Variable-step deferred correction methods based on backward differentiation formulae for ordinary differential equations
This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence...
Saved in:
Published in | BIT Vol. 62; no. 4; pp. 1789 - 1822 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence of corrections starts with the BDF2 then considered as DC2. We prove that this improvement from a
p
-order solution (DC
p
) results in a
p
+
1
-order accurate solution (DC
p
+
1
). This one-order increment in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce additional requirements for the ratio of consecutive variable time step sizes, then the order increment is 2, allowing a direct transition from DC
p
to DC
p
+
2
. These requirements include the constant time step DC
p
methods. We also prove that all these DC
p
methods are A-stable. We briefly discuss two other DC variants to illustrate how a proper transition from DC
p
to DC
p
+
1
is critical to maintaining A-stability at all orders. Numerical experiments based on two manufactured (closed-form) solutions confirmed the accuracy orders of the DC
p
– for DC
p
,
p
=
2
,
3
,
4
,
5
– both with constant or alternating time step sizes. We showed that the theoretical conditions required to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case shows that we can estimate the error on the DC
p
solution with the DC
p
+
1
solution, and a last test case that our new methods maintain their order of accuracy for a stiff system. |
---|---|
AbstractList | This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence of corrections starts with the BDF2 then considered as DC2. We prove that this improvement from a p-order solution (DCp) results in a p+1-order accurate solution (DCp+1). This one-order increment in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce additional requirements for the ratio of consecutive variable time step sizes, then the order increment is 2, allowing a direct transition from DCp to DCp+2. These requirements include the constant time step DCp methods. We also prove that all these DCp methods are A-stable. We briefly discuss two other DC variants to illustrate how a proper transition from DCp to DCp+1 is critical to maintaining A-stability at all orders. Numerical experiments based on two manufactured (closed-form) solutions confirmed the accuracy orders of the DCp – for DCp, p=2,3,4,5 – both with constant or alternating time step sizes. We showed that the theoretical conditions required to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case shows that we can estimate the error on the DCp solution with the DCp+1 solution, and a last test case that our new methods maintain their order of accuracy for a stiff system. This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence of corrections starts with the BDF2 then considered as DC2. We prove that this improvement from a p -order solution (DC p ) results in a p + 1 -order accurate solution (DC p + 1 ). This one-order increment in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce additional requirements for the ratio of consecutive variable time step sizes, then the order increment is 2, allowing a direct transition from DC p to DC p + 2 . These requirements include the constant time step DC p methods. We also prove that all these DC p methods are A-stable. We briefly discuss two other DC variants to illustrate how a proper transition from DC p to DC p + 1 is critical to maintaining A-stability at all orders. Numerical experiments based on two manufactured (closed-form) solutions confirmed the accuracy orders of the DC p – for DC p , p = 2 , 3 , 4 , 5 – both with constant or alternating time step sizes. We showed that the theoretical conditions required to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case shows that we can estimate the error on the DC p solution with the DC p + 1 solution, and a last test case that our new methods maintain their order of accuracy for a stiff system. |
Author | Garon, André Bourgault, Yves |
Author_xml | – sequence: 1 givenname: Yves orcidid: 0000-0002-0304-5920 surname: Bourgault fullname: Bourgault, Yves email: ybourg@uottawa.ca organization: Department of Mathematics and Statistics, University of Ottawa – sequence: 2 givenname: André surname: Garon fullname: Garon, André organization: École Polytechnique, Université de Montréal |
BookMark | eNp9kMtKAzEUhoNUsK2-gKsB19Fc57KU4g0KbtRtyCQnOnU6aZMZ1Lc37QiKi65OSL4v55x_hiad7wChc0ouKSHFVaRECo4JY5iQilNMj9CUyoLhijI5QVNCSI55yeUJmsW4IoRVOeVT9PmiQ6PrFnDsYZNZcBAC2Mz4VEzf-C5bQ__mbcxqHdNDuqi1ef_QwWa2cQmHrm_0nnQ-rIdWw-6Q-WCbToevv1SbwXbYs_EUHTvdRjj7qXP0fHvztLjHy8e7h8X1Ehsmqh6DcTUYWla5lEbUheW2MGWd05pJS4FAQUuuc5u20SAMJ0672glhc2lYnls-Rxfjv5vgtwPEXq38ELrUUrGCFwUXgvBEsZEywccYwKlNaNZpekWJ2iWsxoRVSljtE1Y0SeU_yTT9frs-6KY9rPJRjalP9wrhd6oD1jc7K5Wa |
CitedBy_id | crossref_primary_10_1007_s10915_024_02775_z |
Cites_doi | 10.1016/j.finel.2017.12.002 10.1007/BF01932401 10.1016/j.compfluid.2017.02.017 10.1137/140975231 10.1016/j.jcp.2015.03.022 10.1023/A:1022338906936 10.4310/CMS.2003.v1.n3.a6 10.1108/09615539610113082 10.1023/A:1021937227950 10.1137/0716018 10.1016/j.compfluid.2014.04.036 10.1137/070688018 10.1016/j.jcp.2020.109734 10.1007/s10543-014-0517-x 10.1016/j.cma.2011.03.016 10.1007/s00791-010-0150-4 10.1007/978-1-4757-3110-1 10.1016/j.apnum.2006.04.002 10.1137/0711079 10.1016/j.cma.2009.10.005 10.1023/A:1015113017248 10.1016/0096-3003(89)90127-6 10.1007/BFb0062095 10.1137/1.9781611971224 10.2514/6.2010-1445 10.1007/s10543-021-00875-y 10.1016/j.compfluid.2011.08.016 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10543-022-00931-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1572-9125 |
EndPage | 1822 |
ExternalDocumentID | 10_1007_s10543_022_00931_1 |
GrantInformation_xml | – fundername: natural sciences and engineering research council of canada grantid: RGPIN-2019-06855; RGPIN-2016-06403 funderid: http://dx.doi.org/10.13039/501100000038 |
GroupedDBID | -52 -BR -~X 1N0 23N 40D 40E 95- 95. 95~ ABDPE ABMNI ACIWK AGWIL ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BBWZM CAG COF CS3 H~9 KOW N2Q RHV SDD SOJ TN5 WH7 ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c249t-ecfbec189655c4b7d3d7c8b61b25d1e0e7183a6d961ae4c30fafbf44d65c266d3 |
IEDL.DBID | U2A |
ISSN | 0006-3835 |
IngestDate | Mon Jun 30 09:05:26 EDT 2025 Tue Jul 01 02:03:20 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Fri Feb 21 02:44:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 65L05 Backward differentiation formulae High-order time-stepping methods 65L04 Ordinary differential equations 65L20 5B05 65L12 Deferred correction A-stability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-ecfbec189655c4b7d3d7c8b61b25d1e0e7183a6d961ae4c30fafbf44d65c266d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0304-5920 |
PQID | 2737734403 |
PQPubID | 2043657 |
PageCount | 34 |
ParticipantIDs | proquest_journals_2737734403 crossref_primary_10_1007_s10543_022_00931_1 crossref_citationtrail_10_1007_s10543_022_00931_1 springer_journals_10_1007_s10543_022_00931_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | BIT |
PublicationTitleAbbrev | Bit Numer Math |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Guermond, Minev (CR14) 2015; 37 John, Rang (CR19) 2010; 199 CR38 Gustafsson, Kress (CR15) 2001; 41 CR37 Elaydi (CR7) 1999 CR35 Hay, Yu, Etienne, Garon, Pelletier (CR18) 2014; 100 CR10 CR31 Gresho, Griffiths, Silvester (CR13) 2008; 30 Hay, Etienne, Pelletier, Garon (CR17) 2015; 291 Kress, Gustafsson (CR25) 2002; 17 Dutt, Greengard, Rokhlin (CR6) 2000; 40 Hairer, Wanner (CR16) 1991 Wanner, Hairer (CR39) 1996 CR2 Speck, Ruprecht, Emmett, Minion, Bolten, Krause (CR36) 2015; 55 Geng (CR12) 1985; 3 CR3 Mayr, Wall, Gee (CR27) 2018; 141 Couture-Peck, Garon, Delfour (CR4) 2020; 422 CR5 CR29 Gear, Tu (CR11) 1974; 11 Roy, Oberkampf (CR33) 2011; 200 CR9 Birken, Quint, Hartmann, Meister (CR1) 2010; 13 CR23 CR22 CR20 Keller, Pereyra (CR21) 1979; 16 Roache (CR32) 1998 Skelboe (CR34) 1977; 17 Fox, Darwin (CR8) 1947; 190 Kress (CR24) 2007; 57 Minion (CR28) 2003; 1 Ouyang, Tamma (CR30) 1996; 6 Loy, Bourgault (CR26) 2017; 148 W Kress (931_CR25) 2002; 17 931_CR35 HB Keller (931_CR21) 1979; 16 931_CR37 931_CR38 S Geng (931_CR12) 1985; 3 V John (931_CR19) 2010; 199 A Hay (931_CR17) 2015; 291 D Couture-Peck (931_CR4) 2020; 422 L Fox (931_CR8) 1947; 190 931_CR31 931_CR10 S Skelboe (931_CR34) 1977; 17 A Hay (931_CR18) 2014; 100 931_CR2 P Birken (931_CR1) 2010; 13 931_CR3 T Ouyang (931_CR30) 1996; 6 P Roache (931_CR32) 1998 931_CR5 CJ Roy (931_CR33) 2011; 200 JL Guermond (931_CR14) 2015; 37 G Wanner (931_CR39) 1996 931_CR23 W Kress (931_CR24) 2007; 57 A Dutt (931_CR6) 2000; 40 K Loy (931_CR26) 2017; 148 B Gustafsson (931_CR15) 2001; 41 931_CR29 E Hairer (931_CR16) 1991 M Mayr (931_CR27) 2018; 141 931_CR9 931_CR20 CW Gear (931_CR11) 1974; 11 931_CR22 ML Minion (931_CR28) 2003; 1 PM Gresho (931_CR13) 2008; 30 R Speck (931_CR36) 2015; 55 S Elaydi (931_CR7) 1999 |
References_xml | – ident: CR22 – volume: 141 start-page: 55 year: 2018 end-page: 69 ident: CR27 article-title: Adaptive time stepping for fluid-structure interaction solvers publication-title: Finite Elements in Analysis and Design doi: 10.1016/j.finel.2017.12.002 – year: 1998 ident: CR32 publication-title: Verification and Validation in Computational Science and Engineering – volume: 17 start-page: 91 issue: 1 year: 1977 end-page: 107 ident: CR34 article-title: The control of order and steplength for backward differentiation methods publication-title: BIT Numerical Mathematics doi: 10.1007/BF01932401 – volume: 148 start-page: 166 year: 2017 end-page: 184 ident: CR26 article-title: On efficient high-order semi-implicit time-stepping schemes for unsteady incompressible Navier-Stokes equations publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2017.02.017 – ident: CR2 – ident: CR37 – volume: 37 start-page: A2656 issue: 6 year: 2015 end-page: A2681 ident: CR14 article-title: High-order time stepping for the incompressible Navier-Stokes equations publication-title: SIAM J. Scientific Comput. doi: 10.1137/140975231 – ident: CR10 – volume: 291 start-page: 151 year: 2015 end-page: 176 ident: CR17 article-title: hp-adaptive time integration based on the BDF for viscous flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.03.022 – ident: CR35 – volume: 40 start-page: 241 year: 2000 end-page: 266 ident: CR6 article-title: Spectral deferred correction methods for ordinary differential equations publication-title: BIT doi: 10.1023/A:1022338906936 – ident: CR29 – year: 1991 ident: CR16 publication-title: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems – volume: 1 start-page: 471 issue: 3 year: 2003 end-page: 500 ident: CR28 article-title: Semi-implicit spectral deferred correction methods for ordinary differential equations publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2003.v1.n3.a6 – volume: 6 start-page: 37 issue: 2 year: 1996 end-page: 50 ident: CR30 article-title: On adaptive time stepping approaches for thermal solidification processes publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/09615539610113082 – volume: 41 start-page: 986 issue: 5 year: 2001 end-page: 995 ident: CR15 article-title: Deferred correction methods for initial value problems publication-title: BIT Numerical Mathematics doi: 10.1023/A:1021937227950 – ident: CR23 – volume: 16 start-page: 241 issue: 2 year: 1979 end-page: 259 ident: CR21 article-title: Difference methods and deferred corrections for ordinary boundary value problems publication-title: SIAM J. Numerical Anal. doi: 10.1137/0716018 – volume: 100 start-page: 204 year: 2014 end-page: 217 ident: CR18 article-title: High-order temporal accuracy for 3D finite-element ALE flow simulations publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2014.04.036 – volume: 30 start-page: 2018 issue: 4 year: 2008 end-page: 2054 ident: CR13 article-title: Adaptive time-stepping for incompressible flow part I: Scalar advection-diffusion publication-title: SIAM J. Scientific Comput. doi: 10.1137/070688018 – volume: 422 start-page: 109,734 year: 2020 ident: CR4 article-title: A new k-TMI/ALE fluid-structure formulation to study the low mass ratio dynamics of an elliptical cylinder publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109734 – volume: 190 start-page: 31 issue: 1020 year: 1947 end-page: 59 ident: CR8 article-title: Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations publication-title: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences – ident: CR3 – volume: 55 start-page: 843 issue: 3 year: 2015 end-page: 867 ident: CR36 article-title: A multi-level spectral deferred correction method publication-title: BIT Numerical Mathematics doi: 10.1007/s10543-014-0517-x – ident: CR38 – year: 1996 ident: CR39 publication-title: Solving Ordinary Differential Equations II – volume: 200 start-page: 2131 issue: 25 year: 2011 end-page: 2144 ident: CR33 article-title: A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2011.03.016 – volume: 13 start-page: 331 issue: 7 year: 2010 end-page: 340 ident: CR1 article-title: A time-adaptive fluid-structure interaction method for thermal coupling publication-title: Comput. vis. sci. doi: 10.1007/s00791-010-0150-4 – year: 1999 ident: CR7 publication-title: An Introduction to Difference Equations doi: 10.1007/978-1-4757-3110-1 – ident: CR31 – volume: 57 start-page: 335 issue: 3 year: 2007 end-page: 353 ident: CR24 article-title: Error estimates for deferred correction methods in time publication-title: Appl. Numerical Math. doi: 10.1016/j.apnum.2006.04.002 – ident: CR9 – volume: 11 start-page: 1025 issue: 5 year: 1974 end-page: 1043 ident: CR11 article-title: The effect of variable mesh size on the stability of multistep methods publication-title: SIAM J. Numerical Anal. doi: 10.1137/0711079 – ident: CR5 – volume: 199 start-page: 514 issue: 9–12 year: 2010 end-page: 524 ident: CR19 article-title: Adaptive time step control for the incompressible Navier-Stokes equations publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2009.10.005 – volume: 3 start-page: 41 issue: 1 year: 1985 ident: CR12 article-title: The deferred correction procedure for linear multistep formulas publication-title: J. Comput. Math. – ident: CR20 – volume: 17 start-page: 241 issue: 1–4 year: 2002 end-page: 251 ident: CR25 article-title: Deferred correction methods for initial boundary value problems publication-title: J. Sci Comput. doi: 10.1023/A:1015113017248 – ident: 931_CR29 – ident: 931_CR37 – volume-title: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems year: 1991 ident: 931_CR16 – volume: 3 start-page: 41 issue: 1 year: 1985 ident: 931_CR12 publication-title: J. Comput. Math. – volume: 141 start-page: 55 year: 2018 ident: 931_CR27 publication-title: Finite Elements in Analysis and Design doi: 10.1016/j.finel.2017.12.002 – volume: 41 start-page: 986 issue: 5 year: 2001 ident: 931_CR15 publication-title: BIT Numerical Mathematics doi: 10.1023/A:1021937227950 – ident: 931_CR31 – volume: 17 start-page: 91 issue: 1 year: 1977 ident: 931_CR34 publication-title: BIT Numerical Mathematics doi: 10.1007/BF01932401 – volume: 291 start-page: 151 year: 2015 ident: 931_CR17 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.03.022 – volume: 16 start-page: 241 issue: 2 year: 1979 ident: 931_CR21 publication-title: SIAM J. Numerical Anal. doi: 10.1137/0716018 – ident: 931_CR35 doi: 10.1016/0096-3003(89)90127-6 – ident: 931_CR10 doi: 10.1007/BFb0062095 – volume: 37 start-page: A2656 issue: 6 year: 2015 ident: 931_CR14 publication-title: SIAM J. Scientific Comput. doi: 10.1137/140975231 – volume: 100 start-page: 204 year: 2014 ident: 931_CR18 publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2014.04.036 – volume: 30 start-page: 2018 issue: 4 year: 2008 ident: 931_CR13 publication-title: SIAM J. Scientific Comput. doi: 10.1137/070688018 – volume: 40 start-page: 241 year: 2000 ident: 931_CR6 publication-title: BIT doi: 10.1023/A:1022338906936 – volume: 190 start-page: 31 issue: 1020 year: 1947 ident: 931_CR8 publication-title: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences – volume: 17 start-page: 241 issue: 1–4 year: 2002 ident: 931_CR25 publication-title: J. Sci Comput. doi: 10.1023/A:1015113017248 – volume: 55 start-page: 843 issue: 3 year: 2015 ident: 931_CR36 publication-title: BIT Numerical Mathematics doi: 10.1007/s10543-014-0517-x – ident: 931_CR2 doi: 10.1137/1.9781611971224 – volume: 148 start-page: 166 year: 2017 ident: 931_CR26 publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2017.02.017 – ident: 931_CR38 – ident: 931_CR5 – ident: 931_CR3 doi: 10.2514/6.2010-1445 – volume-title: An Introduction to Difference Equations year: 1999 ident: 931_CR7 doi: 10.1007/978-1-4757-3110-1 – volume: 200 start-page: 2131 issue: 25 year: 2011 ident: 931_CR33 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2011.03.016 – ident: 931_CR22 – ident: 931_CR23 doi: 10.1007/s10543-021-00875-y – volume: 13 start-page: 331 issue: 7 year: 2010 ident: 931_CR1 publication-title: Comput. vis. sci. doi: 10.1007/s00791-010-0150-4 – volume: 1 start-page: 471 issue: 3 year: 2003 ident: 931_CR28 publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2003.v1.n3.a6 – volume-title: Solving Ordinary Differential Equations II year: 1996 ident: 931_CR39 – volume: 199 start-page: 514 issue: 9–12 year: 2010 ident: 931_CR19 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2009.10.005 – volume: 422 start-page: 109,734 year: 2020 ident: 931_CR4 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109734 – volume-title: Verification and Validation in Computational Science and Engineering year: 1998 ident: 931_CR32 – ident: 931_CR9 doi: 10.1016/j.compfluid.2011.08.016 – volume: 11 start-page: 1025 issue: 5 year: 1974 ident: 931_CR11 publication-title: SIAM J. Numerical Anal. doi: 10.1137/0711079 – volume: 57 start-page: 335 issue: 3 year: 2007 ident: 931_CR24 publication-title: Appl. Numerical Math. doi: 10.1016/j.apnum.2006.04.002 – ident: 931_CR20 – volume: 6 start-page: 37 issue: 2 year: 1996 ident: 931_CR30 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/09615539610113082 |
SSID | ssj0029613 ssj0014816 ssj0000615 |
Score | 2.3068697 |
Snippet | This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1789 |
SubjectTerms | Accuracy Boundary value problems Computational Mathematics and Numerical Analysis Differential equations Differentiation Formulas (mathematics) Mathematics Mathematics and Statistics Numeric Computing Ordinary differential equations Stability |
Title | Variable-step deferred correction methods based on backward differentiation formulae for ordinary differential equations |
URI | https://link.springer.com/article/10.1007/s10543-022-00931-1 https://www.proquest.com/docview/2737734403 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MXPTgD9SIIunBmzZZt7bbjmBAooGTGDwtXdudCCIbiX--r1sHaNTE05aua5Z-bd_3rX3vIXSjqRDMkxnJYioJU15K4ph7QOSokhL4sfKtv_N4IkZT9jjjM-cUlten3estyXKl3nF248zuOfrEynBKQPM0udXuMIqnfm9n_aUbBgxk39IfJ8BiQV1mNUFAmXHnRPNz618N1ZZ9ftswLe3Q8BgdOgKJexXiJ2jPLFroyJFJ7KZqDkV1voa6rIUOxpsYrfkp-ngBmWwdpwgAvcTaRpxdQRPK5usovR1wlV46x9bUaQwFqf3bB2MK13lVigpZbKnvei6NvcGgZ0sv391ac2zeq6ji-RmaDgfP9yPi8jAQBeKsIEZlgDSNYsG5YmmoAx2qKBU09bmmxjNg3wIpNHSvNEwFXiazNGNMC67A_uvgHDUWbwtzgbAfSS1jHWmapQykayRkJMrdPE6jUMVtROtOT5QLUm5zZcyTbXhlC1QCQCUlUAlto9vNO8sqRMeftTs1lombrnkCHC4MA_igoI3uany3j39v7fJ_1a_Qvm-HWHkcpoMaxWptroHUFGkXNXvDfn9irw-vT4NuOaY_AaDh7oU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6MHtSDP1AjitqDN22ybm3XHYmRoAInMNyWru1OBJFB4p_v69YBGjXxtnRds_Rr975vr-89hG4NFYIFKid5QhVhOshIkvAAiBzVSgE_1qGLd-4PRHfEnsd87IPCivq0e-2SLL_UG8FunDmfY0icDKcENM8OkAHpDnKNwvbG95euGDCQfUd_vABLBPWV1QQBZcZ9EM3Po381VGv2-c1hWtqhzhE68AQStyvEj9GWnTbQoSeT2G_VAprqeg11WwPt91c5WosT9PEKMtkFThEAeoaNyzg7hyG0q9dRRjvgqrx0gZ2pMxgaMve3D9YUruuqLCpksaO-y4my7gKDni2jfDd7TbB9r7KKF6do1HkcPnSJr8NANIizBbE6B6SpTATnmmWxiUysZSZoFnJDbWDBvkVKGJheZZmOglzlWc6YEVyD_TfRGdqevk3tOcKhVEYlRhqaZwykqxRKitKbx6mMddJEtJ70VPsk5a5WxiRdp1d2QKUAVFoCldImuls9M6tSdPzZu1VjmfrtWqTA4eI4gheKmui-xnd9-_fRLv7X_Qbtdof9Xtp7Grxcor3QLbfyaEwLbS_mS3sFBGeRXZfr-RMUee5o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iIHrwx1ScTs3Bm4Y1bZK2x6GO-WPDg5PdSpqkpzHn2oF_vi9tuk1RwVtJ01DyvfR9X5P3HkKXmgrBPJmRLKaSMOWlJI65B0SOKimBHyvfxjv3B6I3ZA8jPlqJ4i9Pu9dbklVMg83SNCnaU521VwLfOLP7jz6xkpwS0D8b8Dmm1q6HfmflW0wXbBiIv6VCTozFgroqa4KASuMuoObn0b86rSUT_bZ5Wvqk7h7acWQSdyr099GamTTQriOW2C3bHJrq2g11WwNt9xf5WvMD9PEKktkGUREAfYq1zT47gyGUrd1RRj7gqtR0jq3b0xgaUvvnD-wL1zVWigplbGnwfCyNvcCgbcuI39VeY2zeqwzj-SEadu9ebnrE1WQgCoRaQYzKAHUaxYJzxdJQBzpUUSpo6nNNjWfA1wVSaJheaZgKvExmacaYFlwBF9DBEVqfvE3MMcJ-JLWMdaRpljKQsZGQkSh39jiNQhU3Ea0nPVEuYbmtmzFOlqmWLVAJAJWUQCW0ia4Wz0yrdB1_9m7VWCZu6eYJ8LkwDOCFgia6rvFd3v59tJP_db9Am8-33eTpfvB4irZ8a23lKZkWWi9mc3MGXKdIz0tz_gTt4fKk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable-step+deferred+correction+methods+based+on+backward+differentiation+formulae+for+ordinary+differential+equations&rft.jtitle=BIT&rft.au=Bourgault+Yves&rft.au=Garon+Andr%C3%A9&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0006-3835&rft.eissn=1572-9125&rft.volume=62&rft.issue=4&rft.spage=1789&rft.epage=1822&rft_id=info:doi/10.1007%2Fs10543-022-00931-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3835&client=summon |