graph
– volume: 11
  start-page: 339
  issue: 3
  year: 2017
  end-page: 347
  ident: CR15
  article-title: Additive noise reduction in natural images using second-generation wavelet transform hidden Markov models
  publication-title: IEEJ Trans Electr Electron Eng
  doi: 10.1002/tee.22223
– volume: 7
  start-page: 128076
  year: 2019
  end-page: 128085
  ident: CR22
  article-title: Color filter array demosaicking using densely connected residual network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939578
– volume: 34
  start-page: 45
  year: 2017
  end-page: 55
  ident: CR24
  article-title: Robust and indiscernible multimedia watermarking using light weight mutational methodology
  publication-title: J Citation Rep
– volume: 85
  start-page: 103483
  year: 2022
  ident: CR32
  article-title: Neural style transfer for image within images and conditional GANs for destylization
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2022.103483
– ident: CR39
– ident: CR2
– volume: 35
  start-page: 571
  issue: 04
  year: 2014
  end-page: 576
  ident: CR27
  article-title: Image enhancement algorithm combining with threshold De-noising and edge optimization
  publication-title: J Graph
– ident: CR30
– volume: 02
  start-page: 116
  year: 2004
  end-page: 119
  ident: CR3
  article-title: Research Based on Mathematics Morphology Image Chirp Method
  publication-title: J Eng Graph
– ident: CR10
– volume: 7
  start-page: 74973
  year: 2019
  end-page: 74985
  ident: CR20
  article-title: Multi-level wavelet convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921451
– volume: 395
  start-page: 113605
  issue: 7
  year: 2021
  ident: CR26
  article-title: Image denoising by nonlinear nonlocal diffusion equations
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2021.113605
– volume: 32
  start-page: 2260
  issue: 11
  year: 2009
  end-page: 2264
  ident: CR36
  article-title: Hybrid linear model based image Denoising
  publication-title: Chin J Comput
– volume: 81
  start-page: 16645
  year: 2022
  end-page: 16660
  ident: CR14
  article-title: Digital image noise removal based on collaborative filtering approach and singular value decomposition
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12774-7
– ident: CR6
– volume: 39
  start-page: 1048
  issue: 06
  year: 2018
  end-page: 1054
  ident: CR19
  article-title: A detail enhancement and Denoising algorithm of high dynamic range infrared image based on double guided image filter
  publication-title: J Graph
– volume: 41
  start-page: 2496
  issue: 11
  year: 2018
  end-page: 2508
  ident: CR33
  article-title: Cauchy distribution NSST-HMT model and its applications in image Denoising
  publication-title: Chin J Comput
– volume: 79
  start-page: 103
  year: 2021
  end-page: 111
  ident: CR29
  article-title: Improved nerve conspicuity with water weighting and denoising in two-point Dixon magnetic resonance neurography
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2021.03.013
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  end-page: 3155
  ident: CR38
  article-title: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising
  publication-title: IEEE Trans Img Proc
  doi: 10.1109/TIP.2017.2662206
– volume: 137
  start-page: 31
  year: 2021
  end-page: 42
  ident: CR37
  article-title: Extracting and inserting knowledge into stacked denoising auto-encoders
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.01.010
– volume: 42
  start-page: 229
  issue: 03
  year: 2021
  end-page: 237
  ident: CR34
  article-title: Image denoising algorithm based on multi-channel GAN
  publication-title: J Commun
– volume: 07
  start-page: 1234
  year: 2008
  end-page: 1241
  ident: CR12
  article-title: SAR image Denoising based on lifting Directionlet domain Gaussian scale mixtures model
  publication-title: Chin J Comput
– volume: 10
  start-page: 49657
  year: 2022
  end-page: 49676
  ident: CR21
  article-title: An image Denoising method using symmetric dilation residual network in the high noise level environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3169131
– volume: 32
  start-page: 84
  issue: 04
  year: 2011
  end-page: 89
  ident: CR5
  article-title: A hybrid mesh Denoising algorithm based on the mean Normal filter
  publication-title: J Eng Graph
– volume: 12
  start-page: 87
  year: 2021
  end-page: 91
  ident: CR8
  article-title: OCT image Denoising method based on generative confrontation network
  publication-title: Modern Comput
– volume: 153
  start-page: 300
  year: 2018
  end-page: 310
  ident: CR25
  article-title: Consistent adaptive sequential dictionary learning
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2018.07.018
– ident: CR31
– ident: CR9
– ident: CR7
– volume: 33
  start-page: 1141
  issue: 9
  year: 2017
  end-page: 1154
  ident: CR16
  article-title: Denoising of natural images through robust wavelet thresholding and genetic programming
  publication-title: Vis Comput
  doi: 10.1007/s00371-016-1273-5
– ident: CR28
– volume: 34
  start-page: 1661
  issue: 12
  year: 2018
  end-page: 1675
  ident: CR17
  article-title: Natural image noise removal using nonlocal means and hidden Markov models in transform domain
  publication-title: Vis Comput
  doi: 10.1007/s00371-017-1439-9
– volume: 120
  start-page: 108
  issue: 81
  year: 2021
  end-page: 128
  ident: CR40
  article-title: Point cloud denoising using non-local collaborative projections
  publication-title: Pattern Recogn
– volume: 34
  start-page: 675
  issue: 5
  year: 2018
  end-page: 688
  ident: CR18
  article-title: Single dehazing using second generation wavelet transformas and the mean vector L2-norm
  publication-title: Vis Comput
  doi: 10.1007/s00371-017-1406-5
– volume: 82
  start-page: 205
  issue: 2
  year: 2009
  end-page: 229
  ident: CR23
  article-title: Fields of experts
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-008-0197-6
– volume: 13
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR13
  article-title: BM3D filter in salt-and-pepper noise removal
  publication-title: EURASIP J Image Video Proc
– ident: 13569_CR6
  doi: 10.1109/CVPR.2014.366
– volume: 79
  start-page: 103
  year: 2021
  ident: 13569_CR29
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2021.03.013
– volume: 85
  start-page: 103483
  year: 2022
  ident: 13569_CR32
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2022.103483
– volume: 33
  start-page: 1141
  issue: 9
  year: 2017
  ident: 13569_CR16
  publication-title: Vis Comput
  doi: 10.1007/s00371-016-1273-5
– volume: 41
  start-page: 2496
  issue: 11
  year: 2018
  ident: 13569_CR33
  publication-title: Chin J Comput
– volume: 35
  start-page: 571
  issue: 04
  year: 2014
  ident: 13569_CR27
  publication-title: J Graph
– volume: 34
  start-page: 675
  issue: 5
  year: 2018
  ident: 13569_CR18
  publication-title: Vis Comput
  doi: 10.1007/s00371-017-1406-5
– ident: 13569_CR39
  doi: 10.1109/CVPR.2018.00262
– volume: 13
  start-page: 1
  year: 2016
  ident: 13569_CR13
  publication-title: EURASIP J Image Video Proc
– ident: 13569_CR31
  doi: 10.1007/978-981-16-7118-0_70
– volume: 39
  start-page: 1048
  issue: 06
  year: 2018
  ident: 13569_CR19
  publication-title: J Graph
– volume: 7
  start-page: 74973
  year: 2019
  ident: 13569_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921451
– ident: 13569_CR9
  doi: 10.1109/GlobalSIP.2014.7032166
– volume: 12
  start-page: 87
  year: 2021
  ident: 13569_CR8
  publication-title: Modern Comput
– volume: 32
  start-page: 84
  issue: 04
  year: 2011
  ident: 13569_CR5
  publication-title: J Eng Graph
– volume: 82
  start-page: 205
  issue: 2
  year: 2009
  ident: 13569_CR23
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-008-0197-6
– volume: 395
  start-page: 113605
  issue: 7
  year: 2021
  ident: 13569_CR26
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2021.113605
– ident: 13569_CR2
  doi: 10.1201/9781003111290-1-2
– volume: 11
  start-page: 339
  issue: 3
  year: 2017
  ident: 13569_CR15
  publication-title: IEEJ Trans Electr Electron Eng
  doi: 10.1002/tee.22223
– volume: 137
  start-page: 31
  year: 2021
  ident: 13569_CR37
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.01.010
– volume: 7
  start-page: 128076
  year: 2019
  ident: 13569_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939578
– volume: 34
  start-page: 45
  year: 2017
  ident: 13569_CR24
  publication-title: J Citation Rep
– volume: 120
  start-page: 108
  issue: 81
  year: 2021
  ident: 13569_CR40
  publication-title: Pattern Recogn
– ident: 13569_CR10
  doi: 10.1109/ICASSP.2019.8683788
– ident: 13569_CR7
  doi: 10.1109/CVPRW.2017.148
– volume: 81
  start-page: 16645
  year: 2022
  ident: 13569_CR14
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12774-7
– ident: 13569_CR30
  doi: 10.1109/ICCT46177.2019.8969036
– ident: 13569_CR28
– volume: 07
  start-page: 1234
  year: 2008
  ident: 13569_CR12
  publication-title: Chin J Comput
– volume: 23
  start-page: 1433
  issue: 10
  year: 2018
  ident: 13569_CR1
  publication-title: J Image and Graph
– volume: 03
  start-page: 491
  year: 2007
  ident: 13569_CR11
  publication-title: Chin J Comput
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 13569_CR38
  publication-title: IEEE Trans Img Proc
  doi: 10.1109/TIP.2017.2662206
– volume: 34
  start-page: 1661
  issue: 12
  year: 2018
  ident: 13569_CR17
  publication-title: Vis Comput
  doi: 10.1007/s00371-017-1439-9
– volume: 32
  start-page: 2260
  issue: 11
  year: 2009
  ident: 13569_CR36
  publication-title: Chin J Comput
– volume: 02
  start-page: 116
  year: 2004
  ident: 13569_CR3
  publication-title: J Eng Graph
– volume: 153
  start-page: 300
  year: 2018
  ident: 13569_CR25
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2018.07.018
– volume: 24
  start-page: 559
  issue: 5
  year: 2017
  ident: 13569_CR4
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2017.2681159
– volume: 10
  start-page: 49657
  year: 2022
  ident: 13569_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3169131
– volume: 42
  start-page: 229
  issue: 03
  year: 2021
  ident: 13569_CR34
  publication-title: J Commun
– volume: 32
  start-page: 751
  issue: 05
  year: 2020
  ident: 13569_CR35
  publication-title: J Comput-Aided Des Comput Graph
SSID ssj0016524
Score 2.5449898
Snippet In digital image analysis and processing field of study, noise reduction and suppression have been stated as a common query. However, it is mostly essential...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7757
SubjectTerms Adaptive learning
Algorithms
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Digital imaging
Feature maps
Generative adversarial networks
Image analysis
Image classification
Image restoration
Methods
Multimedia
Multimedia Information Systems
Neural networks
Noise reduction
Pixels
Random noise
Smoothing
Special Purpose and Application-Based Systems
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWDgUUAUCvLABha4iZ1kQgW1VEhUCFGpW5TYDqpEk7ZJ_z93idMCEsxxPPjO9_DdfR8hV742EkcYmStdSFASR7KYS82M8T3jQAChFA4nv4zkcOw-T8TEPrjltq2ytomlodaZwjfy264nIT1GyKj7-YIhaxRWVy2FxjZpggn2IflqPvRHr2_rOoIUltbWv2PgG7kdm6mG5ziOpmA3O3eEDJj86Zo28eavEmnpeQYHZM-GjLRXyfiQbJm0RfZrOgZqb2eL7H7DFjwii57WZV8QfYpWOY5K0jSb5oYuzSwD9aLovzTNUvpRIk-XSyOkZ84jVEqaVg3itOTKoVGqaW5mU5aD3aYFaEBuC1e0hiU_JuNB__1xyCy_AlOQdBUs8bgbq0C7buJBnBi43VgLI8BrSw1-HGF-uB_LbqAg5kFcdi9AOLEExBAZETnOCWmkWWpOCdVxYhQcZaAgQIsg6lQC5xsCEfFYCE-1Ca-PNlQWfBw5MD7DDWwyiiOEPcJSHKFsk-v1P_MKeuPf1Z1aYqG9hnm4UZo2uamluPn8925n_-92TnaQdr7q3u6QRrFcmQsITor40mrgF8VB3y0
  priority: 102
  providerName: ProQuest
Title Additive Gaussian noise removal based on generative adversarial network model and semi-soft thresholding approach
URI https://link.springer.com/article/10.1007/s11042-022-13569-6
https://www.proquest.com/docview/2769870055
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XODAGzEYUw7cINK6Nml73NAeAjEhxKRxqtokRZNYC-v4_9hdugECJE49NI2q2Im_yP4-A1wE2kiiMHJPenhBSV3JE0dqbkzgGxcBhFJETr4bysHIuxmLsSWFFVW1e5WSLE_qFdnNISoJVZ87rpAhl-uwKejujl48arWXuQMpbCvboMkxHjqWKvPzHF_D0QpjfkuLltGmtwc7Fiay9sKu-7BmsgPYrVowMLsjD2D7k57gIby1tS5rgVg_fi-IHsmyfFIYNjPTHF2KUczSLM_Yc6k2XQ6NqSVzEZMjsmxRFM7K_jgszjQrzHTCCzyr2RytXthkFaukyI9g1Os-Xg-47anAFV605jz1HS9Rofa81EdsGHqtRAsjMFJLjbGbpH2cIJGtUCHOIS12PyQJsRS3dWxE7LrHsJHlmTkBppPUKFzKUCEoixFpKkGchlDETiKEr2rgVEsbKSs4Tn0vXqKVVDKZI8I5otIckazB5fKb14Xcxp-j65XFIrv1iqjlyxD_tilEDa4qK65e_z7b6f-Gn8EWtZ5fVHDXYWM-ezfnCFDmSQPWg16_AZvtXqczpGf_6baLz053eP_QKL31A3C24C4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0hOAAHdkRZfYATWJDFTnJACAFtWU8gcQuJ7aBKNGmbIsRP8Y3MZKGABLee4ziSZzxLZuY9gF1fG0kjjNyVLiYoiSN5bEnNjfE942AAoRQNJ9_eyfaDe_UoHifgo56FobbK2iYWhlpniv6RH9qexPSYIKNOen1OrFFUXa0pNEq1uDbvb5iy5ceX5yjfPdtuXtyftXnFKsAVphpDnniWG6tAu27iYXQUuHashRHoq6RG70XgNpYfSztQ6OkJjdwLCEQrwY9HRkT0AxRN_pTrOAHdKL_Z-qpaSFGR6PpHHD2xVQ3plKN6Fg3CUO-85QgZcPnTEY6i218F2cLPNRdgrgpQ2WmpUYswYdIlmK_JH1hlC5Zg9huS4TL0T7UuupBYK3rNaTCTpVknN2xguhkqMyNvqVmWsucC57pYGhEZdB7RFWBp2Y7OCmYeFqWa5abb4Tl6CTZEfcurMhmrQdBX4GEs574Kk2mWmjVgOk6MwqMMFIaDEca4StA0RSAiKxbCUw2w6qMNVQV1TowbL-EIpJnEEeIeYSGOUDZg_-udXgn08e_qzVpiYXXp83Ckog04qKU4evz3buv_77YD0-3725vw5vLuegNmiPC-7BvfhMnh4NVsYVg0jLcLXWTwNG7l_wTk9xeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5kBdGDb3F95qAnDdpuk24PIr7W9yKi4K22SSoL2rrbFfGv-eucaVNXBb15bhpK5us8MjPfAKw1tZHUwsg96WGAkjQkjx2puTFN3zTQgVCKmpMv2_Lk1ju7E3dD8F71wlBZZaUTC0WtM0V35FuuLzE8JsqorcSWRVwdtnafu5wmSFGmtRqnUULk3Ly9YviW75weoqzXXbd1dHNwwu2EAa4w7OjzxHe8WAXa8xIfPaXAc2MtjEC7JTVaMiK6cZqxdAOFVp-Yyf2ACLUS_JDIiIguQ1H9D_sYFW3XYHj_qH11_ZnDkMKO1G1uc7TLjm3ZKRv3HGqLoUp6pyFkwOV3szjwdX-kZwur15qEceuusr0SX1MwZNJpmKhGQTCrGaZh7Auv4Qx097QuapLYcfSSU5smS7NObljPPGUIbUa2U7MsZQ8F63WxNKLR0HlEPwRLy-J0VszpYVGqWW6eOjxHm8H6iL7cJs1YRYk-C7f_cvJzUEuz1MwD03FiFB5loNA5jNDjVYJ6KwIRObEQvqqDUx1tqCzxOc3feAwHlM0kjhD3CAtxhLIOG5_vPJe0H3-uXqokFloVkIcDwNZhs5Li4PHvuy38vdsqjCDww4vT9vkijLroc5VF5EtQ6_dezDL6SP14xYKRwf1_4_8D7j4dEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+Gaussian+noise+removal+based+on+generative+adversarial+network+model+and+semi-soft+thresholding+approach&rft.jtitle=Multimedia+tools+and+applications&rft.au=Khmag%2C+Asem&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=5&rft.spage=7757&rft.epage=7777&rft_id=info:doi/10.1007%2Fs11042-022-13569-6&rft.externalDocID=10_1007_s11042_022_13569_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon