Stability analysis of semilinear stochastic differential equations

This paper is concerned with the global stability of semilinear stochastic differential equations (SDEs) with multiplicative white noise, which is a continuation of our recent work published in SIAM Journal on Control and Optimization, 2018. Under an explicit condition that the Lipschitz constant of...

Full description

Saved in:
Bibliographic Details
Published inStatistics & probability letters Vol. 180; p. 109257
Main Author Lv, Xiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2022
Subjects
Online AccessGet full text
ISSN0167-7152
1879-2103
DOI10.1016/j.spl.2021.109257

Cover

Abstract This paper is concerned with the global stability of semilinear stochastic differential equations (SDEs) with multiplicative white noise, which is a continuation of our recent work published in SIAM Journal on Control and Optimization, 2018. Under an explicit condition that the Lipschitz constant of nonlinear term is smaller than the top Lyapunov exponent of the linear random dynamical system (RDS), we prove that the zero solution is globally stable.
AbstractList This paper is concerned with the global stability of semilinear stochastic differential equations (SDEs) with multiplicative white noise, which is a continuation of our recent work published in SIAM Journal on Control and Optimization, 2018. Under an explicit condition that the Lipschitz constant of nonlinear term is smaller than the top Lyapunov exponent of the linear random dynamical system (RDS), we prove that the zero solution is globally stable.
ArticleNumber 109257
Author Lv, Xiang
Author_xml – sequence: 1
  givenname: Xiang
  surname: Lv
  fullname: Lv, Xiang
  email: lvxiang@shnu.edu.cn
  organization: Department of Mathematics, Shanghai Normal University, Shanghai 200234, People’s Republic of China
BookMark eNp9kM9OwzAMhyM0JLbBA3DrC7QkadM04gQT_6RJHNg9ylxHZOrSkQSkvj2ZypmTZf_8Wda3Igs_eiTkltGKUdbeHap4GipOOcu94kJekCXrpCo5o_WCLPOOLCUT_IqsYjxQSrkQbEkeP5LZu8GlqTDeDFN0sRhtEfGYhx5NKGIa4dPE5KDonbUY0CdnhgK_vk1yo4_X5NKaIeLNX12T3fPTbvNabt9f3jYP2xJ4o1Jp64430DX9XjQ9byWwjrZti5bVtaJdD4LJpgGTI65UKyXwGi0qEB0ICvWasPkshDHGgFafgjuaMGlG9dmBPujsQJ8d6NlBZu5nBvNfPw6DjuDQA_YuICTdj-4f-heX4GaR
Cites_doi 10.1006/jmaa.1997.5534
10.1007/978-3-662-12878-7
10.1016/0022-247X(82)90110-X
10.1016/S0304-4149(98)00048-9
10.1090/S0002-9947-1963-0163345-0
10.1080/17442508408833293
10.1016/0022-247X(78)90211-1
10.1006/jdeq.2000.3991
10.1016/S0304-4149(97)00062-8
10.1239/jap/1032438381
10.1137/16M1101076
10.1016/0022-247X(82)90041-5
10.1006/jdeq.1998.3552
10.1214/aop/1024404511
10.1080/07362999908809647
10.1214/aop/1022855875
10.2307/1970220
10.1137/0321027
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.spl.2021.109257
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1879-2103
ExternalDocumentID 10_1016_j_spl_2021_109257
S0167715221002194
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11501369; 11771295; 11971316
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Yangfan Program of Shanghai, China
  grantid: 14YF1409100
– fundername: NSF of Shanghai, China
  grantid: 19ZR1437100; 20JC1413800
– fundername: Shanghai Gaofeng Project for University Academic Program Development, China
– fundername: Shanghai Municipal Education Commission
  funderid: http://dx.doi.org/10.13039/501100003395
– fundername: Shanghai Education Development Foundation
  funderid: http://dx.doi.org/10.13039/501100003024
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEHJ
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HX~
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c249t-f3824c84db54d267c180666ef133908dc51744ca267299677c23efe9c58c50c3
IEDL.DBID AIKHN
ISSN 0167-7152
IngestDate Tue Jul 01 03:35:53 EDT 2025
Fri Feb 23 02:42:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 37H05
60H10
37A30
Stochastic differential equations
Random dynamical systems
Birkhoff–Khinchin ergodic theorem
34K20
Stability theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-f3824c84db54d267c180666ef133908dc51744ca267299677c23efe9c58c50c3
ParticipantIDs crossref_primary_10_1016_j_spl_2021_109257
elsevier_sciencedirect_doi_10_1016_j_spl_2021_109257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Statistics & probability letters
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kha’sminskii (b17) 1980
Mao (b25) 1994
Chueshov (b6) 2002; vol. 1779
Kozin (b18) 1972
Leha, Ritter, Maslowski (b20) 1999; 17
Mohammed, Scheutzow (b28) 1996; 32
Haussmann (b12) 1978; 65
Prévôt, Röckner (b32) 2007; 1905
Liu (b22) 2019
Chow (b5) 1982; 89
Friedman (b8) 1975
Furstenberg (b9) 1963; 108
Mao (b27) 1999; 153
Peskir (b31) 1998; 26
Mao (b26) 1997
Liu, Mandrekar (b23) 1997; 212
Graversen, Peskir (b11) 1998; 35
Ichikawa (b14) 1984; 12
Da Prato, Zabczyk (b7) 2014
Ichikawa (b13) 1982; 90
Arnold (b1) 1974
Arnold, Schmalfuss (b4) 2001; 177
Liu, Mao (b24) 1998; 78
Taniguchi (b33) 1995; 53
Ikeda, N., Watanabe, S., 1989. Stochastic differential equations and diffusion processes. In: Second Edition, North-Holland, Kodansha, Amsterdam, Tokyo.
