Multi-variable adaptive high-order sliding mode quasi-optimal control with adjustable convergence rate for unmanned helicopters subject to parametric and external uncertainties

This paper presents a novel multi-variable high-order sliding mode quasi-optimal control method for unmanned helicopters. In order to facilitate the theoretical design and engineering implementation, the control system is divided into attitude and position subsystem, and the latter is further subdiv...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 108; no. 4; pp. 3671 - 3692
Main Author Zhou, Bin
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel multi-variable high-order sliding mode quasi-optimal control method for unmanned helicopters. In order to facilitate the theoretical design and engineering implementation, the control system is divided into attitude and position subsystem, and the latter is further subdivided into two parts, horizontal and vertical position control. Then the multi-variable adaptive high-order continuous sliding mode controllers are designed for attitude and position, respectively, based on integral sliding mode surface. A new quadratic performance index is proposed in the design process, which enables the control system to converge in finite time, and the convergence rate can be adjusted by control parameters. Finally, the effectiveness and robustness of the proposed method are verified and compared with existing literature by simulation and practical experiments. The comparison results show that the proposed method has higher tracking accuracy and better robustness.
AbstractList This paper presents a novel multi-variable high-order sliding mode quasi-optimal control method for unmanned helicopters. In order to facilitate the theoretical design and engineering implementation, the control system is divided into attitude and position subsystem, and the latter is further subdivided into two parts, horizontal and vertical position control. Then the multi-variable adaptive high-order continuous sliding mode controllers are designed for attitude and position, respectively, based on integral sliding mode surface. A new quadratic performance index is proposed in the design process, which enables the control system to converge in finite time, and the convergence rate can be adjusted by control parameters. Finally, the effectiveness and robustness of the proposed method are verified and compared with existing literature by simulation and practical experiments. The comparison results show that the proposed method has higher tracking accuracy and better robustness.
Author Zhou, Bin
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0002-7242-6647
  surname: Zhou
  fullname: Zhou, Bin
  email: zhoubin@nudt.edu.cn
  organization: Unmanned Systems Technology Research Center, National Innovation Institute Defense Technology
BookMark eNp9kc1qWzEQhUVJoI6TF8hK0LVa_dw_LUtom0JKNy1kJ-ZKc22Za8mRdN32rfqIleNCoYusBobznRnOuSIXIQYk5Fbwt4Lz_l0WgveCcSkZ7xulmHpFVqLtFZOdfrwgK65lw7jmj6_JVc47zrmSfFiR31-WuXh2hORhnJGCg0PxR6Rbv9mymBwmmmfvfNjQfXRInxbInsUq2sNMbQwlxZn-8GVb2d2Sy7NN3R8xbTBYpAkK0ikmuoQ9hICObnH2tlpgyjQv4w5toSXSAyTYY0neUgiO4s8qCPXIUl1SAR-Kx3xNLieYM978nWvy_eOHb3f37OHrp8937x-YlY0uzE126GRveT91bgQrO8ChaceW68ZJYa2W1imUWrdimKDrcBqhZiVblGpouFqTN2ffQ4pPC-ZidnE5vZON7HrRtLqtOa_JcFbZFHNOOBnrCxR_igX8bAQ3p37MuR9T-zHP_ZgTKv9DD6lmmn69DKkzlKs4bDD9--oF6g-oV6qh
CitedBy_id crossref_primary_10_3390_s23187676
crossref_primary_10_3390_pr12091787
crossref_primary_10_1080_23307706_2023_2165977
crossref_primary_10_1109_ACCESS_2023_3315845
crossref_primary_10_1109_TASE_2024_3351996
crossref_primary_10_1109_ACCESS_2023_3307195
Cites_doi 10.1108/AEAT-05-2012-0068
10.1109/CDC.2008.4738917
10.1007/s11071-020-05915-w
10.1007/s11071-019-04882-1
10.1007/s10846-013-9910-y
10.1016/j.conengprac.2009.02.012
10.1109/TCST.2010.2042450
10.1007/s11071-015-2387-4
10.1108/00022661111173243
10.1109/TCST.2013.2296519
10.1016/j.ast.2017.07.028
10.1016/j.jfranklin.2016.09.016
10.1007/s11071-020-06050-2
10.1016/j.ast.2018.07.032
10.1109/JAS.2015.7032909
10.1109/TNNLS.2021.3070824
10.1175/1520-0450(1982)021<0770:ADGMFU>2.0.CO;2
10.1007/s11071-018-4618-y
10.1007/s11071-018-4632-0
10.1016/j.ast.2020.105745
10.2514/1.G001196
10.1109/TCYB.2020.3028171
10.1002/asjc.827
10.1108/00022660810859337
10.1007/s40435-013-0019-8
10.1007/s00498-005-0151-x
10.1109/JAS.2015.7032902
10.1007/s11071-013-1031-4
10.1007/s11071-019-04923-9
10.1007/s10846-012-9720-7
10.1016/j.automatica.2021.110143
10.1007/s12555-009-0504-1
10.2514/1.G005183
10.1109/TCST.2015.2396851
10.1007/s10846-012-9656-y
10.1007/s42835-020-00421-w
10.1109/TAC.2021.3115447
10.1007/s11071-017-3516-z
10.1109/ACC.2016.7524961
10.1016/j.jfranklin.2011.10.003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-022-07433-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 3692
ExternalDocumentID 10_1007_s11071_022_07433_3
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c249t-dfc8627c07f6dbac26ae845b5094d21cc92cd3e299518fa66efba26925e238403
IEDL.DBID U2A
ISSN 0924-090X
IngestDate Fri Jul 25 11:10:42 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Tue Jul 01 01:52:10 EDT 2025
Fri Feb 21 02:45:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Quasi-optimal
Nonlinear adaptive control
Multi-variable control, Sliding mode control
Small-scale unmanned helicopter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-dfc8627c07f6dbac26ae845b5094d21cc92cd3e299518fa66efba26925e238403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7242-6647
PQID 2671459543
PQPubID 2043746
PageCount 22
ParticipantIDs proquest_journals_2671459543
crossref_citationtrail_10_1007_s11071_022_07433_3
crossref_primary_10_1007_s11071_022_07433_3
springer_journals_10_1007_s11071_022_07433_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220600
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Lv, M., De Schutter, B., Shi, C., Baldi, S.: Logic-based distributed switching control for agents in power-chained form with multiple unknown control directions. Automatica 137, 110,143 (2022). https://doi.org/10.1016/j.automatica.2021.110143
LiuHDerawiDKimJZhongYRobust optimal attitude control of hexarotor robotic vehiclesNonlinear Dynamics20137441155116810.1007/s11071-013-1031-4
ZhouBLiZZhengZTangSNonlinear adaptive tracking control for a small-scale unmanned helicopter using a learning algorithm with the least parametersNonlinear Dynamics20178921289130810.1007/s11071-017-3516-z
Yu, X., Yang, J., Li, S.: Disturbance observer-based autonomous landing control of unmanned helicopters on moving shipboard. Nonlinear Dynamics 102(1), 131–150 (2020)
El-FerikSSyedAHOmarHMDericheMANonlinear forward path tracking controller for helicopter with slung loadAerosp. Sci. Technol.20176960260810.1016/j.ast.2017.07.028
JiangTLinDSongTFinite-time control for small-scale unmanned helicopter with disturbancesNonlinear Dynamics20199631747176310.1007/s11071-019-04882-1
LvMYuWCaoJBaldiSA separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systemsIEEE transactions on neural networks and learning systems202110.1109/TNNLS.2021.3070824
MasajediPGhanbarzadehAOptimal controller designing based on linear quadratic regulator technique for an unmanned helicopter at hover with the presence of wind disturbanceInternational Journal of Dynamics and Control20131321422210.1007/s40435-013-0019-8
Ahmed, B., Pota, H.R., Garratt, M.: Flight control of a rotary wing uav–a practical approach. In: IEEE Conference on Decision and Control (2008)
FrostWTurnerREA discrete gust model for use in the design of wind energy conversion systemsJ. Appl. Meteorol.198221677077610.1175/1520-0450(1982)021<0770:ADGMFU>2.0.CO;2
JafarABhattiAIAhmadSAhmedNRobust gain-scheduled linear parameter-varying control algorithm for a lab helicopter: A linear matrix inequality-based approachProceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering20182325558571
Wang, B., Shen, Y., Zhang, Y.: Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties. Aerospace Science and Technology 99, 105,745 (2020)
ZhaoZCaoDYangJWangHHigh-order sliding mode observer-based trajectory tracking control for a quadrotor uav with uncertain dynamicsNonlinear Dynamics202010242583259610.1007/s11071-020-06050-2
BinXJianchuanGYaoZAdaptive backstepping tracking control of a 6-dof unmanned helicopterIEEE/CAA J. Autom. Sinica2015211924334792510.1109/JAS.2015.7032902
WangHQMianAAWangDBDuanHBRobust multi-mode flight control design for an unmanned helicopter based on multi-loop structureInternational Journal of Control Automation & Systems20097572373010.1007/s12555-009-0504-1
Cisneros, P.S.G., Hoffmann, C., Bartels, M., Werner, H.: Linear parameter-varying controller design for a nonlinear quad-rotor helicopter model for high speed trajectory tracking. In: 2016 American Control Conference (ACC), pp. 486–491 (2016)
ZhuBHuoW3-d path-following control for a model-scaled autonomous helicopterIEEE Transactions on Control Systems Technology20142251927193410.1109/TCST.2013.2296519
YangJHHsuWCAdaptive backstepping control for electrically driven unmanned helicopterControl Engineering Practice200917890391310.1016/j.conengprac.2009.02.012
FangXWuAShangYDongNA novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbanceNonlinear Dyn201683110531068343592610.1007/s11071-015-2387-4
ZhouBLuXTangSZhengZNonlinear system identification and trajectory tracking control for a flybarless unmanned helicopter: theory and experimentNonlinear Dynamics20199642307232610.1007/s11071-019-04923-9
ZouYZhengZA robust adaptive rbfnn augmenting backstepping control approach for a model-scaled helicopterIEEE Transactions on Control Systems Technology20152362344235210.1109/TCST.2015.2396851
TijaniIBAkmeliawatiRLegowoABudiyonoArobust controller for autonomous helicopter hovering controlAircraft Engineering & Aerospace Technology201587433034410.1108/AEAT-05-2012-0068
GodboltBVitzilaiosNILynchAFExperimental validation of a helicopter autopilot design using model-based pid controlJournal of Intelligent and Robotic Systems201370138539910.1007/s10846-012-9720-7
HuangYZhuMZhengZFeroskhanMFixed-time autonomous shipboard landing control of a helicopter with external disturbancesAerospace Science and Technology201984183010.1016/j.ast.2018.07.032
HuaCChenJGuanXFractional-order sliding mode control of uncertain quavs with time-varying state constraintsNonlinear Dynamics20199521347136010.1007/s11071-018-4632-0
Thomas, F., Thottungal, A.V., Johnson, M.S.: Composite control of a hovering helicopter based on optimized sliding mode control. Journal of Optimization Theory and Applications pp. 1–20 (2021)
FilippovAFDifferential Equations with Discontinuous Right-hand Side1998Dordrecht, The NetherlandsKluwer0138.32204
LvMYuWCaoJBaldiSConsensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based controlIEEE Transactions on Cybernetics202010.1109/TCYB.2020.3028171
SandinoLABejarMKondakKOlleroAAdvances in modeling and control of tethered unmanned helicopters to enhance hovering performanceJournal of Intelligent & Robotic Systems2014731–431810.1007/s10846-013-9910-y
HalbeOHajekMRobust helicopter sliding mode control for enhanced handling and trajectory followingJournal of Guidance, Control, and Dynamics202043101805182110.2514/1.G005183
LuHLiuCGuoLChenWHFlight control design for small-scale helicopter using disturbance-observer-based backsteppingJournal of Guidance, Control, and Dynamics201538112235224010.2514/1.G001196
HeYPeiHSunTRobust tracking control of helicopters using backstepping with disturbance observersAsian Journal of Control20151651387140210.1002/asjc.827
ZhongYOptimal Control2015BeijingTsinghua University Press
FangXWuAShangYDongNRobust control of small-scale unmanned helicopter with matched and mismatched disturbancesJ. Franklin Inst.20163531848034820356539610.1016/j.jfranklin.2016.09.016
MahmoudMSKoesdwiadyABImproved digital tracking controller design for pilot-scale unmanned helicopterJournal of the Franklin Institute201234914258287472510.1016/j.jfranklin.2011.10.003
FangZTianHLiPProbabilistic robust linear parameter-varying control of a small helicopter using iterative scenario approachIEEE/CAA J. Autom. Sinica2015218593334793210.1109/JAS.2015.7032909
DingSMeiKYuXAdaptive second-order sliding mode control: a lyapunov approachIEEE Trans. Autom. Control202110.1109/TAC.2021.3115447
WangTYangCLiangJWuYWangCZhangYChaos-genetic algorithm for the system identification of a small unmanned helicopterJournal of Intelligent & Robotic Systems2012673–432333810.1007/s10846-012-9656-y
TijaniIBAkmeliawatiRLegowoABudiyonoAMuthalifAArobust controller for autonomous helicopter hovering controlAircraft Engineering & Aerospace Technology201183636337410.1108/00022661111173243
RaptisIAValavanisKPMorenoWAA novel nonlinear backstepping controller design for helicopters using the rotation matrixIEEE Transactions on Control Systems Technology201119246547310.1109/TCST.2010.2042450
KumarMVOmkarSNSureshSSampathPGanguliRDesign of a stability augmentation system for a helicopter using lqr control and ads-33 handling qualities specificationsAircraft Engineering and Aerospace Technology200880211112310.1108/00022660810859337
BhatSPBernsteinDSGeometric homogeneity with applications to finite-time stabilityMath. Control Signals Syst.2005172101127215095610.1007/s00498-005-0151-x
MaqsoodHQuYNonlinear disturbance observer based sliding mode control of quadrotor helicopterJournal of Electrical Engineering & Technology20201531453146110.1007/s42835-020-00421-w
WangDZongQTianBLuHWangJAdaptive finite-time reconfiguration control of unmanned aerial vehicles with a moving leaderNonlinear Dynamics20199521099111610.1007/s11071-018-4618-y
HQ Wang (7433_CR35) 2009; 7
7433_CR22
Y Zhong (7433_CR40) 2015
H Liu (7433_CR20) 2013; 74
Y Huang (7433_CR16) 2019; 84
H Lu (7433_CR21) 2015; 38
7433_CR4
7433_CR1
W Frost (7433_CR11) 1982; 21
T Wang (7433_CR36) 2012; 67
C Hua (7433_CR15) 2019; 95
B Zhou (7433_CR41) 2017; 89
P Masajedi (7433_CR27) 2013; 1
LA Sandino (7433_CR29) 2014; 73
O Halbe (7433_CR13) 2020; 43
M Lv (7433_CR24) 2021
Y He (7433_CR14) 2015; 16
Z Zhao (7433_CR39) 2020; 102
MS Mahmoud (7433_CR25) 2012; 349
7433_CR33
IB Tijani (7433_CR31) 2015; 87
IA Raptis (7433_CR28) 2011; 19
T Jiang (7433_CR18) 2019; 96
SP Bhat (7433_CR2) 2005; 17
7433_CR38
B Zhou (7433_CR42) 2019; 96
S Ding (7433_CR5) 2021
X Bin (7433_CR3) 2015; 2
Y Zou (7433_CR44) 2015; 23
A Jafar (7433_CR17) 2018; 232
AF Filippov (7433_CR10) 1998
IB Tijani (7433_CR32) 2011; 83
H Maqsood (7433_CR26) 2020; 15
D Wang (7433_CR34) 2019; 95
JH Yang (7433_CR37) 2009; 17
M Lv (7433_CR23) 2020
X Fang (7433_CR8) 2016; 353
B Zhu (7433_CR43) 2014; 22
B Godbolt (7433_CR12) 2013; 70
MV Kumar (7433_CR19) 2008; 80
Z Fang (7433_CR9) 2015; 2
X Fang (7433_CR7) 2016; 83
S El-Ferik (7433_CR6) 2017; 69
7433_CR30
References_xml – reference: BhatSPBernsteinDSGeometric homogeneity with applications to finite-time stabilityMath. Control Signals Syst.2005172101127215095610.1007/s00498-005-0151-x
– reference: WangHQMianAAWangDBDuanHBRobust multi-mode flight control design for an unmanned helicopter based on multi-loop structureInternational Journal of Control Automation & Systems20097572373010.1007/s12555-009-0504-1
– reference: HeYPeiHSunTRobust tracking control of helicopters using backstepping with disturbance observersAsian Journal of Control20151651387140210.1002/asjc.827
– reference: HalbeOHajekMRobust helicopter sliding mode control for enhanced handling and trajectory followingJournal of Guidance, Control, and Dynamics202043101805182110.2514/1.G005183
– reference: RaptisIAValavanisKPMorenoWAA novel nonlinear backstepping controller design for helicopters using the rotation matrixIEEE Transactions on Control Systems Technology201119246547310.1109/TCST.2010.2042450
– reference: WangTYangCLiangJWuYWangCZhangYChaos-genetic algorithm for the system identification of a small unmanned helicopterJournal of Intelligent & Robotic Systems2012673–432333810.1007/s10846-012-9656-y
– reference: ZhouBLiZZhengZTangSNonlinear adaptive tracking control for a small-scale unmanned helicopter using a learning algorithm with the least parametersNonlinear Dynamics20178921289130810.1007/s11071-017-3516-z
– reference: MaqsoodHQuYNonlinear disturbance observer based sliding mode control of quadrotor helicopterJournal of Electrical Engineering & Technology20201531453146110.1007/s42835-020-00421-w
– reference: ZhaoZCaoDYangJWangHHigh-order sliding mode observer-based trajectory tracking control for a quadrotor uav with uncertain dynamicsNonlinear Dynamics202010242583259610.1007/s11071-020-06050-2
– reference: KumarMVOmkarSNSureshSSampathPGanguliRDesign of a stability augmentation system for a helicopter using lqr control and ads-33 handling qualities specificationsAircraft Engineering and Aerospace Technology200880211112310.1108/00022660810859337
– reference: TijaniIBAkmeliawatiRLegowoABudiyonoAMuthalifAArobust controller for autonomous helicopter hovering controlAircraft Engineering & Aerospace Technology201183636337410.1108/00022661111173243
– reference: FilippovAFDifferential Equations with Discontinuous Right-hand Side1998Dordrecht, The NetherlandsKluwer0138.32204
– reference: ZhouBLuXTangSZhengZNonlinear system identification and trajectory tracking control for a flybarless unmanned helicopter: theory and experimentNonlinear Dynamics20199642307232610.1007/s11071-019-04923-9
– reference: Thomas, F., Thottungal, A.V., Johnson, M.S.: Composite control of a hovering helicopter based on optimized sliding mode control. Journal of Optimization Theory and Applications pp. 1–20 (2021)
– reference: FangXWuAShangYDongNRobust control of small-scale unmanned helicopter with matched and mismatched disturbancesJ. Franklin Inst.20163531848034820356539610.1016/j.jfranklin.2016.09.016
– reference: JiangTLinDSongTFinite-time control for small-scale unmanned helicopter with disturbancesNonlinear Dynamics20199631747176310.1007/s11071-019-04882-1
– reference: WangDZongQTianBLuHWangJAdaptive finite-time reconfiguration control of unmanned aerial vehicles with a moving leaderNonlinear Dynamics20199521099111610.1007/s11071-018-4618-y
– reference: El-FerikSSyedAHOmarHMDericheMANonlinear forward path tracking controller for helicopter with slung loadAerosp. Sci. Technol.20176960260810.1016/j.ast.2017.07.028
– reference: LuHLiuCGuoLChenWHFlight control design for small-scale helicopter using disturbance-observer-based backsteppingJournal of Guidance, Control, and Dynamics201538112235224010.2514/1.G001196
– reference: Cisneros, P.S.G., Hoffmann, C., Bartels, M., Werner, H.: Linear parameter-varying controller design for a nonlinear quad-rotor helicopter model for high speed trajectory tracking. In: 2016 American Control Conference (ACC), pp. 486–491 (2016)
– reference: HuangYZhuMZhengZFeroskhanMFixed-time autonomous shipboard landing control of a helicopter with external disturbancesAerospace Science and Technology201984183010.1016/j.ast.2018.07.032
– reference: FrostWTurnerREA discrete gust model for use in the design of wind energy conversion systemsJ. Appl. Meteorol.198221677077610.1175/1520-0450(1982)021<0770:ADGMFU>2.0.CO;2
– reference: TijaniIBAkmeliawatiRLegowoABudiyonoArobust controller for autonomous helicopter hovering controlAircraft Engineering & Aerospace Technology201587433034410.1108/AEAT-05-2012-0068
– reference: ZouYZhengZA robust adaptive rbfnn augmenting backstepping control approach for a model-scaled helicopterIEEE Transactions on Control Systems Technology20152362344235210.1109/TCST.2015.2396851
– reference: SandinoLABejarMKondakKOlleroAAdvances in modeling and control of tethered unmanned helicopters to enhance hovering performanceJournal of Intelligent & Robotic Systems2014731–431810.1007/s10846-013-9910-y
– reference: LvMYuWCaoJBaldiSA separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systemsIEEE transactions on neural networks and learning systems202110.1109/TNNLS.2021.3070824
– reference: MasajediPGhanbarzadehAOptimal controller designing based on linear quadratic regulator technique for an unmanned helicopter at hover with the presence of wind disturbanceInternational Journal of Dynamics and Control20131321422210.1007/s40435-013-0019-8
– reference: MahmoudMSKoesdwiadyABImproved digital tracking controller design for pilot-scale unmanned helicopterJournal of the Franklin Institute201234914258287472510.1016/j.jfranklin.2011.10.003
– reference: LvMYuWCaoJBaldiSConsensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based controlIEEE Transactions on Cybernetics202010.1109/TCYB.2020.3028171
– reference: FangXWuAShangYDongNA novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbanceNonlinear Dyn201683110531068343592610.1007/s11071-015-2387-4
– reference: Wang, B., Shen, Y., Zhang, Y.: Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties. Aerospace Science and Technology 99, 105,745 (2020)
– reference: GodboltBVitzilaiosNILynchAFExperimental validation of a helicopter autopilot design using model-based pid controlJournal of Intelligent and Robotic Systems201370138539910.1007/s10846-012-9720-7
– reference: YangJHHsuWCAdaptive backstepping control for electrically driven unmanned helicopterControl Engineering Practice200917890391310.1016/j.conengprac.2009.02.012
– reference: DingSMeiKYuXAdaptive second-order sliding mode control: a lyapunov approachIEEE Trans. Autom. Control202110.1109/TAC.2021.3115447
– reference: LiuHDerawiDKimJZhongYRobust optimal attitude control of hexarotor robotic vehiclesNonlinear Dynamics20137441155116810.1007/s11071-013-1031-4
– reference: BinXJianchuanGYaoZAdaptive backstepping tracking control of a 6-dof unmanned helicopterIEEE/CAA J. Autom. Sinica2015211924334792510.1109/JAS.2015.7032902
– reference: FangZTianHLiPProbabilistic robust linear parameter-varying control of a small helicopter using iterative scenario approachIEEE/CAA J. Autom. Sinica2015218593334793210.1109/JAS.2015.7032909
– reference: JafarABhattiAIAhmadSAhmedNRobust gain-scheduled linear parameter-varying control algorithm for a lab helicopter: A linear matrix inequality-based approachProceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering20182325558571
– reference: ZhuBHuoW3-d path-following control for a model-scaled autonomous helicopterIEEE Transactions on Control Systems Technology20142251927193410.1109/TCST.2013.2296519
– reference: HuaCChenJGuanXFractional-order sliding mode control of uncertain quavs with time-varying state constraintsNonlinear Dynamics20199521347136010.1007/s11071-018-4632-0
– reference: Yu, X., Yang, J., Li, S.: Disturbance observer-based autonomous landing control of unmanned helicopters on moving shipboard. Nonlinear Dynamics 102(1), 131–150 (2020)
– reference: ZhongYOptimal Control2015BeijingTsinghua University Press
– reference: Lv, M., De Schutter, B., Shi, C., Baldi, S.: Logic-based distributed switching control for agents in power-chained form with multiple unknown control directions. Automatica 137, 110,143 (2022). https://doi.org/10.1016/j.automatica.2021.110143
– reference: Ahmed, B., Pota, H.R., Garratt, M.: Flight control of a rotary wing uav–a practical approach. In: IEEE Conference on Decision and Control (2008)
– volume: 87
  start-page: 330
  issue: 4
  year: 2015
  ident: 7433_CR31
  publication-title: Aircraft Engineering & Aerospace Technology
  doi: 10.1108/AEAT-05-2012-0068
– ident: 7433_CR1
  doi: 10.1109/CDC.2008.4738917
– ident: 7433_CR38
  doi: 10.1007/s11071-020-05915-w
– volume: 96
  start-page: 1747
  issue: 3
  year: 2019
  ident: 7433_CR18
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-019-04882-1
– volume: 73
  start-page: 3
  issue: 1–4
  year: 2014
  ident: 7433_CR29
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-013-9910-y
– volume: 17
  start-page: 903
  issue: 8
  year: 2009
  ident: 7433_CR37
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2009.02.012
– volume: 19
  start-page: 465
  issue: 2
  year: 2011
  ident: 7433_CR28
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2010.2042450
– volume: 83
  start-page: 1053
  issue: 1
  year: 2016
  ident: 7433_CR7
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2387-4
– volume: 83
  start-page: 363
  issue: 6
  year: 2011
  ident: 7433_CR32
  publication-title: Aircraft Engineering & Aerospace Technology
  doi: 10.1108/00022661111173243
– volume: 22
  start-page: 1927
  issue: 5
  year: 2014
  ident: 7433_CR43
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2013.2296519
– volume: 69
  start-page: 602
  year: 2017
  ident: 7433_CR6
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.07.028
– volume: 353
  start-page: 4803
  issue: 18
  year: 2016
  ident: 7433_CR8
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2016.09.016
– volume: 102
  start-page: 2583
  issue: 4
  year: 2020
  ident: 7433_CR39
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-020-06050-2
– volume: 84
  start-page: 18
  year: 2019
  ident: 7433_CR16
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2018.07.032
– volume: 2
  start-page: 85
  issue: 1
  year: 2015
  ident: 7433_CR9
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2015.7032909
– year: 2021
  ident: 7433_CR24
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2021.3070824
– volume: 21
  start-page: 770
  issue: 6
  year: 1982
  ident: 7433_CR11
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1982)021<0770:ADGMFU>2.0.CO;2
– volume: 95
  start-page: 1099
  issue: 2
  year: 2019
  ident: 7433_CR34
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-018-4618-y
– volume-title: Differential Equations with Discontinuous Right-hand Side
  year: 1998
  ident: 7433_CR10
– volume: 95
  start-page: 1347
  issue: 2
  year: 2019
  ident: 7433_CR15
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-018-4632-0
– volume-title: Optimal Control
  year: 2015
  ident: 7433_CR40
– ident: 7433_CR33
  doi: 10.1016/j.ast.2020.105745
– volume: 38
  start-page: 2235
  issue: 11
  year: 2015
  ident: 7433_CR21
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.G001196
– year: 2020
  ident: 7433_CR23
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.3028171
– volume: 16
  start-page: 1387
  issue: 5
  year: 2015
  ident: 7433_CR14
  publication-title: Asian Journal of Control
  doi: 10.1002/asjc.827
– volume: 232
  start-page: 558
  issue: 5
  year: 2018
  ident: 7433_CR17
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
– volume: 80
  start-page: 111
  issue: 2
  year: 2008
  ident: 7433_CR19
  publication-title: Aircraft Engineering and Aerospace Technology
  doi: 10.1108/00022660810859337
– ident: 7433_CR30
– volume: 1
  start-page: 214
  issue: 3
  year: 2013
  ident: 7433_CR27
  publication-title: International Journal of Dynamics and Control
  doi: 10.1007/s40435-013-0019-8
– volume: 17
  start-page: 101
  issue: 2
  year: 2005
  ident: 7433_CR2
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/s00498-005-0151-x
– volume: 2
  start-page: 19
  issue: 1
  year: 2015
  ident: 7433_CR3
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2015.7032902
– volume: 74
  start-page: 1155
  issue: 4
  year: 2013
  ident: 7433_CR20
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-013-1031-4
– volume: 96
  start-page: 2307
  issue: 4
  year: 2019
  ident: 7433_CR42
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-019-04923-9
– volume: 70
  start-page: 385
  issue: 1
  year: 2013
  ident: 7433_CR12
  publication-title: Journal of Intelligent and Robotic Systems
  doi: 10.1007/s10846-012-9720-7
– ident: 7433_CR22
  doi: 10.1016/j.automatica.2021.110143
– volume: 7
  start-page: 723
  issue: 5
  year: 2009
  ident: 7433_CR35
  publication-title: International Journal of Control Automation & Systems
  doi: 10.1007/s12555-009-0504-1
– volume: 43
  start-page: 1805
  issue: 10
  year: 2020
  ident: 7433_CR13
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.G005183
– volume: 23
  start-page: 2344
  issue: 6
  year: 2015
  ident: 7433_CR44
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2015.2396851
– volume: 67
  start-page: 323
  issue: 3–4
  year: 2012
  ident: 7433_CR36
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-012-9656-y
– volume: 15
  start-page: 1453
  issue: 3
  year: 2020
  ident: 7433_CR26
  publication-title: Journal of Electrical Engineering & Technology
  doi: 10.1007/s42835-020-00421-w
– year: 2021
  ident: 7433_CR5
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2021.3115447
– volume: 89
  start-page: 1289
  issue: 2
  year: 2017
  ident: 7433_CR41
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-017-3516-z
– ident: 7433_CR4
  doi: 10.1109/ACC.2016.7524961
– volume: 349
  start-page: 42
  issue: 1
  year: 2012
  ident: 7433_CR25
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2011.10.003
SSID ssj0003208
Score 2.3823955
Snippet This paper presents a novel multi-variable high-order sliding mode quasi-optimal control method for unmanned helicopters. In order to facilitate the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3671
SubjectTerms Adaptive control
Attitudes
Automotive Engineering
Classical Mechanics
Closed loop systems
Continuity (mathematics)
Control
Control methods
Control theory
Controllers
Convergence
Design
Dynamical Systems
Engineering
Equilibrium
Experiments
Helicopter control
Helicopters
Mechanical Engineering
Neural networks
Optimal control
Original Paper
Performance indices
Robustness
Simulation
Sliding mode control
Subsystems
Unmanned helicopters
Vertical orientation
Vibration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9RADB2V7QUOQAuIhYJ86K0dkcxXkhOCqlWFRFUhKu0tciYTAepmt2SX38VPxJ6ddKESPWdmcrDH9vPYz0IcNgFJU4KVWBFcNXneygY1SrLHVZFj2WXIvcOfL9z5lfk0s7OUcBtSWeVoE6Ohbheec-TvlCtyYytr9PvljeSpUfy6mkZoPBC7ZILLciJ2P55eXH65tcVaxZl0GaEMzkjMUtvMpnmOkA9BacXVl0Zrqf91Tdt4884TafQ8Z0_F4xQywoeNjPfETuj3xZMUPkK6nMO-ePQXt-Az8Tu21spfhIW5OwqwxSWbNmCCYhkZN4FiTHZdwONw4GaNw3e5oEVz-lsqYQfO09LeH9xnxcfEKvXYsBmAWSaAgl5Y93Nkew3fwjVp1pIZO2FYN5zjgdUCmF98zqO7PGDfwsg8Tfv8piKBWV2fi6uz068n5zKNZ5CeMNtKtp0nOFT4rOhc26BXDkNpbMOUfK3Kva-Ub3Ugf2fzskPnQtegcpWygeIEk-kXYtIv-vBSADKRVWVcHvGqI5CDBVplrDZZcMFORT5KpvaJu5xHaFzXW9ZllmZN0qyjNGs9FUe3e5Yb5o57Vx-MAq_TLR7qrc5NxfGoBNvP_z_t1f2nvRYPVdQ7TuYciMnq5zq8odhm1bxNCvwHvx35Lg
  priority: 102
  providerName: ProQuest
Title Multi-variable adaptive high-order sliding mode quasi-optimal control with adjustable convergence rate for unmanned helicopters subject to parametric and external uncertainties
URI https://link.springer.com/article/10.1007/s11071-022-07433-3
https://www.proquest.com/docview/2671459543
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7R9gIHHgVEoURz4AYr2ftyfAwoaQWiQohI4WSN12tB1TgBJ_wufiIzm3UDCJA4-bAPH2Z2Zr7dmW-EeFYHJE0JVmJJcNXkeSNr1CjJHpdFjuM2Q64dfnvhzufm9cIuUlFYP2S7D0-S0VLvi90IqRD0VZwtabSW-kAcWcLunMg1V5Nr-6tV7EOXEbLgW4hFKpX58x6_uqN9jPnbs2j0NrO74nYKE2Gyk-s9cSN0x-JOChkhHcj-WNz6iU_wvvgey2nlN8K_XBEF2OCazRkwKbGMLJtAcSW7K-AWOPBli_1nuaJJS_pbSlsHvpultZdcW8XbxMz0WKQZgJklgAJd2HZLZBsNn8IVadOaWTqh39Z8rwObFTCn-JLbdXnAroGBbZrW-V0WAjO5PhDz2fTDq3OZWjJITzhtI5vWEwQqfFa0rqnRK4dhbGzNNHyNyr0vlW90IB9n83GLzoW2RuVKZQPFBibTD8Vht-rCIwHI5FWlcXnEqI6ADRZolbHaZMEFeyLyQTKVT3zl3DbjqtozLbM0K5JmFaVZ6RPx_HrNesfW8c_Zp4PAq3Ry-0q5Ije2tIaGXwxKsB_--26P_2_6E3FTRT3kC51Tcbj5ug1PKb7Z1CNxMJ6djcTR5Ozjmyl9X04v3r0fRSX_AQZV-Kk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VcoAe-CigBgrMAU6wwl7vruNDVSEgpPTj1Eq5mfV6LUCNk-IExJ9C_YmdWdsNINFbz_FuDjOemTee9wbgReEteYrXwmYEV1Ucl6KwiRUUj7M0tsMqsswdPjwy4xP1aaIna_C758LwWGUfE0OgLmeOe-RvpEljpTOtkt35meCtUfx1tV-h0brFvv_1kyBbs7P3nuz7UsrRh-N3Y9FtFRCOoMZClJWjKj51UVqZsrBOGuuHShesJFfK2LlMujLxFKZ1PKysMb4qrDSZ1J7Sm4oSuvcG3FQJZXJmpo8-Xkb-RIYNeBFhGu5_TDqSTkvVI5xFwF3yrCedFcnfiXBV3f7zQTbkudE9uNMVqPi29aj7sObrTbjbFavYhYJmEzb-UDJ8AOeByCt-EPJmLhba0s45kCLLIYug74lU0XKiRF6-g2dL23wVM3poSv_WDcwjd4Xp7DdmdfE1YSY-0EM9sqYFUomNy3pqOTvgF39KfjxnfVBslgV3lHAxQ1Yzn_KiMIe2LrHXuaZzrp1_YA3Zh3ByLWZ7BOv1rPZbgJZlszJl4oCODUEqm1otlU5U5I3XA4h7y-SuU0rnhR2n-Urjma2ZkzXzYM08GcCryzPzVifkyqe3e4PnXcxo8pWHD-B17wSrn_9_2-Orb3sOt8bHhwf5wd7R_hO4LYMPchtpG9YX35f-KVVVi-JZcGWEz9f97lwAy3M0_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSFV7AApF5dk5cKMWG8d2NkcErHi0iENX2ls0cRy1iM1uu1l-Fz-RGW_CUgRIvcaPHGY8ns-e77MQ-7lH8hRvJKYEV3UUFTLHGCXF4zSJsFt2kLnDP67sWV9fDMzgCYs_VLu3V5IzTgOrNFX14bgoD-fEN0ItBIMVV07qOJbxO7GkmQ1MHt1XR4-xmL6EWEwog08kBg1t5uU5_t2a5vnmsyvSsPP0VsVykzLC0czGn8SCr9bESpM-QrM4J2vi4xNtwXVxH6i18o6wMLOjAAscc2gDFiiWQXETKMfkrQv4ORz4M8XJbzmiTkP6W1PCDnxOS2NvmGfF04Qq9UDY9MAqE0BJL0yrIXK8hl_-ljxrzIqdMJnmfMYD9QhYX3zIT3c5wKqAVnmaxrlZRQKrun4W_d7pz-Mz2TzPIB1htloWpSM4lLhOUtoiR6cs-q42OUvyFSpyLlWuiD3tdybqlmitL3NUNlXGU56gO_GGWKxGlf8iAFnIKtU2CnjVEsjBBI3SJtYdb73ZFFFrmcw12uX8hMZtNlddZmtmZM0sWDOLN8XB45jxTLnjzd47rcGzZhVPMmWTSJvUaGr-1jrBvPn12bb-r_tX8f76pJd9P7-63BYfVHBJPufZEYv136nfpbSnzveCZz8AePn7uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-variable+adaptive+high-order+sliding+mode+quasi-optimal+control+with+adjustable+convergence+rate+for+unmanned+helicopters+subject+to+parametric+and+external+uncertainties&rft.jtitle=Nonlinear+dynamics&rft.au=Zhou%2C+Bin&rft.date=2022-06-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=108&rft.issue=4&rft.spage=3671&rft.epage=3692&rft_id=info:doi/10.1007%2Fs11071-022-07433-3&rft.externalDocID=10_1007_s11071_022_07433_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon