Variable-step deferred correction methods based on backward differentiation formulae for ordinary differential equations

This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence...

Full description

Saved in:
Bibliographic Details
Published inBIT Vol. 62; no. 4; pp. 1789 - 1822
Main Authors Bourgault, Yves, Garon, André
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence of corrections starts with the BDF2 then considered as DC2. We prove that this improvement from a p -order solution (DC p ) results in a p + 1 -order accurate solution (DC p + 1 ). This one-order increment in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce additional requirements for the ratio of consecutive variable time step sizes, then the order increment is 2, allowing a direct transition from DC p to DC p + 2 . These requirements include the constant time step DC p methods. We also prove that all these DC p methods are A-stable. We briefly discuss two other DC variants to illustrate how a proper transition from DC p to DC p + 1 is critical to maintaining A-stability at all orders. Numerical experiments based on two manufactured (closed-form) solutions confirmed the accuracy orders of the DC p – for DC p , p = 2 , 3 , 4 , 5 – both with constant or alternating time step sizes. We showed that the theoretical conditions required to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case shows that we can estimate the error on the DC p solution with the DC p + 1 solution, and a last test case that our new methods maintain their order of accuracy for a stiff system.
AbstractList This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence of corrections starts with the BDF2 then considered as DC2. We prove that this improvement from a p-order solution (DCp) results in a p+1-order accurate solution (DCp+1). This one-order increment in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce additional requirements for the ratio of consecutive variable time step sizes, then the order increment is 2, allowing a direct transition from DCp to DCp+2. These requirements include the constant time step DCp methods. We also prove that all these DCp methods are A-stable. We briefly discuss two other DC variants to illustrate how a proper transition from DCp to DCp+1 is critical to maintaining A-stability at all orders. Numerical experiments based on two manufactured (closed-form) solutions confirmed the accuracy orders of the DCp – for DCp, p=2,3,4,5 – both with constant or alternating time step sizes. We showed that the theoretical conditions required to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case shows that we can estimate the error on the DCp solution with the DCp+1 solution, and a last test case that our new methods maintain their order of accuracy for a stiff system.
This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence of corrections starts with the BDF2 then considered as DC2. We prove that this improvement from a p -order solution (DC p ) results in a p + 1 -order accurate solution (DC p + 1 ). This one-order increment in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce additional requirements for the ratio of consecutive variable time step sizes, then the order increment is 2, allowing a direct transition from DC p to DC p + 2 . These requirements include the constant time step DC p methods. We also prove that all these DC p methods are A-stable. We briefly discuss two other DC variants to illustrate how a proper transition from DC p to DC p + 1 is critical to maintaining A-stability at all orders. Numerical experiments based on two manufactured (closed-form) solutions confirmed the accuracy orders of the DC p – for DC p , p = 2 , 3 , 4 , 5 – both with constant or alternating time step sizes. We showed that the theoretical conditions required to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case shows that we can estimate the error on the DC p solution with the DC p + 1 solution, and a last test case that our new methods maintain their order of accuracy for a stiff system.
Author Garon, André
Bourgault, Yves
Author_xml – sequence: 1
  givenname: Yves
  orcidid: 0000-0002-0304-5920
  surname: Bourgault
  fullname: Bourgault, Yves
  email: ybourg@uottawa.ca
  organization: Department of Mathematics and Statistics, University of Ottawa
– sequence: 2
  givenname: André
  surname: Garon
  fullname: Garon, André
  organization: École Polytechnique, Université de Montréal
BookMark eNp9kMtKAzEUhoNUsK2-gKsB19Fc57KU4g0KbtRtyCQnOnU6aZMZ1Lc37QiKi65OSL4v55x_hiad7wChc0ouKSHFVaRECo4JY5iQilNMj9CUyoLhijI5QVNCSI55yeUJmsW4IoRVOeVT9PmiQ6PrFnDsYZNZcBAC2Mz4VEzf-C5bQ__mbcxqHdNDuqi1ef_QwWa2cQmHrm_0nnQ-rIdWw-6Q-WCbToevv1SbwXbYs_EUHTvdRjj7qXP0fHvztLjHy8e7h8X1Ehsmqh6DcTUYWla5lEbUheW2MGWd05pJS4FAQUuuc5u20SAMJ0672glhc2lYnls-Rxfjv5vgtwPEXq38ELrUUrGCFwUXgvBEsZEywccYwKlNaNZpekWJ2iWsxoRVSljtE1Y0SeU_yTT9frs-6KY9rPJRjalP9wrhd6oD1jc7K5Wa
CitedBy_id crossref_primary_10_1007_s10915_024_02775_z
Cites_doi 10.1016/j.finel.2017.12.002
10.1007/BF01932401
10.1016/j.compfluid.2017.02.017
10.1137/140975231
10.1016/j.jcp.2015.03.022
10.1023/A:1022338906936
10.4310/CMS.2003.v1.n3.a6
10.1108/09615539610113082
10.1023/A:1021937227950
10.1137/0716018
10.1016/j.compfluid.2014.04.036
10.1137/070688018
10.1016/j.jcp.2020.109734
10.1007/s10543-014-0517-x
10.1016/j.cma.2011.03.016
10.1007/s00791-010-0150-4
10.1007/978-1-4757-3110-1
10.1016/j.apnum.2006.04.002
10.1137/0711079
10.1016/j.cma.2009.10.005
10.1023/A:1015113017248
10.1016/0096-3003(89)90127-6
10.1007/BFb0062095
10.1137/1.9781611971224
10.2514/6.2010-1445
10.1007/s10543-021-00875-y
10.1016/j.compfluid.2011.08.016
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
DOI 10.1007/s10543-022-00931-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9125
EndPage 1822
ExternalDocumentID 10_1007_s10543_022_00931_1
GrantInformation_xml – fundername: natural sciences and engineering research council of canada
  grantid: RGPIN-2019-06855; RGPIN-2016-06403
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID -52
-BR
-~X
1N0
23N
40D
40E
95-
95.
95~
ABDPE
ABMNI
ACIWK
AGWIL
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BBWZM
CAG
COF
CS3
H~9
KOW
N2Q
RHV
SDD
SOJ
TN5
WH7
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c249t-ecfbec189655c4b7d3d7c8b61b25d1e0e7183a6d961ae4c30fafbf44d65c266d3
IEDL.DBID U2A
ISSN 0006-3835
IngestDate Mon Jun 30 09:05:26 EDT 2025
Tue Jul 01 02:03:20 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Fri Feb 21 02:44:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 65L05
Backward differentiation formulae
High-order time-stepping methods
65L04
Ordinary differential equations
65L20
5B05
65L12
Deferred correction
A-stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-ecfbec189655c4b7d3d7c8b61b25d1e0e7183a6d961ae4c30fafbf44d65c266d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0304-5920
PQID 2737734403
PQPubID 2043657
PageCount 34
ParticipantIDs proquest_journals_2737734403
crossref_primary_10_1007_s10543_022_00931_1
crossref_citationtrail_10_1007_s10543_022_00931_1
springer_journals_10_1007_s10543_022_00931_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle BIT
PublicationTitleAbbrev Bit Numer Math
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Guermond, Minev (CR14) 2015; 37
John, Rang (CR19) 2010; 199
CR38
Gustafsson, Kress (CR15) 2001; 41
CR37
Elaydi (CR7) 1999
CR35
Hay, Yu, Etienne, Garon, Pelletier (CR18) 2014; 100
CR10
CR31
Gresho, Griffiths, Silvester (CR13) 2008; 30
Hay, Etienne, Pelletier, Garon (CR17) 2015; 291
Kress, Gustafsson (CR25) 2002; 17
Dutt, Greengard, Rokhlin (CR6) 2000; 40
Hairer, Wanner (CR16) 1991
Wanner, Hairer (CR39) 1996
CR2
Speck, Ruprecht, Emmett, Minion, Bolten, Krause (CR36) 2015; 55
Geng (CR12) 1985; 3
CR3
Mayr, Wall, Gee (CR27) 2018; 141
Couture-Peck, Garon, Delfour (CR4) 2020; 422
CR5
CR29
Gear, Tu (CR11) 1974; 11
Roy, Oberkampf (CR33) 2011; 200
CR9
Birken, Quint, Hartmann, Meister (CR1) 2010; 13
CR23
CR22
CR20
Keller, Pereyra (CR21) 1979; 16
Roache (CR32) 1998
Skelboe (CR34) 1977; 17
Fox, Darwin (CR8) 1947; 190
Kress (CR24) 2007; 57
Minion (CR28) 2003; 1
Ouyang, Tamma (CR30) 1996; 6
Loy, Bourgault (CR26) 2017; 148
W Kress (931_CR25) 2002; 17
931_CR35
HB Keller (931_CR21) 1979; 16
931_CR37
931_CR38
S Geng (931_CR12) 1985; 3
V John (931_CR19) 2010; 199
A Hay (931_CR17) 2015; 291
D Couture-Peck (931_CR4) 2020; 422
L Fox (931_CR8) 1947; 190
931_CR31
931_CR10
S Skelboe (931_CR34) 1977; 17
A Hay (931_CR18) 2014; 100
931_CR2
P Birken (931_CR1) 2010; 13
931_CR3
T Ouyang (931_CR30) 1996; 6
P Roache (931_CR32) 1998
931_CR5
CJ Roy (931_CR33) 2011; 200
JL Guermond (931_CR14) 2015; 37
G Wanner (931_CR39) 1996
931_CR23
W Kress (931_CR24) 2007; 57
A Dutt (931_CR6) 2000; 40
K Loy (931_CR26) 2017; 148
B Gustafsson (931_CR15) 2001; 41
931_CR29
E Hairer (931_CR16) 1991
M Mayr (931_CR27) 2018; 141
931_CR9
931_CR20
CW Gear (931_CR11) 1974; 11
931_CR22
ML Minion (931_CR28) 2003; 1
PM Gresho (931_CR13) 2008; 30
R Speck (931_CR36) 2015; 55
S Elaydi (931_CR7) 1999
References_xml – ident: CR22
– volume: 141
  start-page: 55
  year: 2018
  end-page: 69
  ident: CR27
  article-title: Adaptive time stepping for fluid-structure interaction solvers
  publication-title: Finite Elements in Analysis and Design
  doi: 10.1016/j.finel.2017.12.002
– year: 1998
  ident: CR32
  publication-title: Verification and Validation in Computational Science and Engineering
– volume: 17
  start-page: 91
  issue: 1
  year: 1977
  end-page: 107
  ident: CR34
  article-title: The control of order and steplength for backward differentiation methods
  publication-title: BIT Numerical Mathematics
  doi: 10.1007/BF01932401
– volume: 148
  start-page: 166
  year: 2017
  end-page: 184
  ident: CR26
  article-title: On efficient high-order semi-implicit time-stepping schemes for unsteady incompressible Navier-Stokes equations
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2017.02.017
– ident: CR2
– ident: CR37
– volume: 37
  start-page: A2656
  issue: 6
  year: 2015
  end-page: A2681
  ident: CR14
  article-title: High-order time stepping for the incompressible Navier-Stokes equations
  publication-title: SIAM J. Scientific Comput.
  doi: 10.1137/140975231
– ident: CR10
– volume: 291
  start-page: 151
  year: 2015
  end-page: 176
  ident: CR17
  article-title: hp-adaptive time integration based on the BDF for viscous flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.03.022
– ident: CR35
– volume: 40
  start-page: 241
  year: 2000
  end-page: 266
  ident: CR6
  article-title: Spectral deferred correction methods for ordinary differential equations
  publication-title: BIT
  doi: 10.1023/A:1022338906936
– ident: CR29
– year: 1991
  ident: CR16
  publication-title: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems
– volume: 1
  start-page: 471
  issue: 3
  year: 2003
  end-page: 500
  ident: CR28
  article-title: Semi-implicit spectral deferred correction methods for ordinary differential equations
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2003.v1.n3.a6
– volume: 6
  start-page: 37
  issue: 2
  year: 1996
  end-page: 50
  ident: CR30
  article-title: On adaptive time stepping approaches for thermal solidification processes
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/09615539610113082
– volume: 41
  start-page: 986
  issue: 5
  year: 2001
  end-page: 995
  ident: CR15
  article-title: Deferred correction methods for initial value problems
  publication-title: BIT Numerical Mathematics
  doi: 10.1023/A:1021937227950
– ident: CR23
– volume: 16
  start-page: 241
  issue: 2
  year: 1979
  end-page: 259
  ident: CR21
  article-title: Difference methods and deferred corrections for ordinary boundary value problems
  publication-title: SIAM J. Numerical Anal.
  doi: 10.1137/0716018
– volume: 100
  start-page: 204
  year: 2014
  end-page: 217
  ident: CR18
  article-title: High-order temporal accuracy for 3D finite-element ALE flow simulations
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2014.04.036
– volume: 30
  start-page: 2018
  issue: 4
  year: 2008
  end-page: 2054
  ident: CR13
  article-title: Adaptive time-stepping for incompressible flow part I: Scalar advection-diffusion
  publication-title: SIAM J. Scientific Comput.
  doi: 10.1137/070688018
– volume: 422
  start-page: 109,734
  year: 2020
  ident: CR4
  article-title: A new k-TMI/ALE fluid-structure formulation to study the low mass ratio dynamics of an elliptical cylinder
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109734
– volume: 190
  start-page: 31
  issue: 1020
  year: 1947
  end-page: 59
  ident: CR8
  article-title: Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations
  publication-title: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
– ident: CR3
– volume: 55
  start-page: 843
  issue: 3
  year: 2015
  end-page: 867
  ident: CR36
  article-title: A multi-level spectral deferred correction method
  publication-title: BIT Numerical Mathematics
  doi: 10.1007/s10543-014-0517-x
– ident: CR38
– year: 1996
  ident: CR39
  publication-title: Solving Ordinary Differential Equations II
– volume: 200
  start-page: 2131
  issue: 25
  year: 2011
  end-page: 2144
  ident: CR33
  article-title: A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2011.03.016
– volume: 13
  start-page: 331
  issue: 7
  year: 2010
  end-page: 340
  ident: CR1
  article-title: A time-adaptive fluid-structure interaction method for thermal coupling
  publication-title: Comput. vis. sci.
  doi: 10.1007/s00791-010-0150-4
– year: 1999
  ident: CR7
  publication-title: An Introduction to Difference Equations
  doi: 10.1007/978-1-4757-3110-1
– ident: CR31
– volume: 57
  start-page: 335
  issue: 3
  year: 2007
  end-page: 353
  ident: CR24
  article-title: Error estimates for deferred correction methods in time
  publication-title: Appl. Numerical Math.
  doi: 10.1016/j.apnum.2006.04.002
– ident: CR9
– volume: 11
  start-page: 1025
  issue: 5
  year: 1974
  end-page: 1043
  ident: CR11
  article-title: The effect of variable mesh size on the stability of multistep methods
  publication-title: SIAM J. Numerical Anal.
  doi: 10.1137/0711079
– ident: CR5
– volume: 199
  start-page: 514
  issue: 9–12
  year: 2010
  end-page: 524
  ident: CR19
  article-title: Adaptive time step control for the incompressible Navier-Stokes equations
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2009.10.005
– volume: 3
  start-page: 41
  issue: 1
  year: 1985
  ident: CR12
  article-title: The deferred correction procedure for linear multistep formulas
  publication-title: J. Comput. Math.
– ident: CR20
– volume: 17
  start-page: 241
  issue: 1–4
  year: 2002
  end-page: 251
  ident: CR25
  article-title: Deferred correction methods for initial boundary value problems
  publication-title: J. Sci Comput.
  doi: 10.1023/A:1015113017248
– ident: 931_CR29
– ident: 931_CR37
– volume-title: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems
  year: 1991
  ident: 931_CR16
– volume: 3
  start-page: 41
  issue: 1
  year: 1985
  ident: 931_CR12
  publication-title: J. Comput. Math.
– volume: 141
  start-page: 55
  year: 2018
  ident: 931_CR27
  publication-title: Finite Elements in Analysis and Design
  doi: 10.1016/j.finel.2017.12.002
– volume: 41
  start-page: 986
  issue: 5
  year: 2001
  ident: 931_CR15
  publication-title: BIT Numerical Mathematics
  doi: 10.1023/A:1021937227950
– ident: 931_CR31
– volume: 17
  start-page: 91
  issue: 1
  year: 1977
  ident: 931_CR34
  publication-title: BIT Numerical Mathematics
  doi: 10.1007/BF01932401
– volume: 291
  start-page: 151
  year: 2015
  ident: 931_CR17
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.03.022
– volume: 16
  start-page: 241
  issue: 2
  year: 1979
  ident: 931_CR21
  publication-title: SIAM J. Numerical Anal.
  doi: 10.1137/0716018
– ident: 931_CR35
  doi: 10.1016/0096-3003(89)90127-6
– ident: 931_CR10
  doi: 10.1007/BFb0062095
– volume: 37
  start-page: A2656
  issue: 6
  year: 2015
  ident: 931_CR14
  publication-title: SIAM J. Scientific Comput.
  doi: 10.1137/140975231
– volume: 100
  start-page: 204
  year: 2014
  ident: 931_CR18
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2014.04.036
– volume: 30
  start-page: 2018
  issue: 4
  year: 2008
  ident: 931_CR13
  publication-title: SIAM J. Scientific Comput.
  doi: 10.1137/070688018
– volume: 40
  start-page: 241
  year: 2000
  ident: 931_CR6
  publication-title: BIT
  doi: 10.1023/A:1022338906936
– volume: 190
  start-page: 31
  issue: 1020
  year: 1947
  ident: 931_CR8
  publication-title: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
– volume: 17
  start-page: 241
  issue: 1–4
  year: 2002
  ident: 931_CR25
  publication-title: J. Sci Comput.
  doi: 10.1023/A:1015113017248
– volume: 55
  start-page: 843
  issue: 3
  year: 2015
  ident: 931_CR36
  publication-title: BIT Numerical Mathematics
  doi: 10.1007/s10543-014-0517-x
– ident: 931_CR2
  doi: 10.1137/1.9781611971224
– volume: 148
  start-page: 166
  year: 2017
  ident: 931_CR26
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2017.02.017
– ident: 931_CR38
– ident: 931_CR5
– ident: 931_CR3
  doi: 10.2514/6.2010-1445
– volume-title: An Introduction to Difference Equations
  year: 1999
  ident: 931_CR7
  doi: 10.1007/978-1-4757-3110-1
– volume: 200
  start-page: 2131
  issue: 25
  year: 2011
  ident: 931_CR33
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2011.03.016
– ident: 931_CR22
– ident: 931_CR23
  doi: 10.1007/s10543-021-00875-y
– volume: 13
  start-page: 331
  issue: 7
  year: 2010
  ident: 931_CR1
  publication-title: Comput. vis. sci.
  doi: 10.1007/s00791-010-0150-4
– volume: 1
  start-page: 471
  issue: 3
  year: 2003
  ident: 931_CR28
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2003.v1.n3.a6
– volume-title: Solving Ordinary Differential Equations II
  year: 1996
  ident: 931_CR39
– volume: 199
  start-page: 514
  issue: 9–12
  year: 2010
  ident: 931_CR19
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2009.10.005
– volume: 422
  start-page: 109,734
  year: 2020
  ident: 931_CR4
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109734
– volume-title: Verification and Validation in Computational Science and Engineering
  year: 1998
  ident: 931_CR32
– ident: 931_CR9
  doi: 10.1016/j.compfluid.2011.08.016
– volume: 11
  start-page: 1025
  issue: 5
  year: 1974
  ident: 931_CR11
  publication-title: SIAM J. Numerical Anal.
  doi: 10.1137/0711079
– volume: 57
  start-page: 335
  issue: 3
  year: 2007
  ident: 931_CR24
  publication-title: Appl. Numerical Math.
  doi: 10.1016/j.apnum.2006.04.002
– ident: 931_CR20
– volume: 6
  start-page: 37
  issue: 2
  year: 1996
  ident: 931_CR30
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/09615539610113082
SSID ssj0029613
ssj0014816
ssj0000615
Score 2.3068697
Snippet This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1789
SubjectTerms Accuracy
Boundary value problems
Computational Mathematics and Numerical Analysis
Differential equations
Differentiation
Formulas (mathematics)
Mathematics
Mathematics and Statistics
Numeric Computing
Ordinary differential equations
Stability
Title Variable-step deferred correction methods based on backward differentiation formulae for ordinary differential equations
URI https://link.springer.com/article/10.1007/s10543-022-00931-1
https://www.proquest.com/docview/2737734403
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MXPTgD9SIIunBmzZZt7bbjmBAooGTGDwtXdudCCIbiX--r1sHaNTE05aua5Z-bd_3rX3vIXSjqRDMkxnJYioJU15K4ph7QOSokhL4sfKtv_N4IkZT9jjjM-cUlten3estyXKl3nF248zuOfrEynBKQPM0udXuMIqnfm9n_aUbBgxk39IfJ8BiQV1mNUFAmXHnRPNz618N1ZZ9ftswLe3Q8BgdOgKJexXiJ2jPLFroyJFJ7KZqDkV1voa6rIUOxpsYrfkp-ngBmWwdpwgAvcTaRpxdQRPK5usovR1wlV46x9bUaQwFqf3bB2MK13lVigpZbKnvei6NvcGgZ0sv391ac2zeq6ji-RmaDgfP9yPi8jAQBeKsIEZlgDSNYsG5YmmoAx2qKBU09bmmxjNg3wIpNHSvNEwFXiazNGNMC67A_uvgHDUWbwtzgbAfSS1jHWmapQykayRkJMrdPE6jUMVtROtOT5QLUm5zZcyTbXhlC1QCQCUlUAlto9vNO8sqRMeftTs1lombrnkCHC4MA_igoI3uany3j39v7fJ_1a_Qvm-HWHkcpoMaxWptroHUFGkXNXvDfn9irw-vT4NuOaY_AaDh7oU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6MHtSDP1AjitqDN22ybm3XHYmRoAInMNyWru1OBJFB4p_v69YBGjXxtnRds_Rr975vr-89hG4NFYIFKid5QhVhOshIkvAAiBzVSgE_1qGLd-4PRHfEnsd87IPCivq0e-2SLL_UG8FunDmfY0icDKcENM8OkAHpDnKNwvbG95euGDCQfUd_vABLBPWV1QQBZcZ9EM3Po381VGv2-c1hWtqhzhE68AQStyvEj9GWnTbQoSeT2G_VAprqeg11WwPt91c5WosT9PEKMtkFThEAeoaNyzg7hyG0q9dRRjvgqrx0gZ2pMxgaMve3D9YUruuqLCpksaO-y4my7gKDni2jfDd7TbB9r7KKF6do1HkcPnSJr8NANIizBbE6B6SpTATnmmWxiUysZSZoFnJDbWDBvkVKGJheZZmOglzlWc6YEVyD_TfRGdqevk3tOcKhVEYlRhqaZwykqxRKitKbx6mMddJEtJ70VPsk5a5WxiRdp1d2QKUAVFoCldImuls9M6tSdPzZu1VjmfrtWqTA4eI4gheKmui-xnd9-_fRLv7X_Qbtdof9Xtp7Grxcor3QLbfyaEwLbS_mS3sFBGeRXZfr-RMUee5o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iIHrwx1ScTs3Bm4Y1bZK2x6GO-WPDg5PdSpqkpzHn2oF_vi9tuk1RwVtJ01DyvfR9X5P3HkKXmgrBPJmRLKaSMOWlJI65B0SOKimBHyvfxjv3B6I3ZA8jPlqJ4i9Pu9dbklVMg83SNCnaU521VwLfOLP7jz6xkpwS0D8b8Dmm1q6HfmflW0wXbBiIv6VCTozFgroqa4KASuMuoObn0b86rSUT_bZ5Wvqk7h7acWQSdyr099GamTTQriOW2C3bHJrq2g11WwNt9xf5WvMD9PEKktkGUREAfYq1zT47gyGUrd1RRj7gqtR0jq3b0xgaUvvnD-wL1zVWigplbGnwfCyNvcCgbcuI39VeY2zeqwzj-SEadu9ebnrE1WQgCoRaQYzKAHUaxYJzxdJQBzpUUSpo6nNNjWfA1wVSaJheaZgKvExmacaYFlwBF9DBEVqfvE3MMcJ-JLWMdaRpljKQsZGQkSh39jiNQhU3Ea0nPVEuYbmtmzFOlqmWLVAJAJWUQCW0ia4Wz0yrdB1_9m7VWCZu6eYJ8LkwDOCFgia6rvFd3v59tJP_db9Am8-33eTpfvB4irZ8a23lKZkWWi9mc3MGXKdIz0tz_gTt4fKk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable-step+deferred+correction+methods+based+on+backward+differentiation+formulae+for+ordinary+differential+equations&rft.jtitle=BIT&rft.au=Bourgault+Yves&rft.au=Garon+Andr%C3%A9&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0006-3835&rft.eissn=1572-9125&rft.volume=62&rft.issue=4&rft.spage=1789&rft.epage=1822&rft_id=info:doi/10.1007%2Fs10543-022-00931-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3835&client=summon