Liu (b21) 1997; 70
Jiang, Lv (b16) 2018; 56
Kushner (b19) 1967
Mohammed, Scheutzow (b29) 1997; 25
Arnold, Crauel, Wihstutz (b3) 1983; 21
Furstenberg (b10) 1963; 77
Øksendal (b30) 1998
Arnold (b2) 1998
Øksendal (10.1016/j.spl.2021.109257_b30) 1998
Mao (10.1016/j.spl.2021.109257_b25) 1994
Taniguchi (10.1016/j.spl.2021.109257_b33) 1995; 53
Liu (10.1016/j.spl.2021.109257_b21) 1997; 70
Arnold (10.1016/j.spl.2021.109257_b2) 1998
Arnold (10.1016/j.spl.2021.109257_b3) 1983; 21
Chow (10.1016/j.spl.2021.109257_b5) 1982; 89
Mohammed (10.1016/j.spl.2021.109257_b28) 1996; 32
Liu (10.1016/j.spl.2021.109257_b23) 1997; 212
Friedman (10.1016/j.spl.2021.109257_b8) 1975
Furstenberg (10.1016/j.spl.2021.109257_b10) 1963; 77
Haussmann (10.1016/j.spl.2021.109257_b12) 1978; 65
Mao (10.1016/j.spl.2021.109257_b27) 1999; 153
Prévôt (10.1016/j.spl.2021.109257_b32) 2007; 1905
Leha (10.1016/j.spl.2021.109257_b20) 1999; 17
Kha’sminskii (10.1016/j.spl.2021.109257_b17) 1980
Arnold (10.1016/j.spl.2021.109257_b4) 2001; 177
Liu (10.1016/j.spl.2021.109257_b24) 1998; 78
Kushner (10.1016/j.spl.2021.109257_b19) 1967
Kozin (10.1016/j.spl.2021.109257_b18) 1972
Chueshov (10.1016/j.spl.2021.109257_b6) 2002; vol. 1779
Furstenberg (10.1016/j.spl.2021.109257_b9) 1963; 108
Ichikawa (10.1016/j.spl.2021.109257_b13) 1982; 90
Graversen (10.1016/j.spl.2021.109257_b11) 1998; 35
Mohammed (10.1016/j.spl.2021.109257_b29) 1997; 25
Da Prato (10.1016/j.spl.2021.109257_b7) 2014
Jiang (10.1016/j.spl.2021.109257_b16) 2018; 56
Arnold (10.1016/j.spl.2021.109257_b1) 1974
Ichikawa (10.1016/j.spl.2021.109257_b14) 1984; 12
10.1016/j.spl.2021.109257_b15
Liu (10.1016/j.spl.2021.109257_b22) 2019
Mao (10.1016/j.spl.2021.109257_b26) 1997
Peskir (10.1016/j.spl.2021.109257_b31) 1998; 26
References_xml – volume: 212
  start-page: 537
  year: 1997
  end-page: 553
  ident: b23
  article-title: Stochastic semilinear evolution equations: Lyapunov function, stability and ultimate boundedness
  publication-title: J. Math. Anal. Appl.
– year: 2014
  ident: b7
  article-title: Stochastic equations in infinite dimensions
  publication-title: Encyclopedia of Mathematics and Its Applications
– volume: 89
  start-page: 400
  year: 1982
  end-page: 419
  ident: b5
  article-title: Stability of nonlinear stochastic evolution equations
  publication-title: J. Math. Anal. Appl.
– year: 1998
  ident: b2
  article-title: RandOm Dynamical Systems, Springer Monographs in Mathematics
– volume: 1905
  year: 2007
  ident: b32
  publication-title: A Concise Course on Stochastic Partial Differential Equations
– start-page: 186
  year: 1972
  end-page: 229
  ident: b18
  publication-title: Stability of the Linear Stochastic System
– volume: 65
  start-page: 219
  year: 1978
  end-page: 235
  ident: b12
  article-title: Asymptotic stability of the linear Itô equation in infinite dimensional
  publication-title: J. Math. Anal. Appl.
– year: 1975
  ident: b8
  article-title: Stochastic Differential Equations and Applications, Vols. I and II
– volume: 78
  start-page: 173
  year: 1998
  end-page: 193
  ident: b24
  article-title: Exponential stability of non-linear stochastic evolution equations
  publication-title: Stochastic Process. Appl.
– volume: 53
  start-page: 41
  year: 1995
  end-page: 52
  ident: b33
  article-title: Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert spaces
  publication-title: Stochastics
– volume: 21
  start-page: 451
  year: 1983
  end-page: 461
  ident: b3
  article-title: Stabilization for linear systems by noise
  publication-title: SIAM J. Control Optim.
– year: 1998
  ident: b30
  article-title: Stochastic Differential Equations: An Introduction with Applications
– year: 1974
  ident: b1
  article-title: Stochastic Differential Equation: Theory and Applications
– volume: 70
  start-page: 219
  year: 1997
  end-page: 241
  ident: b21
  article-title: On stability for a class of semilinear stochastic evolution equations
  publication-title: Stochastic Process. Appl.
– year: 1994
  ident: b25
  article-title: Exponential Stability of Stochastic Differential Equations
– year: 1967
  ident: b19
  article-title: Stochastic Stability and Control
– volume: 25
  start-page: 1210
  year: 1997
  end-page: 1240
  ident: b29
  article-title: Lyapunov exponents of linea stochastic functional differential equations driven by semimartingales. Part II. Examples and case studies
  publication-title: Ann. Probab.
– volume: 32
  start-page: 69
  year: 1996
  end-page: 105
  ident: b28
  article-title: Lyapunov exponents of linea stochastic functional differential equations driven by semimartingales. Part I. The multiplicative ergodic theory
  publication-title: Ann. Inst. H. Poincaré Probab. Statist.
– volume: 12
  start-page: 1
  year: 1984
  end-page: 39
  ident: b14
  article-title: Semilinear stochastic evolution equations: boundedness, stability and invariant measure
  publication-title: Stochastics
– reference: Ikeda, N., Watanabe, S., 1989. Stochastic differential equations and diffusion processes. In: Second Edition, North-Holland, Kodansha, Amsterdam, Tokyo.
– volume: 26
  start-page: 1614
  year: 1998
  end-page: 1640
  ident: b31
  article-title: Optimal stopping of the maximum process: The maximality principle
  publication-title: Ann. Probab.
– volume: 17
  start-page: 1009
  year: 1999
  end-page: 1051
  ident: b20
  article-title: Stability of solutions to semilinear stochastic evolution equations
  publication-title: Stoch. Anal. Appl.
– volume: 35
  start-page: 856
  year: 1998
  end-page: 872
  ident: b11
  article-title: Optimal stopping and maximal inequalities for geometric Brownian motion
  publication-title: J. Appl. Probab.
– volume: 90
  start-page: 12
  year: 1982
  end-page: 44
  ident: b13
  article-title: Stability of semilinear stochastic evolution equations
  publication-title: J. Math. Anal. Appl.
– volume: 56
  start-page: 2218
  year: 2018
  end-page: 2247
  ident: b16
  article-title: Global stability of feedback systems with multiplicative noise on the nonnegative orthant
  publication-title: SIAM J. Control Optim.
– year: 1980
  ident: b17
  publication-title: Stochastic Stability of Differential Equations, Alphen: Sijtjoff and Noordhoff
– volume: 77
  start-page: 335
  year: 1963
  end-page: 386
  ident: b10
  article-title: A Poisson formula for semi-simple Lie group
  publication-title: Ann. of Math.
– year: 1997
  ident: b26
  article-title: Stochastic Differential Equations and Applications
– volume: 108
  start-page: 377
  year: 1963
  end-page: 428
  ident: b9
  article-title: Noncommuting random products
  publication-title: Trans. Amer. Math. Soc.
– volume: 177
  start-page: 235
  year: 2001
  end-page: 265
  ident: b4
  article-title: Lyapunov’s second method for random dynamical systems
  publication-title: J. Differential Equations
– volume: vol. 1779
  year: 2002
  ident: b6
  publication-title: Monotone RandOm Systems Theory and Applications
– volume: 153
  start-page: 175
  year: 1999
  end-page: 195
  ident: b27
  article-title: Stochastic versions of the LaSalle theorem
  publication-title: J. Differential Equations
– year: 2019
  ident: b22
  article-title: Stochastic Stability of Differential Equations in Abstract Spaces
– volume: 212
  start-page: 537
  year: 1997
  ident: 10.1016/j.spl.2021.109257_b23
  article-title: Stochastic semilinear evolution equations: Lyapunov function, stability and ultimate boundedness
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1997.5534
– year: 1998
  ident: 10.1016/j.spl.2021.109257_b2
  doi: 10.1007/978-3-662-12878-7
– volume: 89
  start-page: 400
  year: 1982
  ident: 10.1016/j.spl.2021.109257_b5
  article-title: Stability of nonlinear stochastic evolution equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(82)90110-X
– year: 2019
  ident: 10.1016/j.spl.2021.109257_b22
– volume: 78
  start-page: 173
  year: 1998
  ident: 10.1016/j.spl.2021.109257_b24
  article-title: Exponential stability of non-linear stochastic evolution equations
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/S0304-4149(98)00048-9
– volume: 108
  start-page: 377
  year: 1963
  ident: 10.1016/j.spl.2021.109257_b9
  article-title: Noncommuting random products
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1963-0163345-0
– year: 2014
  ident: 10.1016/j.spl.2021.109257_b7
  article-title: Stochastic equations in infinite dimensions
– volume: 12
  start-page: 1
  year: 1984
  ident: 10.1016/j.spl.2021.109257_b14
  article-title: Semilinear stochastic evolution equations: boundedness, stability and invariant measure
  publication-title: Stochastics
  doi: 10.1080/17442508408833293
– volume: vol. 1779
  year: 2002
  ident: 10.1016/j.spl.2021.109257_b6
– volume: 32
  start-page: 69
  year: 1996
  ident: 10.1016/j.spl.2021.109257_b28
  article-title: Lyapunov exponents of linea stochastic functional differential equations driven by semimartingales. Part I. The multiplicative ergodic theory
  publication-title: Ann. Inst. H. Poincaré Probab. Statist.
– volume: 1905
  year: 2007
  ident: 10.1016/j.spl.2021.109257_b32
– volume: 65
  start-page: 219
  year: 1978
  ident: 10.1016/j.spl.2021.109257_b12
  article-title: Asymptotic stability of the linear Itô equation in infinite dimensional
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(78)90211-1
– volume: 177
  start-page: 235
  year: 2001
  ident: 10.1016/j.spl.2021.109257_b4
  article-title: Lyapunov’s second method for random dynamical systems
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.2000.3991
– year: 1997
  ident: 10.1016/j.spl.2021.109257_b26
– volume: 70
  start-page: 219
  year: 1997
  ident: 10.1016/j.spl.2021.109257_b21
  article-title: On stability for a class of semilinear stochastic evolution equations
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/S0304-4149(97)00062-8
– year: 1974
  ident: 10.1016/j.spl.2021.109257_b1
– volume: 35
  start-page: 856
  year: 1998
  ident: 10.1016/j.spl.2021.109257_b11
  article-title: Optimal stopping and maximal inequalities for geometric Brownian motion
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1032438381
– volume: 56
  start-page: 2218
  year: 2018
  ident: 10.1016/j.spl.2021.109257_b16
  article-title: Global stability of feedback systems with multiplicative noise on the nonnegative orthant
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/16M1101076
– year: 1998
  ident: 10.1016/j.spl.2021.109257_b30
– year: 1975
  ident: 10.1016/j.spl.2021.109257_b8
– volume: 90
  start-page: 12
  year: 1982
  ident: 10.1016/j.spl.2021.109257_b13
  article-title: Stability of semilinear stochastic evolution equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(82)90041-5
– volume: 153
  start-page: 175
  year: 1999
  ident: 10.1016/j.spl.2021.109257_b27
  article-title: Stochastic versions of the LaSalle theorem
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1998.3552
– year: 1980
  ident: 10.1016/j.spl.2021.109257_b17
– year: 1967
  ident: 10.1016/j.spl.2021.109257_b19
– volume: 25
  start-page: 1210
  year: 1997
  ident: 10.1016/j.spl.2021.109257_b29
  article-title: Lyapunov exponents of linea stochastic functional differential equations driven by semimartingales. Part II. Examples and case studies
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1024404511
– volume: 17
  start-page: 1009
  year: 1999
  ident: 10.1016/j.spl.2021.109257_b20
  article-title: Stability of solutions to semilinear stochastic evolution equations
  publication-title: Stoch. Anal. Appl.
  doi: 10.1080/07362999908809647
– year: 1994
  ident: 10.1016/j.spl.2021.109257_b25
– volume: 53
  start-page: 41
  year: 1995
  ident: 10.1016/j.spl.2021.109257_b33
  article-title: Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert spaces
  publication-title: Stochastics
– start-page: 186
  year: 1972
  ident: 10.1016/j.spl.2021.109257_b18
– volume: 26
  start-page: 1614
  year: 1998
  ident: 10.1016/j.spl.2021.109257_b31
  article-title: Optimal stopping of the maximum process: The maximality principle
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1022855875
– volume: 77
  start-page: 335
  year: 1963
  ident: 10.1016/j.spl.2021.109257_b10
  article-title: A Poisson formula for semi-simple Lie group
  publication-title: Ann. of Math.
  doi: 10.2307/1970220
– volume: 21
  start-page: 451
  year: 1983
  ident: 10.1016/j.spl.2021.109257_b3
  article-title: Stabilization for linear systems by noise
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0321027
– ident: 10.1016/j.spl.2021.109257_b15
SSID ssj0002551
Score 2.2799206
Snippet This paper is concerned with the global stability of semilinear stochastic differential equations (SDEs) with multiplicative white noise, which is a...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109257
SubjectTerms Birkhoff–Khinchin ergodic theorem
Random dynamical systems
Stability theory
Stochastic differential equations
Title Stability analysis of semilinear stochastic differential equations
URI https://dx.doi.org/10.1016/j.spl.2021.109257
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sZQBQQFRHpUHJqTQ2nFeY6moChUdoIhuVuI4ogja0pSBhd_OXR4VSLAwRXmcFH2J777znT8DnCXIMXQgEosbHOSSB7EVBl3fCn0ZcSpD8bzbYuwOH-TN1JlWoF-uhaG2ysL35z4989bFlU6BZmc5m3XuqYHew_AjSEUUc_Eq1IUduE4N6r3r0XC8ccjImnkp8U0GZXEza_NKl1SAEJx0lQQFqd_C07eQM9iB7YIrsl7-OrtQMfMmbN1uhFbTJjSILOZay3twiSdZr-sHCwutEbZIWGpeZ0QmwxVDpqefQnqclTuj4Ah_YeYtV_xO92EyuJr0h1axR4KlMXFaW4ntC6l9GUeOjIXrae5TRmISzD0R81iTErXUId7CwIOAaWGbxATa8bXT1fYB1OaLuTkE5slYhiZxkBL6MjAmkpETubEX2wGyLM9twXmJjFrmShiqbBF7VgijIhhVDmMLZImd-vE5FXrqv82O_md2DA1BqxKymZETqK1X7-YUucI6akP14pO3iz-CjqO7x9EXU5i90A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHMSDUdSIzz14Mmmg2-3riERS5HERE26bdruNGC1I8eC_d6YPoolePPaxSfO1O_NN59tvAW4S5BjK54lhapzkwvRjI_S7nhF6IjKpDWUWaoupEzyJh7k9r0G_WgtDssoy9hcxPY_W5ZlOiWZntVh0HklA72L64eQiirX4DjSEjdVeHRq94SiYbgMysmazsvimAVVzM5d5ZStqQHCTfJU4Janf0tO3lDM4gP2SK7Je8TiHUNNpC_YmW6PVrAVNIouF1_IR3OFBrnX9ZGHpNcKWCcv024LIZLhmyPTUc0i3s2pnFJzhr0y_F47f2THMBvezfmCUeyQYCgunjZFYHhfKE3Fki5g7rjI9qkh0grUnYh4rcqIWKsRLmHgQMMUtnWhf2Z6yu8o6gXq6TPUpMFfEItSJjZTQE77WkYjsyInd2PKRZblOG24rZOSqcMKQlUTsRSKMkmCUBYxtEBV28sfrlBip_x529r9h17AbzCZjOR5OR-fQ5LRCIf9LcgH1zfpDXyJv2ERX5XfxBfVMvhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+analysis+of+semilinear+stochastic+differential+equations&rft.jtitle=Statistics+%26+probability+letters&rft.au=Lv%2C+Xiang&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0167-7152&rft.eissn=1879-2103&rft.volume=180&rft_id=info:doi/10.1016%2Fj.spl.2021.109257&rft.externalDocID=S0167715221002194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon