A new common spatial pattern-based unified channels algorithm for driver’s fatigue EEG signals classification

The common spatial pattern (CSP) algorithm is efficient and accurate for channels selection and features extraction for electroencephalogram (EEG) signals classification. The CSP algorithm is usually applied on a subject-by-subject basis by measuring only intra-subject variations for selecting the m...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 2; pp. 1423 - 1445
Main Authors Zeng, Hong, Zakaria, Wael
Format Journal Article
LanguageEnglish
Published London Springer London 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The common spatial pattern (CSP) algorithm is efficient and accurate for channels selection and features extraction for electroencephalogram (EEG) signals classification. The CSP algorithm is usually applied on a subject-by-subject basis by measuring only intra-subject variations for selecting the most significant channels; we refer to this algorithm as CSP-based customized channels selection (CSP-CC). In practice, deploying the CSP-CC algorithm requires to set up a customized EEG device for each subject separately, which can be very costly. In this paper, we propose a new algorithm, called CSP-based unified channels (CSP-UC), for overcoming the aforementioned difficulties. The aim of the proposed algorithm is to extract unified channels that are valid for any subject; hence, one EEG device can be deployed for all subjects. Moreover, a methodology for developing both binary-class and ternary-class EEG signals classification models using either customized or unified channels is introduced. This methodology is applicable for both subject-by-subject and cross-subjects basis. In ternary-class classification models, the traditional “Max_Vote” method, used for voting the predicted class labels, has been modified to a more accurate method called “Max_Vote_then_Max_Probability.” On a subject-by-subject basis, the experimental results on EEG-based driver’s fatigue dataset have shown that the accuracy of the classification models that are based on the proposed CSP-UC algorithm is slightly lower than that of those based on the CSP-CC algorithm. Nevertheless, the former algorithm is more practical and cost-effective than the latter. But in cross-subjects, the classification models based on the CSP-UC algorithm outperform those based on the CSP-CC algorithm in both accuracy and the number of used channels.
AbstractList The common spatial pattern (CSP) algorithm is efficient and accurate for channels selection and features extraction for electroencephalogram (EEG) signals classification. The CSP algorithm is usually applied on a subject-by-subject basis by measuring only intra-subject variations for selecting the most significant channels; we refer to this algorithm as CSP-based customized channels selection (CSP-CC). In practice, deploying the CSP-CC algorithm requires to set up a customized EEG device for each subject separately, which can be very costly. In this paper, we propose a new algorithm, called CSP-based unified channels (CSP-UC), for overcoming the aforementioned difficulties. The aim of the proposed algorithm is to extract unified channels that are valid for any subject; hence, one EEG device can be deployed for all subjects. Moreover, a methodology for developing both binary-class and ternary-class EEG signals classification models using either customized or unified channels is introduced. This methodology is applicable for both subject-by-subject and cross-subjects basis. In ternary-class classification models, the traditional “Max_Vote” method, used for voting the predicted class labels, has been modified to a more accurate method called “Max_Vote_then_Max_Probability.” On a subject-by-subject basis, the experimental results on EEG-based driver’s fatigue dataset have shown that the accuracy of the classification models that are based on the proposed CSP-UC algorithm is slightly lower than that of those based on the CSP-CC algorithm. Nevertheless, the former algorithm is more practical and cost-effective than the latter. But in cross-subjects, the classification models based on the CSP-UC algorithm outperform those based on the CSP-CC algorithm in both accuracy and the number of used channels.
Author Zakaria, Wael
Zeng, Hong
Author_xml – sequence: 1
  givenname: Hong
  orcidid: 0000-0001-5936-9775
  surname: Zeng
  fullname: Zeng, Hong
  organization: Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, School of Computer Science and Technology
– sequence: 2
  givenname: Wael
  orcidid: 0000-0001-6718-0980
  surname: Zakaria
  fullname: Zakaria, Wael
  email: Wael.Zakaria@sci.asu.edu.eg
  organization: Department of Mathematics, Faculty of Science, Ain Shams University
BookMark eNp9kM1KAzEUhYNUsK2-gKuA69H8zWRmWUqtQsGNrkOanzZlmtRkqnXna_h6PolpKwguujqXe893OZwB6PngDQDXGN1ihPhdQqgkuECEFIjXlBa7M9DHLA8UlXUP9FHD8rli9AIMUlohhFhVl30QRtCbd6jCeh08TBvZOdnCLJ2JvpjLZDTcemddVrWU3ps2QdkuQnTdcg1tiFBH92bi9-dXgjbji62Bk8kUJrfwMptVK1PKD1S-BX8Jzm3emqtfHYKX-8nz-KGYPU0fx6NZoQhrukI3jVaUa0IJbqzG83mNCLNNRamt5pwzwupaM1zqmhiOpCbcllpjUjVKU4vpENwc_25ieN2a1IlV2MZ9IEF4RUrKy1zPENRHl4ohpWisUK475OyidK3ASOzrFcd6Ra5XHOoVu4ySf-gmurWMH6cheoRSNvuFiX-pTlA_RaSRzg
CitedBy_id crossref_primary_10_1016_j_jksuci_2023_03_014
Cites_doi 10.1109/EMBC.2014.6945054
10.1109/ROBIO.2009.5420462
10.1109/IEMBS.2005.1616947
10.1109/TNSRE.2021.3055276
10.1109/86.895946
10.1007/s11517-021-02488-7
10.1016/j.neuroimage.2005.05.032
10.1109/TNSRE.2006.875642
10.1007/BF01129656
10.1109/TBME.2011.2131142
10.1109/TBME.2008.921154
10.1109/TBME.2010.2082539
10.1155/2019/8068357
10.1109/EMBC.2012.6347469
10.1177/1071181311551042
10.1016/j.patcog.2021.107918
10.1109/LSP.2018.2823683
10.3389/fnhum.2022.880304
10.1109/IEMBS.2009.5332383
10.1109/LSP.2009.2022557
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-022-07833-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 1445
ExternalDocumentID 10_1007_s00521_022_07833_x
GrantInformation_xml – fundername: national key r &d program of china
  grantid: 2017YFE0118200
– fundername: nsfc
  grantid: 62076083
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c249t-d99dc37d23219fd1bb8024f9633f6b7742488d415d82e70ad27f5dd1269cd3f13
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Fri Jul 25 03:19:47 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Tue Jul 01 01:47:08 EDT 2025
Fri Feb 21 02:45:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Unified channels selection
Cross-subjects
Common spatial pattern
Channels selection
Subject-by-subject
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-d99dc37d23219fd1bb8024f9633f6b7742488d415d82e70ad27f5dd1269cd3f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5936-9775
0000-0001-6718-0980
PQID 2762537514
PQPubID 2043988
PageCount 23
ParticipantIDs proquest_journals_2762537514
crossref_citationtrail_10_1007_s00521_022_07833_x
crossref_primary_10_1007_s00521_022_07833_x
springer_journals_10_1007_s00521_022_07833_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Wang Y, Gao S, Gao X (2006) Common spatial pattern method for channel selection in motor imagery based brain-computer interface. In: 2005 IEEE engineering in medicine and biology 27th annual conference, pp 5392–5395. https://doi.org/10.3389/fnhum.2022.880304
KolesZJLazarMSZhouSZSpatial patterns underlying population differences in the background EEGBrain Topogr19902427528410.1007/BF01129656
SunJWeiMLuoNLiZWangHEuler common spatial patterns for EEG classificationMed Biol Eng Comput202210.1007/s11517-021-02488-7
MishuhinaVJiangXFeature weighting and regularization of common spatial patterns in EEG-based motor imagery BCIIEEE Signal Process Lett201825678378710.1109/LSP.2018.2823683
MishuhinaVJiangXComplex common spatial patterns on time-frequency decomposed EEG for brain-computer interfacePattern Recognit202111510791810.1016/j.patcog.2021.107918
FengJKJinJDalyIZhouJNiuYWangXCichockiAAn optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI systemComput Intell Neurosci201910.1155/2019/8068357
BlankertzBMullerK-RKrusienskiDJSchalkGWolpawJRSchloglAPfurtschellerGMillanJRSchroderMBirbaumerNThe BCI competition iii: validating alternative approaches to actual BCI problemsIEEE Trans Neural Syst Rehabil Eng200614215315910.1109/TNSRE.2006.875642
ArvanehMGuanCAngKKQuekCOptimizing the channel selection and classification accuracy in EEG-based BCIIEEE Trans Biomed Eng20115861865187310.1109/TBME.2011.2131142
Borghini G, Vecchiato G, Toppi J, Astolfi L, Maglione A, Isabella R, Caltagirone C, Kong W, Wei D, Zhou Z et al (2012) Assessment of mental fatigue during car driving by using high resolution eeg activity and neurophysiologic indices. In: 2012 annual international conference of the IEEE engineering in medicine and biology society, pp 6442–6445 . https://doi.org/10.1109/EMBC.2012.6347469
Maglione A, Borghini G, Aricò P, Borgia F, Graziani I, Colosimo A, Kong W, Vecchiato G, Babiloni F (2014) Evaluation of the workload and drowsiness during car driving by using high resolution eeg activity and neurophysiologic indices. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, pp 6238–6241 . https://doi.org/10.1109/EMBC.2014.6945054
LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Trans Biomed Eng201058235536210.1109/TBME.2010.2082539
Chin ZY, Ang KK, Wang C, Guan C, Zhang H (2009) Multi-class filter bank common spatial pattern for four-class motor imagery BCI. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, pp 571–574 . https://doi.org/10.1109/IEMBS.2009.5332383
LiCZhouWLiuGZhangYGengMLiuZWangSShangWSeizure onset detection using empirical mode decomposition and common spatial patternIEEE Trans Neural Syst Rehabil Eng20212945846710.1109/TNSRE.2021.3055276
ParraLCSpenceCDGersonADSajdaPRecipes for the linear analysis of EEGNeuroimage200528232634110.1016/j.neuroimage.2005.05.032
KangHNamYChoiSComposite common spatial pattern for subject-to-subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557
Grosse-WentrupMBussMMulticlass common spatial patterns and information theoretic feature extractionIEEE Trans Biomed Eng20085581991200010.1109/TBME.2008.921154
Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Regularized common spatial patterns with generic learning for eeg signal classification. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, pp 6599–6602 . https://doi.org/10.1109/IEMBS.2005.1616947
Meng J, Liu G, Huang G, Zhu X (2009) Automated selecting subset of channels based on CSP in motor imagery brain-computer interface system. In: 2009 IEEE international conference on robotics and biomimetics (ROBIO), pp 2290–2294 . https://doi.org/10.1109/ROBIO.2009.5420462
RamoserHMuller-GerkingJPfurtschellerGOptimal spatial filtering of single trial EEG during imagined hand movementIEEE Trans Rehabil Eng20008444144610.1109/86.895946
Hope RM, Wang Z, Wang Z, Ji Q, Gray WD (2011) Workload classification across subjects using EEG. In: Proceedings of the human factors and ergonomics society annual meeting, vol 55, pp 202–206. https://doi.org/10.1177/1071181311551042
B Blankertz (7833_CR2) 2006; 14
7833_CR19
V Mishuhina (7833_CR8) 2018; 25
7833_CR18
JK Feng (7833_CR15) 2019
LC Parra (7833_CR9) 2005; 28
H Kang (7833_CR13) 2009; 16
C Li (7833_CR16) 2021; 29
F Lotte (7833_CR3) 2010; 58
ZJ Koles (7833_CR6) 1990; 2
V Mishuhina (7833_CR4) 2021; 115
7833_CR7
J Sun (7833_CR17) 2022
7833_CR10
7833_CR1
H Ramoser (7833_CR5) 2000; 8
7833_CR12
M Grosse-Wentrup (7833_CR11) 2008; 55
M Arvaneh (7833_CR14) 2011; 58
7833_CR20
References_xml – reference: Maglione A, Borghini G, Aricò P, Borgia F, Graziani I, Colosimo A, Kong W, Vecchiato G, Babiloni F (2014) Evaluation of the workload and drowsiness during car driving by using high resolution eeg activity and neurophysiologic indices. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, pp 6238–6241 . https://doi.org/10.1109/EMBC.2014.6945054
– reference: KolesZJLazarMSZhouSZSpatial patterns underlying population differences in the background EEGBrain Topogr19902427528410.1007/BF01129656
– reference: ParraLCSpenceCDGersonADSajdaPRecipes for the linear analysis of EEGNeuroimage200528232634110.1016/j.neuroimage.2005.05.032
– reference: Hope RM, Wang Z, Wang Z, Ji Q, Gray WD (2011) Workload classification across subjects using EEG. In: Proceedings of the human factors and ergonomics society annual meeting, vol 55, pp 202–206. https://doi.org/10.1177/1071181311551042
– reference: MishuhinaVJiangXFeature weighting and regularization of common spatial patterns in EEG-based motor imagery BCIIEEE Signal Process Lett201825678378710.1109/LSP.2018.2823683
– reference: Borghini G, Vecchiato G, Toppi J, Astolfi L, Maglione A, Isabella R, Caltagirone C, Kong W, Wei D, Zhou Z et al (2012) Assessment of mental fatigue during car driving by using high resolution eeg activity and neurophysiologic indices. In: 2012 annual international conference of the IEEE engineering in medicine and biology society, pp 6442–6445 . https://doi.org/10.1109/EMBC.2012.6347469
– reference: Chin ZY, Ang KK, Wang C, Guan C, Zhang H (2009) Multi-class filter bank common spatial pattern for four-class motor imagery BCI. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, pp 571–574 . https://doi.org/10.1109/IEMBS.2009.5332383
– reference: LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Trans Biomed Eng201058235536210.1109/TBME.2010.2082539
– reference: Wang Y, Gao S, Gao X (2006) Common spatial pattern method for channel selection in motor imagery based brain-computer interface. In: 2005 IEEE engineering in medicine and biology 27th annual conference, pp 5392–5395. https://doi.org/10.3389/fnhum.2022.880304
– reference: Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Regularized common spatial patterns with generic learning for eeg signal classification. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, pp 6599–6602 . https://doi.org/10.1109/IEMBS.2005.1616947
– reference: SunJWeiMLuoNLiZWangHEuler common spatial patterns for EEG classificationMed Biol Eng Comput202210.1007/s11517-021-02488-7
– reference: BlankertzBMullerK-RKrusienskiDJSchalkGWolpawJRSchloglAPfurtschellerGMillanJRSchroderMBirbaumerNThe BCI competition iii: validating alternative approaches to actual BCI problemsIEEE Trans Neural Syst Rehabil Eng200614215315910.1109/TNSRE.2006.875642
– reference: Grosse-WentrupMBussMMulticlass common spatial patterns and information theoretic feature extractionIEEE Trans Biomed Eng20085581991200010.1109/TBME.2008.921154
– reference: FengJKJinJDalyIZhouJNiuYWangXCichockiAAn optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI systemComput Intell Neurosci201910.1155/2019/8068357
– reference: ArvanehMGuanCAngKKQuekCOptimizing the channel selection and classification accuracy in EEG-based BCIIEEE Trans Biomed Eng20115861865187310.1109/TBME.2011.2131142
– reference: MishuhinaVJiangXComplex common spatial patterns on time-frequency decomposed EEG for brain-computer interfacePattern Recognit202111510791810.1016/j.patcog.2021.107918
– reference: RamoserHMuller-GerkingJPfurtschellerGOptimal spatial filtering of single trial EEG during imagined hand movementIEEE Trans Rehabil Eng20008444144610.1109/86.895946
– reference: Meng J, Liu G, Huang G, Zhu X (2009) Automated selecting subset of channels based on CSP in motor imagery brain-computer interface system. In: 2009 IEEE international conference on robotics and biomimetics (ROBIO), pp 2290–2294 . https://doi.org/10.1109/ROBIO.2009.5420462
– reference: KangHNamYChoiSComposite common spatial pattern for subject-to-subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557
– reference: LiCZhouWLiuGZhangYGengMLiuZWangSShangWSeizure onset detection using empirical mode decomposition and common spatial patternIEEE Trans Neural Syst Rehabil Eng20212945846710.1109/TNSRE.2021.3055276
– ident: 7833_CR1
  doi: 10.1109/EMBC.2014.6945054
– ident: 7833_CR7
  doi: 10.1109/ROBIO.2009.5420462
– ident: 7833_CR12
  doi: 10.1109/IEMBS.2005.1616947
– volume: 29
  start-page: 458
  year: 2021
  ident: 7833_CR16
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2021.3055276
– volume: 8
  start-page: 441
  issue: 4
  year: 2000
  ident: 7833_CR5
  publication-title: IEEE Trans Rehabil Eng
  doi: 10.1109/86.895946
– year: 2022
  ident: 7833_CR17
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-021-02488-7
– volume: 28
  start-page: 326
  issue: 2
  year: 2005
  ident: 7833_CR9
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.032
– volume: 14
  start-page: 153
  issue: 2
  year: 2006
  ident: 7833_CR2
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2006.875642
– volume: 2
  start-page: 275
  issue: 4
  year: 1990
  ident: 7833_CR6
  publication-title: Brain Topogr
  doi: 10.1007/BF01129656
– volume: 58
  start-page: 1865
  issue: 6
  year: 2011
  ident: 7833_CR14
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2131142
– volume: 55
  start-page: 1991
  issue: 8
  year: 2008
  ident: 7833_CR11
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.921154
– volume: 58
  start-page: 355
  issue: 2
  year: 2010
  ident: 7833_CR3
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2082539
– year: 2019
  ident: 7833_CR15
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2019/8068357
– ident: 7833_CR18
  doi: 10.1109/EMBC.2012.6347469
– ident: 7833_CR20
  doi: 10.1177/1071181311551042
– volume: 115
  start-page: 107918
  year: 2021
  ident: 7833_CR4
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.107918
– volume: 25
  start-page: 783
  issue: 6
  year: 2018
  ident: 7833_CR8
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2018.2823683
– ident: 7833_CR10
  doi: 10.3389/fnhum.2022.880304
– ident: 7833_CR19
  doi: 10.1109/IEMBS.2009.5332383
– volume: 16
  start-page: 683
  issue: 8
  year: 2009
  ident: 7833_CR13
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2022557
SSID ssj0004685
Score 2.3087401
Snippet The common spatial pattern (CSP) algorithm is efficient and accurate for channels selection and features extraction for electroencephalogram (EEG) signals...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1423
SubjectTerms Algorithms
Artificial Intelligence
Channels
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Customization
Data Mining and Knowledge Discovery
Electroencephalography
Feature extraction
Image Processing and Computer Vision
Original Article
Probability and Statistics in Computer Science
Signal classification
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWADi8bOc0IFpVQMFUJU6hbFdlyQSlqaVOrI3-Dv8Us4u04LSHRNYiu-h-87-x4IXVAFoJ5zl3itDBwUcLIIwIiAyBTEJ1VuSrmJtuj53b77MPAG9sCtsGGV1Z5oNmo5FvqM_JqC1nosAPt-M3knumuUvl21LTQ2UR224DCsofpt3Ht8-pEZaZpygg-j43tcZtNmTPKcPhGFp1RHX4aMkflv07TCm3-uSI3l6eyibQsZcXvB4z20keX7aKdqx4Ctdh6gcRsDRsawHPhXXOhQaRg2MQU0c6LNlcSz_FUB6MQ63zcHs4jT0RBWWb68YUCvWE51mMbXx2eBFQwfzjIcx_dYB3mAmGKhobaOLTLsPET9Tvx81yW2nwIR4GSVREaRFCyQAKKcSEmH8xAstAIVZMrngAMpaLMEiy5DmgWtVNJAeVI61I-EZMphR6iWj_PsGGEAbfo-kfsZeIjKidLAC8DTkikNRUsI2UBORcpE2GLjuufFKFmWSTbkT4D8iSF_Mm-gy-WYyaLUxtqvmxWHEqt2RbISkga6qri2ev3_bCfrZztFW7rN_OLopYlq5XSWnQEYKfm5lbhv18vb4g
  priority: 102
  providerName: ProQuest
Title A new common spatial pattern-based unified channels algorithm for driver’s fatigue EEG signals classification
URI https://link.springer.com/article/10.1007/s00521-022-07833-x
https://www.proquest.com/docview/2762537514
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ULl78bUSR9OBNl7BuY9tx6AbRhBgjCZ6WbV2RBAdhkHj03_Df8y_xa9lAjZp46mFtk73X9n2v_d57hJwzAVAfx6ZmNVM4KHCyNMAIW-MRlk8kzIjFim3Ra3X75s3AGhRBYXnJdi-fJNVJvQp2kzeYcH2ZZEs6hqEBOVYt-O6SyNVn3qdoSFWIE36L5PSYRhEq8_McX83RGmN-exZV1ibYJdsFTKTeUq97ZCPN9slOWYKBFjvygEw8ClxM8QdYTjSX9GgMm6qkmZkmTRSni2wkADSpjPHNYAppNB5OZqP50zMFYqV8JqkZ769vORUYPlyk1Pc7VBI7sDRpIuG15BMpFR6SfuA_XHW1ooaClsCxmmvcdXli2BzASXcF1-PYgVUW2HaGaMXAfgw7mMOKc4eldjPizBYW5zpruQk3hG4ckUo2ydJjQgHU5Bti3ErhFQrdjWzLhnfFI-YkzSThNaKXogyTIsG4rHMxDlepkZX4Q4g_VOIPX2rkYjVmukyv8WfveqmhsNhqechwnFuGDeBXI5el1taff5_t5H_dT8mWLDW_vH6pk8p8tkjPAEjmcYNsOkGnQape-7odyLbzeOujbfu9u_uGWp0fQ3bdZQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LUtswFL1D6YJuKKV0SAutFmVVNI0lO44XHYahCaE8VjDDztiSRTsDTkqSAXb9DX6Cj-JLOFexCe1M2bGNIy2ujnTOle6D6LNyEPV5HsqoWcBBgZMlISNiaTPAJ3NhpnIfbXHQ6h2FP46j4xm6rXNhOKyyPhP9QW37hu_Ivyrs2kjH4PeNwW_JXaP4dbVuoTGBxW5xfQmXbfht5zvWd02pbudwqyerrgLSwNUYSZsk1ujYQkoEibNBnrfBUw5A1K6VQw0pYNqC12xbFXEzsyp2kbWBaiXGahdozPuCXoYaTM6Z6d3tR3mYvgUoPCaOJgp1laTjU_X4_hW_Ko71bGstr_4mwqm6_edB1vNcd4HmK4EqNieIekMzRblIr-vmD6I6C95Sf1NAkQsYD5YRQw7MxrCBL9dZSiZHK8blLweJKzi7uAQJi-zsFDYd_TwX0MrCXnBQyN2fm6FwGH46LkSnsy04pASbQhgW9hzJ5MGzREfPYud3NFv2y2KZBCQiv17mrQL-qAuSLI5i-HU2U23TNMY2KKhNmZqqtDl32DhLH4oye_OnMH_qzZ9eNejLw5jBpLDHk_9eqVcorTb5MJ1CskHr9apNP_9_tvdPz_aJ5nqH-3vp3s7B7gd6xQ3uJ5c-KzQ7uhgXq5BBo_yjx56gk-cG-z1Xnhaf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTsMwEFwVkBAX3ojy9AFOENE4SdMcOFS05VGEOFCJW0jiGJAgrdpUwI3f4C_4Jr6EsZu0gACJA-fYVrQeZ2fj2V2iLS5B6sPQNpxSjAAFQZYBGuEaIgB8AmkHPNRqi7PyUcs-uXQuC_Sa58JotXt-JTnIaVBVmpJ0ryPk3jDxTf3NRBjMlXKyYlnGYyarbMZPDwjaevvHNezwNueN-sXBkZH1FTAiBBupITxPRJYrQCZMTwozDCvwVBJQtGQ5BB_iQLWAZxMVHrulQHBXOkKYvOxFwpKmhXXHaMJW2cc4QS1e_ZCJqZuAImZSeiLbytJ0vn_nz65wxG-_XMlqT9eYpemMorLqAFNzVIiTeZrJ2z-w7GuwQO0qAydnsB6gzHpKmo1pHV2wMzGUexSsn9xKkFym8osTuGEW3F23u7fpzT0DW2aiq2Qhb88vPSYx_bofs3r9kClRCY4FixS1V1omDZ9Fav2LnZdoPGkn8TIxkER1fxmWY0Sk0vQC13ER2YmAV6JSFIkimbkp_Sgrbq56bNz5w7LM2vw-zO9r8_uPRdoZzukMSnv8Onot3yE_O-Y9n8OVOJYL0lmk3XzXRo9_Xm3lb8M3afK81vBPj8-aqzSlOt4P_gKt0Xja7cfr4EVpuKGhyOjqv7H_DiMyGFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+common+spatial+pattern-based+unified+channels+algorithm+for+driver%E2%80%99s+fatigue+EEG+signals+classification&rft.jtitle=Neural+computing+%26+applications&rft.au=Zeng%2C+Hong&rft.au=Zakaria%2C+Wael&rft.date=2023-01-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=2&rft.spage=1423&rft.epage=1445&rft_id=info:doi/10.1007%2Fs00521-022-07833-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_022_07833_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon