Multi-variable adaptive high-order sliding mode quasi-optimal control with adjustable convergence rate for unmanned helicopters subject to parametric and external uncertainties
This paper presents a novel multi-variable high-order sliding mode quasi-optimal control method for unmanned helicopters. In order to facilitate the theoretical design and engineering implementation, the control system is divided into attitude and position subsystem, and the latter is further subdiv...
Saved in:
Published in | Nonlinear dynamics Vol. 108; no. 4; pp. 3671 - 3692 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel multi-variable high-order sliding mode quasi-optimal control method for unmanned helicopters. In order to facilitate the theoretical design and engineering implementation, the control system is divided into attitude and position subsystem, and the latter is further subdivided into two parts, horizontal and vertical position control. Then the multi-variable adaptive high-order continuous sliding mode controllers are designed for attitude and position, respectively, based on integral sliding mode surface. A new quadratic performance index is proposed in the design process, which enables the control system to converge in finite time, and the convergence rate can be adjusted by control parameters. Finally, the effectiveness and robustness of the proposed method are verified and compared with existing literature by simulation and practical experiments. The comparison results show that the proposed method has higher tracking accuracy and better robustness. |
---|---|
AbstractList | This paper presents a novel multi-variable high-order sliding mode quasi-optimal control method for unmanned helicopters. In order to facilitate the theoretical design and engineering implementation, the control system is divided into attitude and position subsystem, and the latter is further subdivided into two parts, horizontal and vertical position control. Then the multi-variable adaptive high-order continuous sliding mode controllers are designed for attitude and position, respectively, based on integral sliding mode surface. A new quadratic performance index is proposed in the design process, which enables the control system to converge in finite time, and the convergence rate can be adjusted by control parameters. Finally, the effectiveness and robustness of the proposed method are verified and compared with existing literature by simulation and practical experiments. The comparison results show that the proposed method has higher tracking accuracy and better robustness. |
Author | Zhou, Bin |
Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0002-7242-6647 surname: Zhou fullname: Zhou, Bin email: zhoubin@nudt.edu.cn organization: Unmanned Systems Technology Research Center, National Innovation Institute Defense Technology |
BookMark | eNp9kc1qWzEQhUVJoI6TF8hK0LVa_dw_LUtom0JKNy1kJ-ZKc22Za8mRdN32rfqIleNCoYusBobznRnOuSIXIQYk5Fbwt4Lz_l0WgveCcSkZ7xulmHpFVqLtFZOdfrwgK65lw7jmj6_JVc47zrmSfFiR31-WuXh2hORhnJGCg0PxR6Rbv9mymBwmmmfvfNjQfXRInxbInsUq2sNMbQwlxZn-8GVb2d2Sy7NN3R8xbTBYpAkK0ikmuoQ9hICObnH2tlpgyjQv4w5toSXSAyTYY0neUgiO4s8qCPXIUl1SAR-Kx3xNLieYM978nWvy_eOHb3f37OHrp8937x-YlY0uzE126GRveT91bgQrO8ChaceW68ZJYa2W1imUWrdimKDrcBqhZiVblGpouFqTN2ffQ4pPC-ZidnE5vZON7HrRtLqtOa_JcFbZFHNOOBnrCxR_igX8bAQ3p37MuR9T-zHP_ZgTKv9DD6lmmn69DKkzlKs4bDD9--oF6g-oV6qh |
CitedBy_id | crossref_primary_10_3390_s23187676 crossref_primary_10_3390_pr12091787 crossref_primary_10_1080_23307706_2023_2165977 crossref_primary_10_1109_ACCESS_2023_3315845 crossref_primary_10_1109_TASE_2024_3351996 crossref_primary_10_1109_ACCESS_2023_3307195 |
Cites_doi | 10.1108/AEAT-05-2012-0068 10.1109/CDC.2008.4738917 10.1007/s11071-020-05915-w 10.1007/s11071-019-04882-1 10.1007/s10846-013-9910-y 10.1016/j.conengprac.2009.02.012 10.1109/TCST.2010.2042450 10.1007/s11071-015-2387-4 10.1108/00022661111173243 10.1109/TCST.2013.2296519 10.1016/j.ast.2017.07.028 10.1016/j.jfranklin.2016.09.016 10.1007/s11071-020-06050-2 10.1016/j.ast.2018.07.032 10.1109/JAS.2015.7032909 10.1109/TNNLS.2021.3070824 10.1175/1520-0450(1982)021<0770:ADGMFU>2.0.CO;2 10.1007/s11071-018-4618-y 10.1007/s11071-018-4632-0 10.1016/j.ast.2020.105745 10.2514/1.G001196 10.1109/TCYB.2020.3028171 10.1002/asjc.827 10.1108/00022660810859337 10.1007/s40435-013-0019-8 10.1007/s00498-005-0151-x 10.1109/JAS.2015.7032902 10.1007/s11071-013-1031-4 10.1007/s11071-019-04923-9 10.1007/s10846-012-9720-7 10.1016/j.automatica.2021.110143 10.1007/s12555-009-0504-1 10.2514/1.G005183 10.1109/TCST.2015.2396851 10.1007/s10846-012-9656-y 10.1007/s42835-020-00421-w 10.1109/TAC.2021.3115447 10.1007/s11071-017-3516-z 10.1109/ACC.2016.7524961 10.1016/j.jfranklin.2011.10.003 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s11071-022-07433-3 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 3692 |
ExternalDocumentID | 10_1007_s11071_022_07433_3 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c249t-dfc8627c07f6dbac26ae845b5094d21cc92cd3e299518fa66efba26925e238403 |
IEDL.DBID | U2A |
ISSN | 0924-090X |
IngestDate | Fri Jul 25 11:10:42 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Tue Jul 01 01:52:10 EDT 2025 Fri Feb 21 02:45:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Quasi-optimal Nonlinear adaptive control Multi-variable control, Sliding mode control Small-scale unmanned helicopter |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-dfc8627c07f6dbac26ae845b5094d21cc92cd3e299518fa66efba26925e238403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7242-6647 |
PQID | 2671459543 |
PQPubID | 2043746 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2671459543 crossref_citationtrail_10_1007_s11071_022_07433_3 crossref_primary_10_1007_s11071_022_07433_3 springer_journals_10_1007_s11071_022_07433_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220600 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220600 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Lv, M., De Schutter, B., Shi, C., Baldi, S.: Logic-based distributed switching control for agents in power-chained form with multiple unknown control directions. Automatica 137, 110,143 (2022). https://doi.org/10.1016/j.automatica.2021.110143 LiuHDerawiDKimJZhongYRobust optimal attitude control of hexarotor robotic vehiclesNonlinear Dynamics20137441155116810.1007/s11071-013-1031-4 ZhouBLiZZhengZTangSNonlinear adaptive tracking control for a small-scale unmanned helicopter using a learning algorithm with the least parametersNonlinear Dynamics20178921289130810.1007/s11071-017-3516-z Yu, X., Yang, J., Li, S.: Disturbance observer-based autonomous landing control of unmanned helicopters on moving shipboard. Nonlinear Dynamics 102(1), 131–150 (2020) El-FerikSSyedAHOmarHMDericheMANonlinear forward path tracking controller for helicopter with slung loadAerosp. Sci. Technol.20176960260810.1016/j.ast.2017.07.028 JiangTLinDSongTFinite-time control for small-scale unmanned helicopter with disturbancesNonlinear Dynamics20199631747176310.1007/s11071-019-04882-1 LvMYuWCaoJBaldiSA separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systemsIEEE transactions on neural networks and learning systems202110.1109/TNNLS.2021.3070824 MasajediPGhanbarzadehAOptimal controller designing based on linear quadratic regulator technique for an unmanned helicopter at hover with the presence of wind disturbanceInternational Journal of Dynamics and Control20131321422210.1007/s40435-013-0019-8 Ahmed, B., Pota, H.R., Garratt, M.: Flight control of a rotary wing uav–a practical approach. In: IEEE Conference on Decision and Control (2008) FrostWTurnerREA discrete gust model for use in the design of wind energy conversion systemsJ. Appl. Meteorol.198221677077610.1175/1520-0450(1982)021<0770:ADGMFU>2.0.CO;2 JafarABhattiAIAhmadSAhmedNRobust gain-scheduled linear parameter-varying control algorithm for a lab helicopter: A linear matrix inequality-based approachProceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering20182325558571 Wang, B., Shen, Y., Zhang, Y.: Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties. Aerospace Science and Technology 99, 105,745 (2020) ZhaoZCaoDYangJWangHHigh-order sliding mode observer-based trajectory tracking control for a quadrotor uav with uncertain dynamicsNonlinear Dynamics202010242583259610.1007/s11071-020-06050-2 BinXJianchuanGYaoZAdaptive backstepping tracking control of a 6-dof unmanned helicopterIEEE/CAA J. Autom. Sinica2015211924334792510.1109/JAS.2015.7032902 WangHQMianAAWangDBDuanHBRobust multi-mode flight control design for an unmanned helicopter based on multi-loop structureInternational Journal of Control Automation & Systems20097572373010.1007/s12555-009-0504-1 Cisneros, P.S.G., Hoffmann, C., Bartels, M., Werner, H.: Linear parameter-varying controller design for a nonlinear quad-rotor helicopter model for high speed trajectory tracking. In: 2016 American Control Conference (ACC), pp. 486–491 (2016) ZhuBHuoW3-d path-following control for a model-scaled autonomous helicopterIEEE Transactions on Control Systems Technology20142251927193410.1109/TCST.2013.2296519 YangJHHsuWCAdaptive backstepping control for electrically driven unmanned helicopterControl Engineering Practice200917890391310.1016/j.conengprac.2009.02.012 FangXWuAShangYDongNA novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbanceNonlinear Dyn201683110531068343592610.1007/s11071-015-2387-4 ZhouBLuXTangSZhengZNonlinear system identification and trajectory tracking control for a flybarless unmanned helicopter: theory and experimentNonlinear Dynamics20199642307232610.1007/s11071-019-04923-9 ZouYZhengZA robust adaptive rbfnn augmenting backstepping control approach for a model-scaled helicopterIEEE Transactions on Control Systems Technology20152362344235210.1109/TCST.2015.2396851 TijaniIBAkmeliawatiRLegowoABudiyonoArobust controller for autonomous helicopter hovering controlAircraft Engineering & Aerospace Technology201587433034410.1108/AEAT-05-2012-0068 GodboltBVitzilaiosNILynchAFExperimental validation of a helicopter autopilot design using model-based pid controlJournal of Intelligent and Robotic Systems201370138539910.1007/s10846-012-9720-7 HuangYZhuMZhengZFeroskhanMFixed-time autonomous shipboard landing control of a helicopter with external disturbancesAerospace Science and Technology201984183010.1016/j.ast.2018.07.032 HuaCChenJGuanXFractional-order sliding mode control of uncertain quavs with time-varying state constraintsNonlinear Dynamics20199521347136010.1007/s11071-018-4632-0 Thomas, F., Thottungal, A.V., Johnson, M.S.: Composite control of a hovering helicopter based on optimized sliding mode control. Journal of Optimization Theory and Applications pp. 1–20 (2021) FilippovAFDifferential Equations with Discontinuous Right-hand Side1998Dordrecht, The NetherlandsKluwer0138.32204 LvMYuWCaoJBaldiSConsensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based controlIEEE Transactions on Cybernetics202010.1109/TCYB.2020.3028171 SandinoLABejarMKondakKOlleroAAdvances in modeling and control of tethered unmanned helicopters to enhance hovering performanceJournal of Intelligent & Robotic Systems2014731–431810.1007/s10846-013-9910-y HalbeOHajekMRobust helicopter sliding mode control for enhanced handling and trajectory followingJournal of Guidance, Control, and Dynamics202043101805182110.2514/1.G005183 LuHLiuCGuoLChenWHFlight control design for small-scale helicopter using disturbance-observer-based backsteppingJournal of Guidance, Control, and Dynamics201538112235224010.2514/1.G001196 HeYPeiHSunTRobust tracking control of helicopters using backstepping with disturbance observersAsian Journal of Control20151651387140210.1002/asjc.827 ZhongYOptimal Control2015BeijingTsinghua University Press FangXWuAShangYDongNRobust control of small-scale unmanned helicopter with matched and mismatched disturbancesJ. Franklin Inst.20163531848034820356539610.1016/j.jfranklin.2016.09.016 MahmoudMSKoesdwiadyABImproved digital tracking controller design for pilot-scale unmanned helicopterJournal of the Franklin Institute201234914258287472510.1016/j.jfranklin.2011.10.003 FangZTianHLiPProbabilistic robust linear parameter-varying control of a small helicopter using iterative scenario approachIEEE/CAA J. Autom. Sinica2015218593334793210.1109/JAS.2015.7032909 DingSMeiKYuXAdaptive second-order sliding mode control: a lyapunov approachIEEE Trans. Autom. Control202110.1109/TAC.2021.3115447 WangTYangCLiangJWuYWangCZhangYChaos-genetic algorithm for the system identification of a small unmanned helicopterJournal of Intelligent & Robotic Systems2012673–432333810.1007/s10846-012-9656-y TijaniIBAkmeliawatiRLegowoABudiyonoAMuthalifAArobust controller for autonomous helicopter hovering controlAircraft Engineering & Aerospace Technology201183636337410.1108/00022661111173243 RaptisIAValavanisKPMorenoWAA novel nonlinear backstepping controller design for helicopters using the rotation matrixIEEE Transactions on Control Systems Technology201119246547310.1109/TCST.2010.2042450 KumarMVOmkarSNSureshSSampathPGanguliRDesign of a stability augmentation system for a helicopter using lqr control and ads-33 handling qualities specificationsAircraft Engineering and Aerospace Technology200880211112310.1108/00022660810859337 BhatSPBernsteinDSGeometric homogeneity with applications to finite-time stabilityMath. Control Signals Syst.2005172101127215095610.1007/s00498-005-0151-x MaqsoodHQuYNonlinear disturbance observer based sliding mode control of quadrotor helicopterJournal of Electrical Engineering & Technology20201531453146110.1007/s42835-020-00421-w WangDZongQTianBLuHWangJAdaptive finite-time reconfiguration control of unmanned aerial vehicles with a moving leaderNonlinear Dynamics20199521099111610.1007/s11071-018-4618-y HQ Wang (7433_CR35) 2009; 7 7433_CR22 Y Zhong (7433_CR40) 2015 H Liu (7433_CR20) 2013; 74 Y Huang (7433_CR16) 2019; 84 H Lu (7433_CR21) 2015; 38 7433_CR4 7433_CR1 W Frost (7433_CR11) 1982; 21 T Wang (7433_CR36) 2012; 67 C Hua (7433_CR15) 2019; 95 B Zhou (7433_CR41) 2017; 89 P Masajedi (7433_CR27) 2013; 1 LA Sandino (7433_CR29) 2014; 73 O Halbe (7433_CR13) 2020; 43 M Lv (7433_CR24) 2021 Y He (7433_CR14) 2015; 16 Z Zhao (7433_CR39) 2020; 102 MS Mahmoud (7433_CR25) 2012; 349 7433_CR33 IB Tijani (7433_CR31) 2015; 87 IA Raptis (7433_CR28) 2011; 19 T Jiang (7433_CR18) 2019; 96 SP Bhat (7433_CR2) 2005; 17 7433_CR38 B Zhou (7433_CR42) 2019; 96 S Ding (7433_CR5) 2021 X Bin (7433_CR3) 2015; 2 Y Zou (7433_CR44) 2015; 23 A Jafar (7433_CR17) 2018; 232 AF Filippov (7433_CR10) 1998 IB Tijani (7433_CR32) 2011; 83 H Maqsood (7433_CR26) 2020; 15 D Wang (7433_CR34) 2019; 95 JH Yang (7433_CR37) 2009; 17 M Lv (7433_CR23) 2020 X Fang (7433_CR8) 2016; 353 B Zhu (7433_CR43) 2014; 22 B Godbolt (7433_CR12) 2013; 70 MV Kumar (7433_CR19) 2008; 80 Z Fang (7433_CR9) 2015; 2 X Fang (7433_CR7) 2016; 83 S El-Ferik (7433_CR6) 2017; 69 7433_CR30 |
References_xml | – reference: BhatSPBernsteinDSGeometric homogeneity with applications to finite-time stabilityMath. Control Signals Syst.2005172101127215095610.1007/s00498-005-0151-x – reference: WangHQMianAAWangDBDuanHBRobust multi-mode flight control design for an unmanned helicopter based on multi-loop structureInternational Journal of Control Automation & Systems20097572373010.1007/s12555-009-0504-1 – reference: HeYPeiHSunTRobust tracking control of helicopters using backstepping with disturbance observersAsian Journal of Control20151651387140210.1002/asjc.827 – reference: HalbeOHajekMRobust helicopter sliding mode control for enhanced handling and trajectory followingJournal of Guidance, Control, and Dynamics202043101805182110.2514/1.G005183 – reference: RaptisIAValavanisKPMorenoWAA novel nonlinear backstepping controller design for helicopters using the rotation matrixIEEE Transactions on Control Systems Technology201119246547310.1109/TCST.2010.2042450 – reference: WangTYangCLiangJWuYWangCZhangYChaos-genetic algorithm for the system identification of a small unmanned helicopterJournal of Intelligent & Robotic Systems2012673–432333810.1007/s10846-012-9656-y – reference: ZhouBLiZZhengZTangSNonlinear adaptive tracking control for a small-scale unmanned helicopter using a learning algorithm with the least parametersNonlinear Dynamics20178921289130810.1007/s11071-017-3516-z – reference: MaqsoodHQuYNonlinear disturbance observer based sliding mode control of quadrotor helicopterJournal of Electrical Engineering & Technology20201531453146110.1007/s42835-020-00421-w – reference: ZhaoZCaoDYangJWangHHigh-order sliding mode observer-based trajectory tracking control for a quadrotor uav with uncertain dynamicsNonlinear Dynamics202010242583259610.1007/s11071-020-06050-2 – reference: KumarMVOmkarSNSureshSSampathPGanguliRDesign of a stability augmentation system for a helicopter using lqr control and ads-33 handling qualities specificationsAircraft Engineering and Aerospace Technology200880211112310.1108/00022660810859337 – reference: TijaniIBAkmeliawatiRLegowoABudiyonoAMuthalifAArobust controller for autonomous helicopter hovering controlAircraft Engineering & Aerospace Technology201183636337410.1108/00022661111173243 – reference: FilippovAFDifferential Equations with Discontinuous Right-hand Side1998Dordrecht, The NetherlandsKluwer0138.32204 – reference: ZhouBLuXTangSZhengZNonlinear system identification and trajectory tracking control for a flybarless unmanned helicopter: theory and experimentNonlinear Dynamics20199642307232610.1007/s11071-019-04923-9 – reference: Thomas, F., Thottungal, A.V., Johnson, M.S.: Composite control of a hovering helicopter based on optimized sliding mode control. Journal of Optimization Theory and Applications pp. 1–20 (2021) – reference: FangXWuAShangYDongNRobust control of small-scale unmanned helicopter with matched and mismatched disturbancesJ. Franklin Inst.20163531848034820356539610.1016/j.jfranklin.2016.09.016 – reference: JiangTLinDSongTFinite-time control for small-scale unmanned helicopter with disturbancesNonlinear Dynamics20199631747176310.1007/s11071-019-04882-1 – reference: WangDZongQTianBLuHWangJAdaptive finite-time reconfiguration control of unmanned aerial vehicles with a moving leaderNonlinear Dynamics20199521099111610.1007/s11071-018-4618-y – reference: El-FerikSSyedAHOmarHMDericheMANonlinear forward path tracking controller for helicopter with slung loadAerosp. Sci. Technol.20176960260810.1016/j.ast.2017.07.028 – reference: LuHLiuCGuoLChenWHFlight control design for small-scale helicopter using disturbance-observer-based backsteppingJournal of Guidance, Control, and Dynamics201538112235224010.2514/1.G001196 – reference: Cisneros, P.S.G., Hoffmann, C., Bartels, M., Werner, H.: Linear parameter-varying controller design for a nonlinear quad-rotor helicopter model for high speed trajectory tracking. In: 2016 American Control Conference (ACC), pp. 486–491 (2016) – reference: HuangYZhuMZhengZFeroskhanMFixed-time autonomous shipboard landing control of a helicopter with external disturbancesAerospace Science and Technology201984183010.1016/j.ast.2018.07.032 – reference: FrostWTurnerREA discrete gust model for use in the design of wind energy conversion systemsJ. Appl. Meteorol.198221677077610.1175/1520-0450(1982)021<0770:ADGMFU>2.0.CO;2 – reference: TijaniIBAkmeliawatiRLegowoABudiyonoArobust controller for autonomous helicopter hovering controlAircraft Engineering & Aerospace Technology201587433034410.1108/AEAT-05-2012-0068 – reference: ZouYZhengZA robust adaptive rbfnn augmenting backstepping control approach for a model-scaled helicopterIEEE Transactions on Control Systems Technology20152362344235210.1109/TCST.2015.2396851 – reference: SandinoLABejarMKondakKOlleroAAdvances in modeling and control of tethered unmanned helicopters to enhance hovering performanceJournal of Intelligent & Robotic Systems2014731–431810.1007/s10846-013-9910-y – reference: LvMYuWCaoJBaldiSA separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systemsIEEE transactions on neural networks and learning systems202110.1109/TNNLS.2021.3070824 – reference: MasajediPGhanbarzadehAOptimal controller designing based on linear quadratic regulator technique for an unmanned helicopter at hover with the presence of wind disturbanceInternational Journal of Dynamics and Control20131321422210.1007/s40435-013-0019-8 – reference: MahmoudMSKoesdwiadyABImproved digital tracking controller design for pilot-scale unmanned helicopterJournal of the Franklin Institute201234914258287472510.1016/j.jfranklin.2011.10.003 – reference: LvMYuWCaoJBaldiSConsensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based controlIEEE Transactions on Cybernetics202010.1109/TCYB.2020.3028171 – reference: FangXWuAShangYDongNA novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbanceNonlinear Dyn201683110531068343592610.1007/s11071-015-2387-4 – reference: Wang, B., Shen, Y., Zhang, Y.: Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties. Aerospace Science and Technology 99, 105,745 (2020) – reference: GodboltBVitzilaiosNILynchAFExperimental validation of a helicopter autopilot design using model-based pid controlJournal of Intelligent and Robotic Systems201370138539910.1007/s10846-012-9720-7 – reference: YangJHHsuWCAdaptive backstepping control for electrically driven unmanned helicopterControl Engineering Practice200917890391310.1016/j.conengprac.2009.02.012 – reference: DingSMeiKYuXAdaptive second-order sliding mode control: a lyapunov approachIEEE Trans. Autom. Control202110.1109/TAC.2021.3115447 – reference: LiuHDerawiDKimJZhongYRobust optimal attitude control of hexarotor robotic vehiclesNonlinear Dynamics20137441155116810.1007/s11071-013-1031-4 – reference: BinXJianchuanGYaoZAdaptive backstepping tracking control of a 6-dof unmanned helicopterIEEE/CAA J. Autom. Sinica2015211924334792510.1109/JAS.2015.7032902 – reference: FangZTianHLiPProbabilistic robust linear parameter-varying control of a small helicopter using iterative scenario approachIEEE/CAA J. Autom. Sinica2015218593334793210.1109/JAS.2015.7032909 – reference: JafarABhattiAIAhmadSAhmedNRobust gain-scheduled linear parameter-varying control algorithm for a lab helicopter: A linear matrix inequality-based approachProceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering20182325558571 – reference: ZhuBHuoW3-d path-following control for a model-scaled autonomous helicopterIEEE Transactions on Control Systems Technology20142251927193410.1109/TCST.2013.2296519 – reference: HuaCChenJGuanXFractional-order sliding mode control of uncertain quavs with time-varying state constraintsNonlinear Dynamics20199521347136010.1007/s11071-018-4632-0 – reference: Yu, X., Yang, J., Li, S.: Disturbance observer-based autonomous landing control of unmanned helicopters on moving shipboard. Nonlinear Dynamics 102(1), 131–150 (2020) – reference: ZhongYOptimal Control2015BeijingTsinghua University Press – reference: Lv, M., De Schutter, B., Shi, C., Baldi, S.: Logic-based distributed switching control for agents in power-chained form with multiple unknown control directions. Automatica 137, 110,143 (2022). https://doi.org/10.1016/j.automatica.2021.110143 – reference: Ahmed, B., Pota, H.R., Garratt, M.: Flight control of a rotary wing uav–a practical approach. In: IEEE Conference on Decision and Control (2008) – volume: 87 start-page: 330 issue: 4 year: 2015 ident: 7433_CR31 publication-title: Aircraft Engineering & Aerospace Technology doi: 10.1108/AEAT-05-2012-0068 – ident: 7433_CR1 doi: 10.1109/CDC.2008.4738917 – ident: 7433_CR38 doi: 10.1007/s11071-020-05915-w – volume: 96 start-page: 1747 issue: 3 year: 2019 ident: 7433_CR18 publication-title: Nonlinear Dynamics doi: 10.1007/s11071-019-04882-1 – volume: 73 start-page: 3 issue: 1–4 year: 2014 ident: 7433_CR29 publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-013-9910-y – volume: 17 start-page: 903 issue: 8 year: 2009 ident: 7433_CR37 publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2009.02.012 – volume: 19 start-page: 465 issue: 2 year: 2011 ident: 7433_CR28 publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2010.2042450 – volume: 83 start-page: 1053 issue: 1 year: 2016 ident: 7433_CR7 publication-title: Nonlinear Dyn doi: 10.1007/s11071-015-2387-4 – volume: 83 start-page: 363 issue: 6 year: 2011 ident: 7433_CR32 publication-title: Aircraft Engineering & Aerospace Technology doi: 10.1108/00022661111173243 – volume: 22 start-page: 1927 issue: 5 year: 2014 ident: 7433_CR43 publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2013.2296519 – volume: 69 start-page: 602 year: 2017 ident: 7433_CR6 publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.07.028 – volume: 353 start-page: 4803 issue: 18 year: 2016 ident: 7433_CR8 publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2016.09.016 – volume: 102 start-page: 2583 issue: 4 year: 2020 ident: 7433_CR39 publication-title: Nonlinear Dynamics doi: 10.1007/s11071-020-06050-2 – volume: 84 start-page: 18 year: 2019 ident: 7433_CR16 publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2018.07.032 – volume: 2 start-page: 85 issue: 1 year: 2015 ident: 7433_CR9 publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2015.7032909 – year: 2021 ident: 7433_CR24 publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2021.3070824 – volume: 21 start-page: 770 issue: 6 year: 1982 ident: 7433_CR11 publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1982)021<0770:ADGMFU>2.0.CO;2 – volume: 95 start-page: 1099 issue: 2 year: 2019 ident: 7433_CR34 publication-title: Nonlinear Dynamics doi: 10.1007/s11071-018-4618-y – volume-title: Differential Equations with Discontinuous Right-hand Side year: 1998 ident: 7433_CR10 – volume: 95 start-page: 1347 issue: 2 year: 2019 ident: 7433_CR15 publication-title: Nonlinear Dynamics doi: 10.1007/s11071-018-4632-0 – volume-title: Optimal Control year: 2015 ident: 7433_CR40 – ident: 7433_CR33 doi: 10.1016/j.ast.2020.105745 – volume: 38 start-page: 2235 issue: 11 year: 2015 ident: 7433_CR21 publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.G001196 – year: 2020 ident: 7433_CR23 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.3028171 – volume: 16 start-page: 1387 issue: 5 year: 2015 ident: 7433_CR14 publication-title: Asian Journal of Control doi: 10.1002/asjc.827 – volume: 232 start-page: 558 issue: 5 year: 2018 ident: 7433_CR17 publication-title: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering – volume: 80 start-page: 111 issue: 2 year: 2008 ident: 7433_CR19 publication-title: Aircraft Engineering and Aerospace Technology doi: 10.1108/00022660810859337 – ident: 7433_CR30 – volume: 1 start-page: 214 issue: 3 year: 2013 ident: 7433_CR27 publication-title: International Journal of Dynamics and Control doi: 10.1007/s40435-013-0019-8 – volume: 17 start-page: 101 issue: 2 year: 2005 ident: 7433_CR2 publication-title: Math. Control Signals Syst. doi: 10.1007/s00498-005-0151-x – volume: 2 start-page: 19 issue: 1 year: 2015 ident: 7433_CR3 publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2015.7032902 – volume: 74 start-page: 1155 issue: 4 year: 2013 ident: 7433_CR20 publication-title: Nonlinear Dynamics doi: 10.1007/s11071-013-1031-4 – volume: 96 start-page: 2307 issue: 4 year: 2019 ident: 7433_CR42 publication-title: Nonlinear Dynamics doi: 10.1007/s11071-019-04923-9 – volume: 70 start-page: 385 issue: 1 year: 2013 ident: 7433_CR12 publication-title: Journal of Intelligent and Robotic Systems doi: 10.1007/s10846-012-9720-7 – ident: 7433_CR22 doi: 10.1016/j.automatica.2021.110143 – volume: 7 start-page: 723 issue: 5 year: 2009 ident: 7433_CR35 publication-title: International Journal of Control Automation & Systems doi: 10.1007/s12555-009-0504-1 – volume: 43 start-page: 1805 issue: 10 year: 2020 ident: 7433_CR13 publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.G005183 – volume: 23 start-page: 2344 issue: 6 year: 2015 ident: 7433_CR44 publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2015.2396851 – volume: 67 start-page: 323 issue: 3–4 year: 2012 ident: 7433_CR36 publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-012-9656-y – volume: 15 start-page: 1453 issue: 3 year: 2020 ident: 7433_CR26 publication-title: Journal of Electrical Engineering & Technology doi: 10.1007/s42835-020-00421-w – year: 2021 ident: 7433_CR5 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2021.3115447 – volume: 89 start-page: 1289 issue: 2 year: 2017 ident: 7433_CR41 publication-title: Nonlinear Dynamics doi: 10.1007/s11071-017-3516-z – ident: 7433_CR4 doi: 10.1109/ACC.2016.7524961 – volume: 349 start-page: 42 issue: 1 year: 2012 ident: 7433_CR25 publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2011.10.003 |
SSID | ssj0003208 |
Score | 2.3823955 |
Snippet | This paper presents a novel multi-variable high-order sliding mode quasi-optimal control method for unmanned helicopters. In order to facilitate the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3671 |
SubjectTerms | Adaptive control Attitudes Automotive Engineering Classical Mechanics Closed loop systems Continuity (mathematics) Control Control methods Control theory Controllers Convergence Design Dynamical Systems Engineering Equilibrium Experiments Helicopter control Helicopters Mechanical Engineering Neural networks Optimal control Original Paper Performance indices Robustness Simulation Sliding mode control Subsystems Unmanned helicopters Vertical orientation Vibration |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9RADB2V7QUOQAuIhYJ86K0dkcxXkhOCqlWFRFUhKu0tciYTAepmt2SX38VPxJ6ddKESPWdmcrDH9vPYz0IcNgFJU4KVWBFcNXneygY1SrLHVZFj2WXIvcOfL9z5lfk0s7OUcBtSWeVoE6Ohbheec-TvlCtyYytr9PvljeSpUfy6mkZoPBC7ZILLciJ2P55eXH65tcVaxZl0GaEMzkjMUtvMpnmOkA9BacXVl0Zrqf91Tdt4884TafQ8Z0_F4xQywoeNjPfETuj3xZMUPkK6nMO-ePQXt-Az8Tu21spfhIW5OwqwxSWbNmCCYhkZN4FiTHZdwONw4GaNw3e5oEVz-lsqYQfO09LeH9xnxcfEKvXYsBmAWSaAgl5Y93Nkew3fwjVp1pIZO2FYN5zjgdUCmF98zqO7PGDfwsg8Tfv8piKBWV2fi6uz068n5zKNZ5CeMNtKtp0nOFT4rOhc26BXDkNpbMOUfK3Kva-Ub3Ugf2fzskPnQtegcpWygeIEk-kXYtIv-vBSADKRVWVcHvGqI5CDBVplrDZZcMFORT5KpvaJu5xHaFzXW9ZllmZN0qyjNGs9FUe3e5Yb5o57Vx-MAq_TLR7qrc5NxfGoBNvP_z_t1f2nvRYPVdQ7TuYciMnq5zq8odhm1bxNCvwHvx35Lg priority: 102 providerName: ProQuest |
Title | Multi-variable adaptive high-order sliding mode quasi-optimal control with adjustable convergence rate for unmanned helicopters subject to parametric and external uncertainties |
URI | https://link.springer.com/article/10.1007/s11071-022-07433-3 https://www.proquest.com/docview/2671459543 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7R9gIHHgVEoURz4AYr2ftyfAwoaQWiQohI4WSN12tB1TgBJ_wufiIzm3UDCJA4-bAPH2Z2Zr7dmW-EeFYHJE0JVmJJcNXkeSNr1CjJHpdFjuM2Q64dfnvhzufm9cIuUlFYP2S7D0-S0VLvi90IqRD0VZwtabSW-kAcWcLunMg1V5Nr-6tV7EOXEbLgW4hFKpX58x6_uqN9jPnbs2j0NrO74nYKE2Gyk-s9cSN0x-JOChkhHcj-WNz6iU_wvvgey2nlN8K_XBEF2OCazRkwKbGMLJtAcSW7K-AWOPBli_1nuaJJS_pbSlsHvpultZdcW8XbxMz0WKQZgJklgAJd2HZLZBsNn8IVadOaWTqh39Z8rwObFTCn-JLbdXnAroGBbZrW-V0WAjO5PhDz2fTDq3OZWjJITzhtI5vWEwQqfFa0rqnRK4dhbGzNNHyNyr0vlW90IB9n83GLzoW2RuVKZQPFBibTD8Vht-rCIwHI5FWlcXnEqI6ADRZolbHaZMEFeyLyQTKVT3zl3DbjqtozLbM0K5JmFaVZ6RPx_HrNesfW8c_Zp4PAq3Ry-0q5Ije2tIaGXwxKsB_--26P_2_6E3FTRT3kC51Tcbj5ug1PKb7Z1CNxMJ6djcTR5Ozjmyl9X04v3r0fRSX_AQZV-Kk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VcoAe-CigBgrMAU6wwl7vruNDVSEgpPTj1Eq5mfV6LUCNk-IExJ9C_YmdWdsNINFbz_FuDjOemTee9wbgReEteYrXwmYEV1Ucl6KwiRUUj7M0tsMqsswdPjwy4xP1aaIna_C758LwWGUfE0OgLmeOe-RvpEljpTOtkt35meCtUfx1tV-h0brFvv_1kyBbs7P3nuz7UsrRh-N3Y9FtFRCOoMZClJWjKj51UVqZsrBOGuuHShesJFfK2LlMujLxFKZ1PKysMb4qrDSZ1J7Sm4oSuvcG3FQJZXJmpo8-Xkb-RIYNeBFhGu5_TDqSTkvVI5xFwF3yrCedFcnfiXBV3f7zQTbkudE9uNMVqPi29aj7sObrTbjbFavYhYJmEzb-UDJ8AOeByCt-EPJmLhba0s45kCLLIYug74lU0XKiRF6-g2dL23wVM3poSv_WDcwjd4Xp7DdmdfE1YSY-0EM9sqYFUomNy3pqOTvgF39KfjxnfVBslgV3lHAxQ1Yzn_KiMIe2LrHXuaZzrp1_YA3Zh3ByLWZ7BOv1rPZbgJZlszJl4oCODUEqm1otlU5U5I3XA4h7y-SuU0rnhR2n-Urjma2ZkzXzYM08GcCryzPzVifkyqe3e4PnXcxo8pWHD-B17wSrn_9_2-Orb3sOt8bHhwf5wd7R_hO4LYMPchtpG9YX35f-KVVVi-JZcGWEz9f97lwAy3M0_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSFV7AApF5dk5cKMWG8d2NkcErHi0iENX2ls0cRy1iM1uu1l-Fz-RGW_CUgRIvcaPHGY8ns-e77MQ-7lH8hRvJKYEV3UUFTLHGCXF4zSJsFt2kLnDP67sWV9fDMzgCYs_VLu3V5IzTgOrNFX14bgoD-fEN0ItBIMVV07qOJbxO7GkmQ1MHt1XR4-xmL6EWEwog08kBg1t5uU5_t2a5vnmsyvSsPP0VsVykzLC0czGn8SCr9bESpM-QrM4J2vi4xNtwXVxH6i18o6wMLOjAAscc2gDFiiWQXETKMfkrQv4ORz4M8XJbzmiTkP6W1PCDnxOS2NvmGfF04Qq9UDY9MAqE0BJL0yrIXK8hl_-ljxrzIqdMJnmfMYD9QhYX3zIT3c5wKqAVnmaxrlZRQKrun4W_d7pz-Mz2TzPIB1htloWpSM4lLhOUtoiR6cs-q42OUvyFSpyLlWuiD3tdybqlmitL3NUNlXGU56gO_GGWKxGlf8iAFnIKtU2CnjVEsjBBI3SJtYdb73ZFFFrmcw12uX8hMZtNlddZmtmZM0sWDOLN8XB45jxTLnjzd47rcGzZhVPMmWTSJvUaGr-1jrBvPn12bb-r_tX8f76pJd9P7-63BYfVHBJPufZEYv136nfpbSnzveCZz8AePn7uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-variable+adaptive+high-order+sliding+mode+quasi-optimal+control+with+adjustable+convergence+rate+for+unmanned+helicopters+subject+to+parametric+and+external+uncertainties&rft.jtitle=Nonlinear+dynamics&rft.au=Zhou%2C+Bin&rft.date=2022-06-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=108&rft.issue=4&rft.spage=3671&rft.epage=3692&rft_id=info:doi/10.1007%2Fs11071-022-07433-3&rft.externalDocID=10_1007_s11071_022_07433_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |