Parallelized maximization of nonsubmodular function subject to a cardinality constraint
•We devise parallel algorithms for non-submodular maximization based on rounding fractional solutions of its multilinear relaxation.•The developed techniques have the potential to inspire new algorithms with a provably low number of adaptive rounds.•The devised algorithm achieves performance guarant...
Saved in:
Published in | Theoretical computer science Vol. 864; pp. 129 - 137 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3975 1879-2294 |
DOI | 10.1016/j.tcs.2021.02.035 |
Cover
Loading…
Abstract | •We devise parallel algorithms for non-submodular maximization based on rounding fractional solutions of its multilinear relaxation.•The developed techniques have the potential to inspire new algorithms with a provably low number of adaptive rounds.•The devised algorithm achieves performance guarantee close to the state-of-art result for the submodular version of the problem.
In the paper, we consider the problem of maximizing the multilinear extension of a nonsubmodular set function subject to a k-cardinality constraint with adaptive rounds of evaluation queries. We devise an algorithm which achieves a ratio of (1−e−γ2−ϵ) and requires O(logn/ϵ2) adaptive rounds and O(nlogn/ϵ2) queries, where γ is the continuous generic submodularity ratio that compares favorably in flexibility to the traditional submodularity ratio proposed by Das and Kempe. The key idea of our algorithm is originated from the parallel-greedy algorithm proposed by Chekuri et al., but incorporating with two major changes to retain the performance guarantee: First, identify all good coordinates with the continuous generic submodularity ratio and gradient values approximately as large as the best coordinate, and increase along all these coordinates uniformly; Second, increase x along these coordinates by a dynamical increment whose value depends on γ. The key difficulty of our algorithm is that when the function is nonsubmodular, the set of the best coordinate does not decrease during iterations; while provided submodularity, the decreasing can be ensured by the parallel-greedy algorithm. Our algorithms slightly compromise performance guarantee for the sake of extending to constrained nonsubmodular maximization with parallelism, provided that the state-of-art algorithm for the corresponding submodular version attains an approximation ratio of (1−1/e−ϵ) and requires O(logn/ϵ2) adaptive rounds. |
---|---|
AbstractList | •We devise parallel algorithms for non-submodular maximization based on rounding fractional solutions of its multilinear relaxation.•The developed techniques have the potential to inspire new algorithms with a provably low number of adaptive rounds.•The devised algorithm achieves performance guarantee close to the state-of-art result for the submodular version of the problem.
In the paper, we consider the problem of maximizing the multilinear extension of a nonsubmodular set function subject to a k-cardinality constraint with adaptive rounds of evaluation queries. We devise an algorithm which achieves a ratio of (1−e−γ2−ϵ) and requires O(logn/ϵ2) adaptive rounds and O(nlogn/ϵ2) queries, where γ is the continuous generic submodularity ratio that compares favorably in flexibility to the traditional submodularity ratio proposed by Das and Kempe. The key idea of our algorithm is originated from the parallel-greedy algorithm proposed by Chekuri et al., but incorporating with two major changes to retain the performance guarantee: First, identify all good coordinates with the continuous generic submodularity ratio and gradient values approximately as large as the best coordinate, and increase along all these coordinates uniformly; Second, increase x along these coordinates by a dynamical increment whose value depends on γ. The key difficulty of our algorithm is that when the function is nonsubmodular, the set of the best coordinate does not decrease during iterations; while provided submodularity, the decreasing can be ensured by the parallel-greedy algorithm. Our algorithms slightly compromise performance guarantee for the sake of extending to constrained nonsubmodular maximization with parallelism, provided that the state-of-art algorithm for the corresponding submodular version attains an approximation ratio of (1−1/e−ϵ) and requires O(logn/ϵ2) adaptive rounds. |
Author | Tan, Jingjing Guo, Longkun Xu, Dachuan Zhang, Hongxiang |
Author_xml | – sequence: 1 givenname: Hongxiang surname: Zhang fullname: Zhang, Hongxiang email: zhanghx010@emails.bjut.edu.cn organization: Department of Operations Research and Information Engineering, Beijing University of Technology, Beijing 100124, PR China – sequence: 2 givenname: Dachuan surname: Xu fullname: Xu, Dachuan email: xudc@bjut.edu.cn organization: Department of Operations Research and Information Engineering, Beijing University of Technology, Beijing 100124, PR China – sequence: 3 givenname: Longkun surname: Guo fullname: Guo, Longkun email: longkun.guo@gmail.com organization: Shandong Key Laboratory of Computer Networks, School of Computer Science and Technology, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China – sequence: 4 givenname: Jingjing orcidid: 0000-0002-9941-0629 surname: Tan fullname: Tan, Jingjing email: tanjingjing1108@163.com organization: School of Mathematics and Information Science, Weifang University, Weifang 261061, PR China |
BookMark | eNp9kNtOwzAMhiM0JLbBA3CXF2jJoW1acYUmTtIkuABxGblOKqXqASUZYnt6MsY1vrFk-_dvfyuymObJEnLNWc4Zr276PGLIBRM8ZyJnsjwjS16rJhOiKRZkySQrMtmo8oKsQuhZilJVS_LxCh6GwQ7uYA0d4duN7gDRzROdO5pMwq4dZ7MbwNNuN-FvJ9V6i5HGmQJF8MZNMLi4p5jmowc3xUty3sEQ7NVfXpP3h_u3zVO2fXl83txtMxRFEzODUgiF1hat4VUhK8FQ1MZw1amisSgbLDvRSCVLgLauVY0gUHZtJUowbS3XhJ_2op9D8LbTn96N4PeaM30ko3udyOgjGc2ETmSS5vaksemwL2e9DujshNY4n97SZnb_qH8ASpFwXQ |
Cites_doi | 10.1016/0166-218X(84)90003-9 10.1007/s10898-019-00800-2 10.1007/BF01651330 10.1007/BF01588971 10.1016/j.endm.2010.05.086 10.1137/080733991 10.1137/110839655 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tcs.2021.02.035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1879-2294 |
EndPage | 137 |
ExternalDocumentID | 10_1016_j_tcs_2021_02_035 S0304397521001006 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPC SPCBC SSV SSW T5K TN5 WH7 YNT ZMT ~G- 29Q AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB G-2 HZ~ R2- RIG SEW SSH SSZ TAE WUQ XJT ZY4 |
ID | FETCH-LOGICAL-c249t-dc3227cee4bd1643620c28dd17f749ec39c5f293735aab8878ca2c3fb625adb83 |
IEDL.DBID | IXB |
ISSN | 0304-3975 |
IngestDate | Tue Jul 01 05:02:49 EDT 2025 Fri Feb 23 02:47:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Continuous generic submodularity ratio Adaptive Multilinear relaxation Nonsubmodular |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-dc3227cee4bd1643620c28dd17f749ec39c5f293735aab8878ca2c3fb625adb83 |
ORCID | 0000-0002-9941-0629 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_tcs_2021_02_035 elsevier_sciencedirect_doi_10_1016_j_tcs_2021_02_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-10 |
PublicationDateYYYYMMDD | 2021-04-10 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Theoretical computer science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Vondrák (br0270) 1978; 2 Fortuin, Kasteleyn, Ginibre (br0160) 1971; 22 Conforti, Cornuéjols (br0110) 1984; 7 Harshaw, Feldman, Ward, Karbasi (br0200) 2019 Ene, Nguyễn (br0140) 2019 Chekuri, Vondrák, Zenklusen (br0100) 2014; 43 Balkanski, Rubinstein, Singer (br0020) 2019 Das, Kempe (br0130) 2011 Gharesifard, Smith (br0170) 2016 Jegelka, Bilmes (br0220) 2011 Gong, Nong, Liu, Fang (br0190) 2019; 75 Chen, Hassani, Karbasi (br0120) 2018 Nemhauser, Wolsey, Fisher (br0240) 1978; 14 Azar, Gamzu (br0010) 2012 Barbosa, Ene, Nguyen, Ward (br0030) 2015 Calinescu, Chekuri, Pál (br0070) 2011; 40 A. Ene, H.L. Nguyễn, A. Vladu, A parallel double greedy algorithm for submodular maximization, arXiv, 2018. Hassani, Soltanolkotabi, Karbasi (br0210) 2017 Vondrák (br0260) 2008 Chekuri, Jayram, Vondrák (br0080) 2015 Parotsidis, Pitoura, Tsaparas (br0250) 2016 Balkanski, Singer (br0040) 2018 Bouhtou, Stephane, Guillaume (br0060) 2010; 36 Bian, Buhmann, Krause, Tschiatschek (br0050) 2017 Liu, Wei, Kirchhoff (br0230) 2013 Chekuri, Quanrud (br0090) 2019 Golovin, Krause (br0180) 2011; 42 Chen (10.1016/j.tcs.2021.02.035_br0120) 2018 Hassani (10.1016/j.tcs.2021.02.035_br0210) 2017 Conforti (10.1016/j.tcs.2021.02.035_br0110) 1984; 7 Vondrák (10.1016/j.tcs.2021.02.035_br0260) 2008 10.1016/j.tcs.2021.02.035_br0150 Chekuri (10.1016/j.tcs.2021.02.035_br0100) 2014; 43 Ene (10.1016/j.tcs.2021.02.035_br0140) 2019 Barbosa (10.1016/j.tcs.2021.02.035_br0030) 2015 Gong (10.1016/j.tcs.2021.02.035_br0190) 2019; 75 Calinescu (10.1016/j.tcs.2021.02.035_br0070) 2011; 40 Das (10.1016/j.tcs.2021.02.035_br0130) 2011 Fortuin (10.1016/j.tcs.2021.02.035_br0160) 1971; 22 Golovin (10.1016/j.tcs.2021.02.035_br0180) 2011; 42 Harshaw (10.1016/j.tcs.2021.02.035_br0200) 2019 Liu (10.1016/j.tcs.2021.02.035_br0230) 2013 Azar (10.1016/j.tcs.2021.02.035_br0010) 2012 Nemhauser (10.1016/j.tcs.2021.02.035_br0240) 1978; 14 Gharesifard (10.1016/j.tcs.2021.02.035_br0170) 2016 Jegelka (10.1016/j.tcs.2021.02.035_br0220) 2011 Parotsidis (10.1016/j.tcs.2021.02.035_br0250) 2016 Chekuri (10.1016/j.tcs.2021.02.035_br0090) 2019 Balkanski (10.1016/j.tcs.2021.02.035_br0020) 2019 Vondrák (10.1016/j.tcs.2021.02.035_br0270) 1978; 2 Chekuri (10.1016/j.tcs.2021.02.035_br0080) 2015 Balkanski (10.1016/j.tcs.2021.02.035_br0040) 2018 Bouhtou (10.1016/j.tcs.2021.02.035_br0060) 2010; 36 Bian (10.1016/j.tcs.2021.02.035_br0050) 2017 |
References_xml | – volume: 2 start-page: 65 year: 1978 end-page: 74 ident: br0270 article-title: Submodularity and curvature: the optimal algorithm publication-title: Ann. Discrete Math. – start-page: 201 year: 2015 end-page: 210 ident: br0080 article-title: On multiplicative weight updates for concave and submodular function maximization publication-title: Proceedings of CITCS – start-page: 1896 year: 2018 end-page: 1905 ident: br0120 article-title: Online continuous submodular maximization publication-title: Proceed of ICAIS – start-page: 67 year: 2008 end-page: 74 ident: br0260 article-title: Optimal approximation for the submodular welfare problem in the value oracle model publication-title: Proceedings of STOC – start-page: 1138 year: 2018 end-page: 1151 ident: br0040 article-title: The adaptive complexity of maximizing a submodular function publication-title: Proceedings of STOC – volume: 36 start-page: 679 year: 2010 end-page: 686 ident: br0060 article-title: Submodularity and randomized rounding techniques for optimal experimental design publication-title: Electron. Notes Discrete Math. – volume: 43 start-page: 1831 year: 2014 end-page: 1879 ident: br0100 article-title: Submodular function maximization via the multilinear relaxation and contention resolution schemes publication-title: SIAM J. Comput. – start-page: 1236 year: 2015 end-page: 1244 ident: br0030 article-title: The power of randomization: distributed submodular maximization on massive datasets publication-title: Proceedings of ICML – volume: 42 start-page: 427 year: 2011 end-page: 486 ident: br0180 article-title: Adaptive submodularity: theory and applications in active learning and stochastic optimization publication-title: J. Artif. Intell. Res. – start-page: 7184 year: 2013 end-page: 7188 ident: br0230 article-title: Submodular feature selection for high-dimensional acoustic score spaces publication-title: Proceedings of ICA – reference: A. Ene, H.L. Nguyễn, A. Vladu, A parallel double greedy algorithm for submodular maximization, arXiv, 2018. – volume: 22 start-page: 89 year: 1971 end-page: 103 ident: br0160 article-title: Correlation inequalities on some partially ordered sets publication-title: Commun. Math. Phys. – start-page: 283 year: 2019 end-page: 302 ident: br0020 article-title: An exponential speedup in parallel running time for submodular maximization without loss in approximation publication-title: Proceedings of SODA – start-page: 38 year: 2012 end-page: 50 ident: br0010 article-title: Efficient submodular function maximization under linear packing constraints publication-title: Proceedings of ICALP – start-page: 303 year: 2019 end-page: 322 ident: br0090 article-title: Submodular function maximization in parallel via the multilinear relaxation publication-title: Proceedings of SODA – start-page: 5841 year: 2017 end-page: 5851 ident: br0210 article-title: Gradient methods for submodular maximization publication-title: Proceed of NIPS – start-page: 498 year: 2017 end-page: 507 ident: br0050 article-title: Guarantees for greedy maximization of non-submodular functions with applications publication-title: Proceedings of ICML – start-page: 2634 year: 2019 end-page: 2643 ident: br0200 article-title: Submodular maximization beyond nonnegativity; guarantees, fast algorithms, and applications publication-title: Proceedings of ICML – start-page: 1048 year: 2016 end-page: 1053 ident: br0170 article-title: On distributed submodular maximization with limited information publication-title: Proceed of ACC – start-page: 274 year: 2019 end-page: 282 ident: br0140 article-title: Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time publication-title: Proceedings of SODA – start-page: 1057 year: 2011 end-page: 1064 ident: br0130 article-title: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection publication-title: Proceedings of ICML – volume: 75 start-page: 833 year: 2019 end-page: 849 ident: br0190 article-title: Parametric monotone function maximization with matroid constraints publication-title: J. Glob. Optim. – volume: 14 start-page: 2652 year: 1978 end-page: 2694 ident: br0240 article-title: An analysis of approximations for maximizing submodular set functions-I publication-title: Math. Program. – start-page: 1897 year: 2011 end-page: 1904 ident: br0220 article-title: Submodularity beyond submodular energies: coupling edges in graph cuts publication-title: Proceedings of CVPR – volume: 7 start-page: 251 year: 1984 end-page: 274 ident: br0110 article-title: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem publication-title: Discrete Appl. Math. – volume: 40 start-page: 1740 year: 2011 end-page: 1766 ident: br0070 article-title: Maximizing a monotone submodular function subject to a matroid constraint publication-title: SIAM J. Comput. – start-page: 503 year: 2016 end-page: 512 ident: br0250 article-title: Centrality-aware link recommendations publication-title: Proceedings of WSDM – volume: 7 start-page: 251 year: 1984 ident: 10.1016/j.tcs.2021.02.035_br0110 article-title: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90003-9 – start-page: 274 year: 2019 ident: 10.1016/j.tcs.2021.02.035_br0140 article-title: Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time – start-page: 1048 year: 2016 ident: 10.1016/j.tcs.2021.02.035_br0170 article-title: On distributed submodular maximization with limited information – start-page: 2634 year: 2019 ident: 10.1016/j.tcs.2021.02.035_br0200 article-title: Submodular maximization beyond nonnegativity; guarantees, fast algorithms, and applications – start-page: 38 year: 2012 ident: 10.1016/j.tcs.2021.02.035_br0010 article-title: Efficient submodular function maximization under linear packing constraints – volume: 75 start-page: 833 year: 2019 ident: 10.1016/j.tcs.2021.02.035_br0190 article-title: Parametric monotone function maximization with matroid constraints publication-title: J. Glob. Optim. doi: 10.1007/s10898-019-00800-2 – start-page: 1896 year: 2018 ident: 10.1016/j.tcs.2021.02.035_br0120 article-title: Online continuous submodular maximization – ident: 10.1016/j.tcs.2021.02.035_br0150 – start-page: 7184 year: 2013 ident: 10.1016/j.tcs.2021.02.035_br0230 article-title: Submodular feature selection for high-dimensional acoustic score spaces – start-page: 1138 year: 2018 ident: 10.1016/j.tcs.2021.02.035_br0040 article-title: The adaptive complexity of maximizing a submodular function – volume: 22 start-page: 89 year: 1971 ident: 10.1016/j.tcs.2021.02.035_br0160 article-title: Correlation inequalities on some partially ordered sets publication-title: Commun. Math. Phys. doi: 10.1007/BF01651330 – start-page: 1236 year: 2015 ident: 10.1016/j.tcs.2021.02.035_br0030 article-title: The power of randomization: distributed submodular maximization on massive datasets – start-page: 1057 year: 2011 ident: 10.1016/j.tcs.2021.02.035_br0130 article-title: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection – start-page: 303 year: 2019 ident: 10.1016/j.tcs.2021.02.035_br0090 article-title: Submodular function maximization in parallel via the multilinear relaxation – start-page: 283 year: 2019 ident: 10.1016/j.tcs.2021.02.035_br0020 article-title: An exponential speedup in parallel running time for submodular maximization without loss in approximation – volume: 14 start-page: 2652 year: 1978 ident: 10.1016/j.tcs.2021.02.035_br0240 article-title: An analysis of approximations for maximizing submodular set functions-I publication-title: Math. Program. doi: 10.1007/BF01588971 – volume: 42 start-page: 427 year: 2011 ident: 10.1016/j.tcs.2021.02.035_br0180 article-title: Adaptive submodularity: theory and applications in active learning and stochastic optimization publication-title: J. Artif. Intell. Res. – start-page: 503 year: 2016 ident: 10.1016/j.tcs.2021.02.035_br0250 article-title: Centrality-aware link recommendations – start-page: 201 year: 2015 ident: 10.1016/j.tcs.2021.02.035_br0080 article-title: On multiplicative weight updates for concave and submodular function maximization – volume: 36 start-page: 679 year: 2010 ident: 10.1016/j.tcs.2021.02.035_br0060 article-title: Submodularity and randomized rounding techniques for optimal experimental design publication-title: Electron. Notes Discrete Math. doi: 10.1016/j.endm.2010.05.086 – start-page: 5841 year: 2017 ident: 10.1016/j.tcs.2021.02.035_br0210 article-title: Gradient methods for submodular maximization – volume: 40 start-page: 1740 year: 2011 ident: 10.1016/j.tcs.2021.02.035_br0070 article-title: Maximizing a monotone submodular function subject to a matroid constraint publication-title: SIAM J. Comput. doi: 10.1137/080733991 – volume: 2 start-page: 65 year: 1978 ident: 10.1016/j.tcs.2021.02.035_br0270 article-title: Submodularity and curvature: the optimal algorithm publication-title: Ann. Discrete Math. – volume: 43 start-page: 1831 year: 2014 ident: 10.1016/j.tcs.2021.02.035_br0100 article-title: Submodular function maximization via the multilinear relaxation and contention resolution schemes publication-title: SIAM J. Comput. doi: 10.1137/110839655 – start-page: 1897 year: 2011 ident: 10.1016/j.tcs.2021.02.035_br0220 article-title: Submodularity beyond submodular energies: coupling edges in graph cuts – start-page: 498 year: 2017 ident: 10.1016/j.tcs.2021.02.035_br0050 article-title: Guarantees for greedy maximization of non-submodular functions with applications – start-page: 67 year: 2008 ident: 10.1016/j.tcs.2021.02.035_br0260 article-title: Optimal approximation for the submodular welfare problem in the value oracle model |
SSID | ssj0000576 |
Score | 2.3107939 |
Snippet | •We devise parallel algorithms for non-submodular maximization based on rounding fractional solutions of its multilinear relaxation.•The developed techniques... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 129 |
SubjectTerms | Adaptive Continuous generic submodularity ratio Multilinear relaxation Nonsubmodular |
Title | Parallelized maximization of nonsubmodular function subject to a cardinality constraint |
URI | https://dx.doi.org/10.1016/j.tcs.2021.02.035 |
Volume | 864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7UetGDS1WsS5mDJyE2-yTHWpSqtAha7G2YLRCxCzWCePC3-2aSuIBePGaSgeHNzPu-l7cBnCCoU7w2gaNchQaKTzOHc5E6OvK0iJBj-LbO7HAUD8bh9SSaNKBf58KYsMpK95c63WrraqRbSbO7yPPunXHqIZoi_hjDxpbdDsLEJvFNzr-0cURLf6XxAODXtWfTxngV0lTs9suynbbj2y_Y9A1vLrdgoyKKpFeuZRsaetaCzboJA6nuZAvWh5-FV5934OGWL013lKf8TSsy5a_5tEq0JPOMzEy-pZjOlYk9JQbS7BscM39jSDEnnEhzZEp2TqQhj6aHRLEL48uL-_7AqXonOBINqsJREm8qRQQMhUKLCGHKlX6ilEczGqZaBqmMMoR6GkS4N6hpEsl9GWQC7SGuRBLsQRMXpfeBIGXSccppzEUYZm7MJbKiOHZFlHFP6LANp7XU2KIskcHq2LFHhiJmRsTM9RmKuA1hLVf2Y58ZqvC_px38b9ohrJkn4_3x3CNoFssXfYwkohAdWDl79zqw2ru6GYw69sx8AH_PyRE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwNBDA6lHtSDj6pYn3PwJCzd93aPWiyttkWwxd6GeS2s2Ad1BfHXm-zDB-jF68wODJlMvi-bTAJwgaAe4bXxLG1rdFDcKLGEkLFlAsfIADmGm9eZHY7C3sS_nQbTGnSqtzCUVlna_sKm59a6HGmV0mwt07T1QEE9RFPEH3JsqOz2GrKBkFS7P73-MsdBVAQsKQSAn1ehzTzJK1NUstst6nbmLd9-AadvgNPdga2SKbKrYjO7UDPzBmxXXRhYeSkbsDn8rLz6sgeP92JF7VGe03ej2Uy8pbPypSVbJGxODy7lbKEp-ZQRpuUzOEa_Y1i2YIIp0pmCnjNF7JGaSGT7MOnejDs9q2yeYCn0qDJLK7yqEUKgLzW6RIhTtnLbWjtREvmxUV6sggSxPvICPBw0NW0lXOUlEh0ioWXbO4A6bsocAkPOZMJYRKGQvp_YoVBIi8LQlkEiHGn8JlxWUuPLokYGr5LHnjiKmJOIue1yFHET_Equ_MdBc7Thfy87-t-yc1jvjYcDPuiP7o5hg2YoFOTYJ1DPVq_mFBlFJs9yjfkArk_JrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallelized+maximization+of+nonsubmodular+function+subject+to+a+cardinality+constraint&rft.jtitle=Theoretical+computer+science&rft.au=Zhang%2C+Hongxiang&rft.au=Xu%2C+Dachuan&rft.au=Guo%2C+Longkun&rft.au=Tan%2C+Jingjing&rft.date=2021-04-10&rft.issn=0304-3975&rft.volume=864&rft.spage=129&rft.epage=137&rft_id=info:doi/10.1016%2Fj.tcs.2021.02.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2021_02_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |