Parallelized maximization of nonsubmodular function subject to a cardinality constraint

•We devise parallel algorithms for non-submodular maximization based on rounding fractional solutions of its multilinear relaxation.•The developed techniques have the potential to inspire new algorithms with a provably low number of adaptive rounds.•The devised algorithm achieves performance guarant...

Full description

Saved in:
Bibliographic Details
Published inTheoretical computer science Vol. 864; pp. 129 - 137
Main Authors Zhang, Hongxiang, Xu, Dachuan, Guo, Longkun, Tan, Jingjing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.04.2021
Subjects
Online AccessGet full text
ISSN0304-3975
1879-2294
DOI10.1016/j.tcs.2021.02.035

Cover

Loading…
Abstract •We devise parallel algorithms for non-submodular maximization based on rounding fractional solutions of its multilinear relaxation.•The developed techniques have the potential to inspire new algorithms with a provably low number of adaptive rounds.•The devised algorithm achieves performance guarantee close to the state-of-art result for the submodular version of the problem. In the paper, we consider the problem of maximizing the multilinear extension of a nonsubmodular set function subject to a k-cardinality constraint with adaptive rounds of evaluation queries. We devise an algorithm which achieves a ratio of (1−e−γ2−ϵ) and requires O(log⁡n/ϵ2) adaptive rounds and O(nlog⁡n/ϵ2) queries, where γ is the continuous generic submodularity ratio that compares favorably in flexibility to the traditional submodularity ratio proposed by Das and Kempe. The key idea of our algorithm is originated from the parallel-greedy algorithm proposed by Chekuri et al., but incorporating with two major changes to retain the performance guarantee: First, identify all good coordinates with the continuous generic submodularity ratio and gradient values approximately as large as the best coordinate, and increase along all these coordinates uniformly; Second, increase x along these coordinates by a dynamical increment whose value depends on γ. The key difficulty of our algorithm is that when the function is nonsubmodular, the set of the best coordinate does not decrease during iterations; while provided submodularity, the decreasing can be ensured by the parallel-greedy algorithm. Our algorithms slightly compromise performance guarantee for the sake of extending to constrained nonsubmodular maximization with parallelism, provided that the state-of-art algorithm for the corresponding submodular version attains an approximation ratio of (1−1/e−ϵ) and requires O(log⁡n/ϵ2) adaptive rounds.
AbstractList •We devise parallel algorithms for non-submodular maximization based on rounding fractional solutions of its multilinear relaxation.•The developed techniques have the potential to inspire new algorithms with a provably low number of adaptive rounds.•The devised algorithm achieves performance guarantee close to the state-of-art result for the submodular version of the problem. In the paper, we consider the problem of maximizing the multilinear extension of a nonsubmodular set function subject to a k-cardinality constraint with adaptive rounds of evaluation queries. We devise an algorithm which achieves a ratio of (1−e−γ2−ϵ) and requires O(log⁡n/ϵ2) adaptive rounds and O(nlog⁡n/ϵ2) queries, where γ is the continuous generic submodularity ratio that compares favorably in flexibility to the traditional submodularity ratio proposed by Das and Kempe. The key idea of our algorithm is originated from the parallel-greedy algorithm proposed by Chekuri et al., but incorporating with two major changes to retain the performance guarantee: First, identify all good coordinates with the continuous generic submodularity ratio and gradient values approximately as large as the best coordinate, and increase along all these coordinates uniformly; Second, increase x along these coordinates by a dynamical increment whose value depends on γ. The key difficulty of our algorithm is that when the function is nonsubmodular, the set of the best coordinate does not decrease during iterations; while provided submodularity, the decreasing can be ensured by the parallel-greedy algorithm. Our algorithms slightly compromise performance guarantee for the sake of extending to constrained nonsubmodular maximization with parallelism, provided that the state-of-art algorithm for the corresponding submodular version attains an approximation ratio of (1−1/e−ϵ) and requires O(log⁡n/ϵ2) adaptive rounds.
Author Tan, Jingjing
Guo, Longkun
Xu, Dachuan
Zhang, Hongxiang
Author_xml – sequence: 1
  givenname: Hongxiang
  surname: Zhang
  fullname: Zhang, Hongxiang
  email: zhanghx010@emails.bjut.edu.cn
  organization: Department of Operations Research and Information Engineering, Beijing University of Technology, Beijing 100124, PR China
– sequence: 2
  givenname: Dachuan
  surname: Xu
  fullname: Xu, Dachuan
  email: xudc@bjut.edu.cn
  organization: Department of Operations Research and Information Engineering, Beijing University of Technology, Beijing 100124, PR China
– sequence: 3
  givenname: Longkun
  surname: Guo
  fullname: Guo, Longkun
  email: longkun.guo@gmail.com
  organization: Shandong Key Laboratory of Computer Networks, School of Computer Science and Technology, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
– sequence: 4
  givenname: Jingjing
  orcidid: 0000-0002-9941-0629
  surname: Tan
  fullname: Tan, Jingjing
  email: tanjingjing1108@163.com
  organization: School of Mathematics and Information Science, Weifang University, Weifang 261061, PR China
BookMark eNp9kNtOwzAMhiM0JLbBA3CXF2jJoW1acYUmTtIkuABxGblOKqXqASUZYnt6MsY1vrFk-_dvfyuymObJEnLNWc4Zr276PGLIBRM8ZyJnsjwjS16rJhOiKRZkySQrMtmo8oKsQuhZilJVS_LxCh6GwQ7uYA0d4duN7gDRzROdO5pMwq4dZ7MbwNNuN-FvJ9V6i5HGmQJF8MZNMLi4p5jmowc3xUty3sEQ7NVfXpP3h_u3zVO2fXl83txtMxRFEzODUgiF1hat4VUhK8FQ1MZw1amisSgbLDvRSCVLgLauVY0gUHZtJUowbS3XhJ_2op9D8LbTn96N4PeaM30ko3udyOgjGc2ETmSS5vaksemwL2e9DujshNY4n97SZnb_qH8ASpFwXQ
Cites_doi 10.1016/0166-218X(84)90003-9
10.1007/s10898-019-00800-2
10.1007/BF01651330
10.1007/BF01588971
10.1016/j.endm.2010.05.086
10.1137/080733991
10.1137/110839655
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2021.02.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 137
ExternalDocumentID 10_1016_j_tcs_2021_02_035
S0304397521001006
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
G-2
HZ~
R2-
RIG
SEW
SSH
SSZ
TAE
WUQ
XJT
ZY4
ID FETCH-LOGICAL-c249t-dc3227cee4bd1643620c28dd17f749ec39c5f293735aab8878ca2c3fb625adb83
IEDL.DBID IXB
ISSN 0304-3975
IngestDate Tue Jul 01 05:02:49 EDT 2025
Fri Feb 23 02:47:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Continuous generic submodularity ratio
Adaptive
Multilinear relaxation
Nonsubmodular
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-dc3227cee4bd1643620c28dd17f749ec39c5f293735aab8878ca2c3fb625adb83
ORCID 0000-0002-9941-0629
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_tcs_2021_02_035
elsevier_sciencedirect_doi_10_1016_j_tcs_2021_02_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-10
PublicationDateYYYYMMDD 2021-04-10
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-10
  day: 10
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vondrák (br0270) 1978; 2
Fortuin, Kasteleyn, Ginibre (br0160) 1971; 22
Conforti, Cornuéjols (br0110) 1984; 7
Harshaw, Feldman, Ward, Karbasi (br0200) 2019
Ene, Nguyễn (br0140) 2019
Chekuri, Vondrák, Zenklusen (br0100) 2014; 43
Balkanski, Rubinstein, Singer (br0020) 2019
Das, Kempe (br0130) 2011
Gharesifard, Smith (br0170) 2016
Jegelka, Bilmes (br0220) 2011
Gong, Nong, Liu, Fang (br0190) 2019; 75
Chen, Hassani, Karbasi (br0120) 2018
Nemhauser, Wolsey, Fisher (br0240) 1978; 14
Azar, Gamzu (br0010) 2012
Barbosa, Ene, Nguyen, Ward (br0030) 2015
Calinescu, Chekuri, Pál (br0070) 2011; 40
A. Ene, H.L. Nguyễn, A. Vladu, A parallel double greedy algorithm for submodular maximization, arXiv, 2018.
Hassani, Soltanolkotabi, Karbasi (br0210) 2017
Vondrák (br0260) 2008
Chekuri, Jayram, Vondrák (br0080) 2015
Parotsidis, Pitoura, Tsaparas (br0250) 2016
Balkanski, Singer (br0040) 2018
Bouhtou, Stephane, Guillaume (br0060) 2010; 36
Bian, Buhmann, Krause, Tschiatschek (br0050) 2017
Liu, Wei, Kirchhoff (br0230) 2013
Chekuri, Quanrud (br0090) 2019
Golovin, Krause (br0180) 2011; 42
Chen (10.1016/j.tcs.2021.02.035_br0120) 2018
Hassani (10.1016/j.tcs.2021.02.035_br0210) 2017
Conforti (10.1016/j.tcs.2021.02.035_br0110) 1984; 7
Vondrák (10.1016/j.tcs.2021.02.035_br0260) 2008
10.1016/j.tcs.2021.02.035_br0150
Chekuri (10.1016/j.tcs.2021.02.035_br0100) 2014; 43
Ene (10.1016/j.tcs.2021.02.035_br0140) 2019
Barbosa (10.1016/j.tcs.2021.02.035_br0030) 2015
Gong (10.1016/j.tcs.2021.02.035_br0190) 2019; 75
Calinescu (10.1016/j.tcs.2021.02.035_br0070) 2011; 40
Das (10.1016/j.tcs.2021.02.035_br0130) 2011
Fortuin (10.1016/j.tcs.2021.02.035_br0160) 1971; 22
Golovin (10.1016/j.tcs.2021.02.035_br0180) 2011; 42
Harshaw (10.1016/j.tcs.2021.02.035_br0200) 2019
Liu (10.1016/j.tcs.2021.02.035_br0230) 2013
Azar (10.1016/j.tcs.2021.02.035_br0010) 2012
Nemhauser (10.1016/j.tcs.2021.02.035_br0240) 1978; 14
Gharesifard (10.1016/j.tcs.2021.02.035_br0170) 2016
Jegelka (10.1016/j.tcs.2021.02.035_br0220) 2011
Parotsidis (10.1016/j.tcs.2021.02.035_br0250) 2016
Chekuri (10.1016/j.tcs.2021.02.035_br0090) 2019
Balkanski (10.1016/j.tcs.2021.02.035_br0020) 2019
Vondrák (10.1016/j.tcs.2021.02.035_br0270) 1978; 2
Chekuri (10.1016/j.tcs.2021.02.035_br0080) 2015
Balkanski (10.1016/j.tcs.2021.02.035_br0040) 2018
Bouhtou (10.1016/j.tcs.2021.02.035_br0060) 2010; 36
Bian (10.1016/j.tcs.2021.02.035_br0050) 2017
References_xml – volume: 2
  start-page: 65
  year: 1978
  end-page: 74
  ident: br0270
  article-title: Submodularity and curvature: the optimal algorithm
  publication-title: Ann. Discrete Math.
– start-page: 201
  year: 2015
  end-page: 210
  ident: br0080
  article-title: On multiplicative weight updates for concave and submodular function maximization
  publication-title: Proceedings of CITCS
– start-page: 1896
  year: 2018
  end-page: 1905
  ident: br0120
  article-title: Online continuous submodular maximization
  publication-title: Proceed of ICAIS
– start-page: 67
  year: 2008
  end-page: 74
  ident: br0260
  article-title: Optimal approximation for the submodular welfare problem in the value oracle model
  publication-title: Proceedings of STOC
– start-page: 1138
  year: 2018
  end-page: 1151
  ident: br0040
  article-title: The adaptive complexity of maximizing a submodular function
  publication-title: Proceedings of STOC
– volume: 36
  start-page: 679
  year: 2010
  end-page: 686
  ident: br0060
  article-title: Submodularity and randomized rounding techniques for optimal experimental design
  publication-title: Electron. Notes Discrete Math.
– volume: 43
  start-page: 1831
  year: 2014
  end-page: 1879
  ident: br0100
  article-title: Submodular function maximization via the multilinear relaxation and contention resolution schemes
  publication-title: SIAM J. Comput.
– start-page: 1236
  year: 2015
  end-page: 1244
  ident: br0030
  article-title: The power of randomization: distributed submodular maximization on massive datasets
  publication-title: Proceedings of ICML
– volume: 42
  start-page: 427
  year: 2011
  end-page: 486
  ident: br0180
  article-title: Adaptive submodularity: theory and applications in active learning and stochastic optimization
  publication-title: J. Artif. Intell. Res.
– start-page: 7184
  year: 2013
  end-page: 7188
  ident: br0230
  article-title: Submodular feature selection for high-dimensional acoustic score spaces
  publication-title: Proceedings of ICA
– reference: A. Ene, H.L. Nguyễn, A. Vladu, A parallel double greedy algorithm for submodular maximization, arXiv, 2018.
– volume: 22
  start-page: 89
  year: 1971
  end-page: 103
  ident: br0160
  article-title: Correlation inequalities on some partially ordered sets
  publication-title: Commun. Math. Phys.
– start-page: 283
  year: 2019
  end-page: 302
  ident: br0020
  article-title: An exponential speedup in parallel running time for submodular maximization without loss in approximation
  publication-title: Proceedings of SODA
– start-page: 38
  year: 2012
  end-page: 50
  ident: br0010
  article-title: Efficient submodular function maximization under linear packing constraints
  publication-title: Proceedings of ICALP
– start-page: 303
  year: 2019
  end-page: 322
  ident: br0090
  article-title: Submodular function maximization in parallel via the multilinear relaxation
  publication-title: Proceedings of SODA
– start-page: 5841
  year: 2017
  end-page: 5851
  ident: br0210
  article-title: Gradient methods for submodular maximization
  publication-title: Proceed of NIPS
– start-page: 498
  year: 2017
  end-page: 507
  ident: br0050
  article-title: Guarantees for greedy maximization of non-submodular functions with applications
  publication-title: Proceedings of ICML
– start-page: 2634
  year: 2019
  end-page: 2643
  ident: br0200
  article-title: Submodular maximization beyond nonnegativity; guarantees, fast algorithms, and applications
  publication-title: Proceedings of ICML
– start-page: 1048
  year: 2016
  end-page: 1053
  ident: br0170
  article-title: On distributed submodular maximization with limited information
  publication-title: Proceed of ACC
– start-page: 274
  year: 2019
  end-page: 282
  ident: br0140
  article-title: Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time
  publication-title: Proceedings of SODA
– start-page: 1057
  year: 2011
  end-page: 1064
  ident: br0130
  article-title: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection
  publication-title: Proceedings of ICML
– volume: 75
  start-page: 833
  year: 2019
  end-page: 849
  ident: br0190
  article-title: Parametric monotone function maximization with matroid constraints
  publication-title: J. Glob. Optim.
– volume: 14
  start-page: 2652
  year: 1978
  end-page: 2694
  ident: br0240
  article-title: An analysis of approximations for maximizing submodular set functions-I
  publication-title: Math. Program.
– start-page: 1897
  year: 2011
  end-page: 1904
  ident: br0220
  article-title: Submodularity beyond submodular energies: coupling edges in graph cuts
  publication-title: Proceedings of CVPR
– volume: 7
  start-page: 251
  year: 1984
  end-page: 274
  ident: br0110
  article-title: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem
  publication-title: Discrete Appl. Math.
– volume: 40
  start-page: 1740
  year: 2011
  end-page: 1766
  ident: br0070
  article-title: Maximizing a monotone submodular function subject to a matroid constraint
  publication-title: SIAM J. Comput.
– start-page: 503
  year: 2016
  end-page: 512
  ident: br0250
  article-title: Centrality-aware link recommendations
  publication-title: Proceedings of WSDM
– volume: 7
  start-page: 251
  year: 1984
  ident: 10.1016/j.tcs.2021.02.035_br0110
  article-title: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90003-9
– start-page: 274
  year: 2019
  ident: 10.1016/j.tcs.2021.02.035_br0140
  article-title: Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time
– start-page: 1048
  year: 2016
  ident: 10.1016/j.tcs.2021.02.035_br0170
  article-title: On distributed submodular maximization with limited information
– start-page: 2634
  year: 2019
  ident: 10.1016/j.tcs.2021.02.035_br0200
  article-title: Submodular maximization beyond nonnegativity; guarantees, fast algorithms, and applications
– start-page: 38
  year: 2012
  ident: 10.1016/j.tcs.2021.02.035_br0010
  article-title: Efficient submodular function maximization under linear packing constraints
– volume: 75
  start-page: 833
  year: 2019
  ident: 10.1016/j.tcs.2021.02.035_br0190
  article-title: Parametric monotone function maximization with matroid constraints
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-019-00800-2
– start-page: 1896
  year: 2018
  ident: 10.1016/j.tcs.2021.02.035_br0120
  article-title: Online continuous submodular maximization
– ident: 10.1016/j.tcs.2021.02.035_br0150
– start-page: 7184
  year: 2013
  ident: 10.1016/j.tcs.2021.02.035_br0230
  article-title: Submodular feature selection for high-dimensional acoustic score spaces
– start-page: 1138
  year: 2018
  ident: 10.1016/j.tcs.2021.02.035_br0040
  article-title: The adaptive complexity of maximizing a submodular function
– volume: 22
  start-page: 89
  year: 1971
  ident: 10.1016/j.tcs.2021.02.035_br0160
  article-title: Correlation inequalities on some partially ordered sets
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01651330
– start-page: 1236
  year: 2015
  ident: 10.1016/j.tcs.2021.02.035_br0030
  article-title: The power of randomization: distributed submodular maximization on massive datasets
– start-page: 1057
  year: 2011
  ident: 10.1016/j.tcs.2021.02.035_br0130
  article-title: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection
– start-page: 303
  year: 2019
  ident: 10.1016/j.tcs.2021.02.035_br0090
  article-title: Submodular function maximization in parallel via the multilinear relaxation
– start-page: 283
  year: 2019
  ident: 10.1016/j.tcs.2021.02.035_br0020
  article-title: An exponential speedup in parallel running time for submodular maximization without loss in approximation
– volume: 14
  start-page: 2652
  year: 1978
  ident: 10.1016/j.tcs.2021.02.035_br0240
  article-title: An analysis of approximations for maximizing submodular set functions-I
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– volume: 42
  start-page: 427
  year: 2011
  ident: 10.1016/j.tcs.2021.02.035_br0180
  article-title: Adaptive submodularity: theory and applications in active learning and stochastic optimization
  publication-title: J. Artif. Intell. Res.
– start-page: 503
  year: 2016
  ident: 10.1016/j.tcs.2021.02.035_br0250
  article-title: Centrality-aware link recommendations
– start-page: 201
  year: 2015
  ident: 10.1016/j.tcs.2021.02.035_br0080
  article-title: On multiplicative weight updates for concave and submodular function maximization
– volume: 36
  start-page: 679
  year: 2010
  ident: 10.1016/j.tcs.2021.02.035_br0060
  article-title: Submodularity and randomized rounding techniques for optimal experimental design
  publication-title: Electron. Notes Discrete Math.
  doi: 10.1016/j.endm.2010.05.086
– start-page: 5841
  year: 2017
  ident: 10.1016/j.tcs.2021.02.035_br0210
  article-title: Gradient methods for submodular maximization
– volume: 40
  start-page: 1740
  year: 2011
  ident: 10.1016/j.tcs.2021.02.035_br0070
  article-title: Maximizing a monotone submodular function subject to a matroid constraint
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– volume: 2
  start-page: 65
  year: 1978
  ident: 10.1016/j.tcs.2021.02.035_br0270
  article-title: Submodularity and curvature: the optimal algorithm
  publication-title: Ann. Discrete Math.
– volume: 43
  start-page: 1831
  year: 2014
  ident: 10.1016/j.tcs.2021.02.035_br0100
  article-title: Submodular function maximization via the multilinear relaxation and contention resolution schemes
  publication-title: SIAM J. Comput.
  doi: 10.1137/110839655
– start-page: 1897
  year: 2011
  ident: 10.1016/j.tcs.2021.02.035_br0220
  article-title: Submodularity beyond submodular energies: coupling edges in graph cuts
– start-page: 498
  year: 2017
  ident: 10.1016/j.tcs.2021.02.035_br0050
  article-title: Guarantees for greedy maximization of non-submodular functions with applications
– start-page: 67
  year: 2008
  ident: 10.1016/j.tcs.2021.02.035_br0260
  article-title: Optimal approximation for the submodular welfare problem in the value oracle model
SSID ssj0000576
Score 2.3107939
Snippet •We devise parallel algorithms for non-submodular maximization based on rounding fractional solutions of its multilinear relaxation.•The developed techniques...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 129
SubjectTerms Adaptive
Continuous generic submodularity ratio
Multilinear relaxation
Nonsubmodular
Title Parallelized maximization of nonsubmodular function subject to a cardinality constraint
URI https://dx.doi.org/10.1016/j.tcs.2021.02.035
Volume 864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7UetGDS1WsS5mDJyE2-yTHWpSqtAha7G2YLRCxCzWCePC3-2aSuIBePGaSgeHNzPu-l7cBnCCoU7w2gaNchQaKTzOHc5E6OvK0iJBj-LbO7HAUD8bh9SSaNKBf58KYsMpK95c63WrraqRbSbO7yPPunXHqIZoi_hjDxpbdDsLEJvFNzr-0cURLf6XxAODXtWfTxngV0lTs9suynbbj2y_Y9A1vLrdgoyKKpFeuZRsaetaCzboJA6nuZAvWh5-FV5934OGWL013lKf8TSsy5a_5tEq0JPOMzEy-pZjOlYk9JQbS7BscM39jSDEnnEhzZEp2TqQhj6aHRLEL48uL-_7AqXonOBINqsJREm8qRQQMhUKLCGHKlX6ilEczGqZaBqmMMoR6GkS4N6hpEsl9GWQC7SGuRBLsQRMXpfeBIGXSccppzEUYZm7MJbKiOHZFlHFP6LANp7XU2KIskcHq2LFHhiJmRsTM9RmKuA1hLVf2Y58ZqvC_px38b9ohrJkn4_3x3CNoFssXfYwkohAdWDl79zqw2ru6GYw69sx8AH_PyRE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwNBDA6lHtSDj6pYn3PwJCzd93aPWiyttkWwxd6GeS2s2Ad1BfHXm-zDB-jF68wODJlMvi-bTAJwgaAe4bXxLG1rdFDcKLGEkLFlAsfIADmGm9eZHY7C3sS_nQbTGnSqtzCUVlna_sKm59a6HGmV0mwt07T1QEE9RFPEH3JsqOz2GrKBkFS7P73-MsdBVAQsKQSAn1ehzTzJK1NUstst6nbmLd9-AadvgNPdga2SKbKrYjO7UDPzBmxXXRhYeSkbsDn8rLz6sgeP92JF7VGe03ej2Uy8pbPypSVbJGxODy7lbKEp-ZQRpuUzOEa_Y1i2YIIp0pmCnjNF7JGaSGT7MOnejDs9q2yeYCn0qDJLK7yqEUKgLzW6RIhTtnLbWjtREvmxUV6sggSxPvICPBw0NW0lXOUlEh0ioWXbO4A6bsocAkPOZMJYRKGQvp_YoVBIi8LQlkEiHGn8JlxWUuPLokYGr5LHnjiKmJOIue1yFHET_Equ_MdBc7Thfy87-t-yc1jvjYcDPuiP7o5hg2YoFOTYJ1DPVq_mFBlFJs9yjfkArk_JrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallelized+maximization+of+nonsubmodular+function+subject+to+a+cardinality+constraint&rft.jtitle=Theoretical+computer+science&rft.au=Zhang%2C+Hongxiang&rft.au=Xu%2C+Dachuan&rft.au=Guo%2C+Longkun&rft.au=Tan%2C+Jingjing&rft.date=2021-04-10&rft.issn=0304-3975&rft.volume=864&rft.spage=129&rft.epage=137&rft_id=info:doi/10.1016%2Fj.tcs.2021.02.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2021_02_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon