Stability analysis of semilinear stochastic differential equations
This paper is concerned with the global stability of semilinear stochastic differential equations (SDEs) with multiplicative white noise, which is a continuation of our recent work published in SIAM Journal on Control and Optimization, 2018. Under an explicit condition that the Lipschitz constant of...
Saved in:
Published in | Statistics & probability letters Vol. 180; p. 109257 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-7152 1879-2103 |
DOI | 10.1016/j.spl.2021.109257 |
Cover
Abstract | This paper is concerned with the global stability of semilinear stochastic differential equations (SDEs) with multiplicative white noise, which is a continuation of our recent work published in SIAM Journal on Control and Optimization, 2018. Under an explicit condition that the Lipschitz constant of nonlinear term is smaller than the top Lyapunov exponent of the linear random dynamical system (RDS), we prove that the zero solution is globally stable. |
---|---|
AbstractList | This paper is concerned with the global stability of semilinear stochastic differential equations (SDEs) with multiplicative white noise, which is a continuation of our recent work published in SIAM Journal on Control and Optimization, 2018. Under an explicit condition that the Lipschitz constant of nonlinear term is smaller than the top Lyapunov exponent of the linear random dynamical system (RDS), we prove that the zero solution is globally stable. |
ArticleNumber | 109257 |
Author | Lv, Xiang |
Author_xml | – sequence: 1 givenname: Xiang surname: Lv fullname: Lv, Xiang email: lvxiang@shnu.edu.cn organization: Department of Mathematics, Shanghai Normal University, Shanghai 200234, People’s Republic of China |
BookMark | eNp9kM9OwzAMhyM0JLbBA3DrC7QkadM04gQT_6RJHNg9ylxHZOrSkQSkvj2ZypmTZf_8Wda3Igs_eiTkltGKUdbeHap4GipOOcu94kJekCXrpCo5o_WCLPOOLCUT_IqsYjxQSrkQbEkeP5LZu8GlqTDeDFN0sRhtEfGYhx5NKGIa4dPE5KDonbUY0CdnhgK_vk1yo4_X5NKaIeLNX12T3fPTbvNabt9f3jYP2xJ4o1Jp64430DX9XjQ9byWwjrZti5bVtaJdD4LJpgGTI65UKyXwGi0qEB0ICvWasPkshDHGgFafgjuaMGlG9dmBPujsQJ8d6NlBZu5nBvNfPw6DjuDQA_YuICTdj-4f-heX4GaR |
Cites_doi | 10.1006/jmaa.1997.5534 10.1007/978-3-662-12878-7 10.1016/0022-247X(82)90110-X 10.1016/S0304-4149(98)00048-9 10.1090/S0002-9947-1963-0163345-0 10.1080/17442508408833293 10.1016/0022-247X(78)90211-1 10.1006/jdeq.2000.3991 10.1016/S0304-4149(97)00062-8 10.1239/jap/1032438381 10.1137/16M1101076 10.1016/0022-247X(82)90041-5 10.1006/jdeq.1998.3552 10.1214/aop/1024404511 10.1080/07362999908809647 10.1214/aop/1022855875 10.2307/1970220 10.1137/0321027 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spl.2021.109257 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1879-2103 |
ExternalDocumentID | 10_1016_j_spl_2021_109257 S0167715221002194 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 11501369; 11771295; 11971316 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Yangfan Program of Shanghai, China grantid: 14YF1409100 – fundername: NSF of Shanghai, China grantid: 19ZR1437100; 20JC1413800 – fundername: Shanghai Gaofeng Project for University Academic Program Development, China – fundername: Shanghai Municipal Education Commission funderid: http://dx.doi.org/10.13039/501100003395 – fundername: Shanghai Education Development Foundation funderid: http://dx.doi.org/10.13039/501100003024 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1OL 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYJJ ABAOU ABEHJ ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADGUI ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMJ HVGLF HX~ HZ~ H~9 IHE J1W KOM LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SSW SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c249t-f3824c84db54d267c180666ef133908dc51744ca267299677c23efe9c58c50c3 |
IEDL.DBID | AIKHN |
ISSN | 0167-7152 |
IngestDate | Tue Jul 01 03:35:53 EDT 2025 Fri Feb 23 02:42:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 37H05 60H10 37A30 Stochastic differential equations Random dynamical systems Birkhoff–Khinchin ergodic theorem 34K20 Stability theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-f3824c84db54d267c180666ef133908dc51744ca267299677c23efe9c58c50c3 |
ParticipantIDs | crossref_primary_10_1016_j_spl_2021_109257 elsevier_sciencedirect_doi_10_1016_j_spl_2021_109257 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Statistics & probability letters |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kha’sminskii (b17) 1980 Mao (b25) 1994 Chueshov (b6) 2002; vol. 1779 Kozin (b18) 1972 Leha, Ritter, Maslowski (b20) 1999; 17 Mohammed, Scheutzow (b28) 1996; 32 Haussmann (b12) 1978; 65 Prévôt, Röckner (b32) 2007; 1905 Liu (b22) 2019 Chow (b5) 1982; 89 Friedman (b8) 1975 Furstenberg (b9) 1963; 108 Mao (b27) 1999; 153 Peskir (b31) 1998; 26 Mao (b26) 1997 Liu, Mandrekar (b23) 1997; 212 Graversen, Peskir (b11) 1998; 35 Ichikawa (b14) 1984; 12 Da Prato, Zabczyk (b7) 2014 Ichikawa (b13) 1982; 90 Arnold (b1) 1974 Arnold, Schmalfuss (b4) 2001; 177 Liu, Mao (b24) 1998; 78 Taniguchi (b33) 1995; 53 Ikeda, N., Watanabe, S., 1989. Stochastic differential equations and diffusion processes. In: Second Edition, North-Holland, Kodansha, Amsterdam, Tokyo. Liu (b21) 1997; 70 Jiang, Lv (b16) 2018; 56 Kushner (b19) 1967 Mohammed, Scheutzow (b29) 1997; 25 Arnold, Crauel, Wihstutz (b3) 1983; 21 Furstenberg (b10) 1963; 77 Øksendal (b30) 1998 Arnold (b2) 1998 Øksendal (10.1016/j.spl.2021.109257_b30) 1998 Mao (10.1016/j.spl.2021.109257_b25) 1994 Taniguchi (10.1016/j.spl.2021.109257_b33) 1995; 53 Liu (10.1016/j.spl.2021.109257_b21) 1997; 70 Arnold (10.1016/j.spl.2021.109257_b2) 1998 Arnold (10.1016/j.spl.2021.109257_b3) 1983; 21 Chow (10.1016/j.spl.2021.109257_b5) 1982; 89 Mohammed (10.1016/j.spl.2021.109257_b28) 1996; 32 Liu (10.1016/j.spl.2021.109257_b23) 1997; 212 Friedman (10.1016/j.spl.2021.109257_b8) 1975 Furstenberg (10.1016/j.spl.2021.109257_b10) 1963; 77 Haussmann (10.1016/j.spl.2021.109257_b12) 1978; 65 Mao (10.1016/j.spl.2021.109257_b27) 1999; 153 Prévôt (10.1016/j.spl.2021.109257_b32) 2007; 1905 Leha (10.1016/j.spl.2021.109257_b20) 1999; 17 Kha’sminskii (10.1016/j.spl.2021.109257_b17) 1980 Arnold (10.1016/j.spl.2021.109257_b4) 2001; 177 Liu (10.1016/j.spl.2021.109257_b24) 1998; 78 Kushner (10.1016/j.spl.2021.109257_b19) 1967 Kozin (10.1016/j.spl.2021.109257_b18) 1972 Chueshov (10.1016/j.spl.2021.109257_b6) 2002; vol. 1779 Furstenberg (10.1016/j.spl.2021.109257_b9) 1963; 108 Ichikawa (10.1016/j.spl.2021.109257_b13) 1982; 90 Graversen (10.1016/j.spl.2021.109257_b11) 1998; 35 Mohammed (10.1016/j.spl.2021.109257_b29) 1997; 25 Da Prato (10.1016/j.spl.2021.109257_b7) 2014 Jiang (10.1016/j.spl.2021.109257_b16) 2018; 56 Arnold (10.1016/j.spl.2021.109257_b1) 1974 Ichikawa (10.1016/j.spl.2021.109257_b14) 1984; 12 10.1016/j.spl.2021.109257_b15 Liu (10.1016/j.spl.2021.109257_b22) 2019 Mao (10.1016/j.spl.2021.109257_b26) 1997 Peskir (10.1016/j.spl.2021.109257_b31) 1998; 26 |
References_xml | – volume: 212 start-page: 537 year: 1997 end-page: 553 ident: b23 article-title: Stochastic semilinear evolution equations: Lyapunov function, stability and ultimate boundedness publication-title: J. Math. Anal. Appl. – year: 2014 ident: b7 article-title: Stochastic equations in infinite dimensions publication-title: Encyclopedia of Mathematics and Its Applications – volume: 89 start-page: 400 year: 1982 end-page: 419 ident: b5 article-title: Stability of nonlinear stochastic evolution equations publication-title: J. Math. Anal. Appl. – year: 1998 ident: b2 article-title: RandOm Dynamical Systems, Springer Monographs in Mathematics – volume: 1905 year: 2007 ident: b32 publication-title: A Concise Course on Stochastic Partial Differential Equations – start-page: 186 year: 1972 end-page: 229 ident: b18 publication-title: Stability of the Linear Stochastic System – volume: 65 start-page: 219 year: 1978 end-page: 235 ident: b12 article-title: Asymptotic stability of the linear Itô equation in infinite dimensional publication-title: J. Math. Anal. Appl. – year: 1975 ident: b8 article-title: Stochastic Differential Equations and Applications, Vols. I and II – volume: 78 start-page: 173 year: 1998 end-page: 193 ident: b24 article-title: Exponential stability of non-linear stochastic evolution equations publication-title: Stochastic Process. Appl. – volume: 53 start-page: 41 year: 1995 end-page: 52 ident: b33 article-title: Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert spaces publication-title: Stochastics – volume: 21 start-page: 451 year: 1983 end-page: 461 ident: b3 article-title: Stabilization for linear systems by noise publication-title: SIAM J. Control Optim. – year: 1998 ident: b30 article-title: Stochastic Differential Equations: An Introduction with Applications – year: 1974 ident: b1 article-title: Stochastic Differential Equation: Theory and Applications – volume: 70 start-page: 219 year: 1997 end-page: 241 ident: b21 article-title: On stability for a class of semilinear stochastic evolution equations publication-title: Stochastic Process. Appl. – year: 1994 ident: b25 article-title: Exponential Stability of Stochastic Differential Equations – year: 1967 ident: b19 article-title: Stochastic Stability and Control – volume: 25 start-page: 1210 year: 1997 end-page: 1240 ident: b29 article-title: Lyapunov exponents of linea stochastic functional differential equations driven by semimartingales. Part II. Examples and case studies publication-title: Ann. Probab. – volume: 32 start-page: 69 year: 1996 end-page: 105 ident: b28 article-title: Lyapunov exponents of linea stochastic functional differential equations driven by semimartingales. Part I. The multiplicative ergodic theory publication-title: Ann. Inst. H. Poincaré Probab. Statist. – volume: 12 start-page: 1 year: 1984 end-page: 39 ident: b14 article-title: Semilinear stochastic evolution equations: boundedness, stability and invariant measure publication-title: Stochastics – reference: Ikeda, N., Watanabe, S., 1989. Stochastic differential equations and diffusion processes. In: Second Edition, North-Holland, Kodansha, Amsterdam, Tokyo. – volume: 26 start-page: 1614 year: 1998 end-page: 1640 ident: b31 article-title: Optimal stopping of the maximum process: The maximality principle publication-title: Ann. Probab. – volume: 17 start-page: 1009 year: 1999 end-page: 1051 ident: b20 article-title: Stability of solutions to semilinear stochastic evolution equations publication-title: Stoch. Anal. Appl. – volume: 35 start-page: 856 year: 1998 end-page: 872 ident: b11 article-title: Optimal stopping and maximal inequalities for geometric Brownian motion publication-title: J. Appl. Probab. – volume: 90 start-page: 12 year: 1982 end-page: 44 ident: b13 article-title: Stability of semilinear stochastic evolution equations publication-title: J. Math. Anal. Appl. – volume: 56 start-page: 2218 year: 2018 end-page: 2247 ident: b16 article-title: Global stability of feedback systems with multiplicative noise on the nonnegative orthant publication-title: SIAM J. Control Optim. – year: 1980 ident: b17 publication-title: Stochastic Stability of Differential Equations, Alphen: Sijtjoff and Noordhoff – volume: 77 start-page: 335 year: 1963 end-page: 386 ident: b10 article-title: A Poisson formula for semi-simple Lie group publication-title: Ann. of Math. – year: 1997 ident: b26 article-title: Stochastic Differential Equations and Applications – volume: 108 start-page: 377 year: 1963 end-page: 428 ident: b9 article-title: Noncommuting random products publication-title: Trans. Amer. Math. Soc. – volume: 177 start-page: 235 year: 2001 end-page: 265 ident: b4 article-title: Lyapunov’s second method for random dynamical systems publication-title: J. Differential Equations – volume: vol. 1779 year: 2002 ident: b6 publication-title: Monotone RandOm Systems Theory and Applications – volume: 153 start-page: 175 year: 1999 end-page: 195 ident: b27 article-title: Stochastic versions of the LaSalle theorem publication-title: J. Differential Equations – year: 2019 ident: b22 article-title: Stochastic Stability of Differential Equations in Abstract Spaces – volume: 212 start-page: 537 year: 1997 ident: 10.1016/j.spl.2021.109257_b23 article-title: Stochastic semilinear evolution equations: Lyapunov function, stability and ultimate boundedness publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1997.5534 – year: 1998 ident: 10.1016/j.spl.2021.109257_b2 doi: 10.1007/978-3-662-12878-7 – volume: 89 start-page: 400 year: 1982 ident: 10.1016/j.spl.2021.109257_b5 article-title: Stability of nonlinear stochastic evolution equations publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(82)90110-X – year: 2019 ident: 10.1016/j.spl.2021.109257_b22 – volume: 78 start-page: 173 year: 1998 ident: 10.1016/j.spl.2021.109257_b24 article-title: Exponential stability of non-linear stochastic evolution equations publication-title: Stochastic Process. Appl. doi: 10.1016/S0304-4149(98)00048-9 – volume: 108 start-page: 377 year: 1963 ident: 10.1016/j.spl.2021.109257_b9 article-title: Noncommuting random products publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1963-0163345-0 – year: 2014 ident: 10.1016/j.spl.2021.109257_b7 article-title: Stochastic equations in infinite dimensions – volume: 12 start-page: 1 year: 1984 ident: 10.1016/j.spl.2021.109257_b14 article-title: Semilinear stochastic evolution equations: boundedness, stability and invariant measure publication-title: Stochastics doi: 10.1080/17442508408833293 – volume: vol. 1779 year: 2002 ident: 10.1016/j.spl.2021.109257_b6 – volume: 32 start-page: 69 year: 1996 ident: 10.1016/j.spl.2021.109257_b28 article-title: Lyapunov exponents of linea stochastic functional differential equations driven by semimartingales. Part I. The multiplicative ergodic theory publication-title: Ann. Inst. H. Poincaré Probab. Statist. – volume: 1905 year: 2007 ident: 10.1016/j.spl.2021.109257_b32 – volume: 65 start-page: 219 year: 1978 ident: 10.1016/j.spl.2021.109257_b12 article-title: Asymptotic stability of the linear Itô equation in infinite dimensional publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(78)90211-1 – volume: 177 start-page: 235 year: 2001 ident: 10.1016/j.spl.2021.109257_b4 article-title: Lyapunov’s second method for random dynamical systems publication-title: J. Differential Equations doi: 10.1006/jdeq.2000.3991 – year: 1997 ident: 10.1016/j.spl.2021.109257_b26 – volume: 70 start-page: 219 year: 1997 ident: 10.1016/j.spl.2021.109257_b21 article-title: On stability for a class of semilinear stochastic evolution equations publication-title: Stochastic Process. Appl. doi: 10.1016/S0304-4149(97)00062-8 – year: 1974 ident: 10.1016/j.spl.2021.109257_b1 – volume: 35 start-page: 856 year: 1998 ident: 10.1016/j.spl.2021.109257_b11 article-title: Optimal stopping and maximal inequalities for geometric Brownian motion publication-title: J. Appl. Probab. doi: 10.1239/jap/1032438381 – volume: 56 start-page: 2218 year: 2018 ident: 10.1016/j.spl.2021.109257_b16 article-title: Global stability of feedback systems with multiplicative noise on the nonnegative orthant publication-title: SIAM J. Control Optim. doi: 10.1137/16M1101076 – year: 1998 ident: 10.1016/j.spl.2021.109257_b30 – year: 1975 ident: 10.1016/j.spl.2021.109257_b8 – volume: 90 start-page: 12 year: 1982 ident: 10.1016/j.spl.2021.109257_b13 article-title: Stability of semilinear stochastic evolution equations publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(82)90041-5 – volume: 153 start-page: 175 year: 1999 ident: 10.1016/j.spl.2021.109257_b27 article-title: Stochastic versions of the LaSalle theorem publication-title: J. Differential Equations doi: 10.1006/jdeq.1998.3552 – year: 1980 ident: 10.1016/j.spl.2021.109257_b17 – year: 1967 ident: 10.1016/j.spl.2021.109257_b19 – volume: 25 start-page: 1210 year: 1997 ident: 10.1016/j.spl.2021.109257_b29 article-title: Lyapunov exponents of linea stochastic functional differential equations driven by semimartingales. Part II. Examples and case studies publication-title: Ann. Probab. doi: 10.1214/aop/1024404511 – volume: 17 start-page: 1009 year: 1999 ident: 10.1016/j.spl.2021.109257_b20 article-title: Stability of solutions to semilinear stochastic evolution equations publication-title: Stoch. Anal. Appl. doi: 10.1080/07362999908809647 – year: 1994 ident: 10.1016/j.spl.2021.109257_b25 – volume: 53 start-page: 41 year: 1995 ident: 10.1016/j.spl.2021.109257_b33 article-title: Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert spaces publication-title: Stochastics – start-page: 186 year: 1972 ident: 10.1016/j.spl.2021.109257_b18 – volume: 26 start-page: 1614 year: 1998 ident: 10.1016/j.spl.2021.109257_b31 article-title: Optimal stopping of the maximum process: The maximality principle publication-title: Ann. Probab. doi: 10.1214/aop/1022855875 – volume: 77 start-page: 335 year: 1963 ident: 10.1016/j.spl.2021.109257_b10 article-title: A Poisson formula for semi-simple Lie group publication-title: Ann. of Math. doi: 10.2307/1970220 – volume: 21 start-page: 451 year: 1983 ident: 10.1016/j.spl.2021.109257_b3 article-title: Stabilization for linear systems by noise publication-title: SIAM J. Control Optim. doi: 10.1137/0321027 – ident: 10.1016/j.spl.2021.109257_b15 |
SSID | ssj0002551 |
Score | 2.2799206 |
Snippet | This paper is concerned with the global stability of semilinear stochastic differential equations (SDEs) with multiplicative white noise, which is a... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 109257 |
SubjectTerms | Birkhoff–Khinchin ergodic theorem Random dynamical systems Stability theory Stochastic differential equations |
Title | Stability analysis of semilinear stochastic differential equations |
URI | https://dx.doi.org/10.1016/j.spl.2021.109257 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sZQBQQFRHpUHJqTQ2nFeY6moChUdoIhuVuI4ogja0pSBhd_OXR4VSLAwRXmcFH2J777znT8DnCXIMXQgEosbHOSSB7EVBl3fCn0ZcSpD8bzbYuwOH-TN1JlWoF-uhaG2ysL35z4989bFlU6BZmc5m3XuqYHew_AjSEUUc_Eq1IUduE4N6r3r0XC8ccjImnkp8U0GZXEza_NKl1SAEJx0lQQFqd_C07eQM9iB7YIrsl7-OrtQMfMmbN1uhFbTJjSILOZay3twiSdZr-sHCwutEbZIWGpeZ0QmwxVDpqefQnqclTuj4Ah_YeYtV_xO92EyuJr0h1axR4KlMXFaW4ntC6l9GUeOjIXrae5TRmISzD0R81iTErXUId7CwIOAaWGbxATa8bXT1fYB1OaLuTkE5slYhiZxkBL6MjAmkpETubEX2wGyLM9twXmJjFrmShiqbBF7VgijIhhVDmMLZImd-vE5FXrqv82O_md2DA1BqxKymZETqK1X7-YUucI6akP14pO3iz-CjqO7x9EXU5i90A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHMSDUdSIzz14Mmmg2-3riERS5HERE26bdruNGC1I8eC_d6YPoolePPaxSfO1O_NN59tvAW4S5BjK54lhapzkwvRjI_S7nhF6IjKpDWUWaoupEzyJh7k9r0G_WgtDssoy9hcxPY_W5ZlOiWZntVh0HklA72L64eQiirX4DjSEjdVeHRq94SiYbgMysmazsvimAVVzM5d5ZStqQHCTfJU4Janf0tO3lDM4gP2SK7Je8TiHUNNpC_YmW6PVrAVNIouF1_IR3OFBrnX9ZGHpNcKWCcv024LIZLhmyPTUc0i3s2pnFJzhr0y_F47f2THMBvezfmCUeyQYCgunjZFYHhfKE3Fki5g7rjI9qkh0grUnYh4rcqIWKsRLmHgQMMUtnWhf2Z6yu8o6gXq6TPUpMFfEItSJjZTQE77WkYjsyInd2PKRZblOG24rZOSqcMKQlUTsRSKMkmCUBYxtEBV28sfrlBip_x529r9h17AbzCZjOR5OR-fQ5LRCIf9LcgH1zfpDXyJv2ERX5XfxBfVMvhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+analysis+of+semilinear+stochastic+differential+equations&rft.jtitle=Statistics+%26+probability+letters&rft.au=Lv%2C+Xiang&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0167-7152&rft.eissn=1879-2103&rft.volume=180&rft_id=info:doi/10.1016%2Fj.spl.2021.109257&rft.externalDocID=S0167715221002194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon |