A new common spatial pattern-based unified channels algorithm for driver’s fatigue EEG signals classification
The common spatial pattern (CSP) algorithm is efficient and accurate for channels selection and features extraction for electroencephalogram (EEG) signals classification. The CSP algorithm is usually applied on a subject-by-subject basis by measuring only intra-subject variations for selecting the m...
Saved in:
Published in | Neural computing & applications Vol. 35; no. 2; pp. 1423 - 1445 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The common spatial pattern (CSP) algorithm is efficient and accurate for channels selection and features extraction for electroencephalogram (EEG) signals classification. The CSP algorithm is usually applied on a subject-by-subject basis by measuring only intra-subject variations for selecting the most significant channels; we refer to this algorithm as CSP-based customized channels selection (CSP-CC). In practice, deploying the CSP-CC algorithm requires to set up a customized EEG device for each subject separately, which can be very costly. In this paper, we propose a new algorithm, called CSP-based unified channels (CSP-UC), for overcoming the aforementioned difficulties. The aim of the proposed algorithm is to extract unified channels that are valid for any subject; hence, one EEG device can be deployed for all subjects. Moreover, a methodology for developing both binary-class and ternary-class EEG signals classification models using either customized or unified channels is introduced. This methodology is applicable for both subject-by-subject and cross-subjects basis. In ternary-class classification models, the traditional “Max_Vote” method, used for voting the predicted class labels, has been modified to a more accurate method called “Max_Vote_then_Max_Probability.” On a subject-by-subject basis, the experimental results on EEG-based driver’s fatigue dataset have shown that the accuracy of the classification models that are based on the proposed CSP-UC algorithm is slightly lower than that of those based on the CSP-CC algorithm. Nevertheless, the former algorithm is more practical and cost-effective than the latter. But in cross-subjects, the classification models based on the CSP-UC algorithm outperform those based on the CSP-CC algorithm in both accuracy and the number of used channels. |
---|---|
AbstractList | The common spatial pattern (CSP) algorithm is efficient and accurate for channels selection and features extraction for electroencephalogram (EEG) signals classification. The CSP algorithm is usually applied on a subject-by-subject basis by measuring only intra-subject variations for selecting the most significant channels; we refer to this algorithm as CSP-based customized channels selection (CSP-CC). In practice, deploying the CSP-CC algorithm requires to set up a customized EEG device for each subject separately, which can be very costly. In this paper, we propose a new algorithm, called CSP-based unified channels (CSP-UC), for overcoming the aforementioned difficulties. The aim of the proposed algorithm is to extract unified channels that are valid for any subject; hence, one EEG device can be deployed for all subjects. Moreover, a methodology for developing both binary-class and ternary-class EEG signals classification models using either customized or unified channels is introduced. This methodology is applicable for both subject-by-subject and cross-subjects basis. In ternary-class classification models, the traditional “Max_Vote” method, used for voting the predicted class labels, has been modified to a more accurate method called “Max_Vote_then_Max_Probability.” On a subject-by-subject basis, the experimental results on EEG-based driver’s fatigue dataset have shown that the accuracy of the classification models that are based on the proposed CSP-UC algorithm is slightly lower than that of those based on the CSP-CC algorithm. Nevertheless, the former algorithm is more practical and cost-effective than the latter. But in cross-subjects, the classification models based on the CSP-UC algorithm outperform those based on the CSP-CC algorithm in both accuracy and the number of used channels. |
Author | Zakaria, Wael Zeng, Hong |
Author_xml | – sequence: 1 givenname: Hong orcidid: 0000-0001-5936-9775 surname: Zeng fullname: Zeng, Hong organization: Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, School of Computer Science and Technology – sequence: 2 givenname: Wael orcidid: 0000-0001-6718-0980 surname: Zakaria fullname: Zakaria, Wael email: Wael.Zakaria@sci.asu.edu.eg organization: Department of Mathematics, Faculty of Science, Ain Shams University |
BookMark | eNp9kM1KAzEUhYNUsK2-gKuA69H8zWRmWUqtQsGNrkOanzZlmtRkqnXna_h6PolpKwguujqXe893OZwB6PngDQDXGN1ihPhdQqgkuECEFIjXlBa7M9DHLA8UlXUP9FHD8rli9AIMUlohhFhVl30QRtCbd6jCeh08TBvZOdnCLJ2JvpjLZDTcemddVrWU3ps2QdkuQnTdcg1tiFBH92bi9-dXgjbji62Bk8kUJrfwMptVK1PKD1S-BX8Jzm3emqtfHYKX-8nz-KGYPU0fx6NZoQhrukI3jVaUa0IJbqzG83mNCLNNRamt5pwzwupaM1zqmhiOpCbcllpjUjVKU4vpENwc_25ieN2a1IlV2MZ9IEF4RUrKy1zPENRHl4ohpWisUK475OyidK3ASOzrFcd6Ra5XHOoVu4ySf-gmurWMH6cheoRSNvuFiX-pTlA_RaSRzg |
CitedBy_id | crossref_primary_10_1016_j_jksuci_2023_03_014 |
Cites_doi | 10.1109/EMBC.2014.6945054 10.1109/ROBIO.2009.5420462 10.1109/IEMBS.2005.1616947 10.1109/TNSRE.2021.3055276 10.1109/86.895946 10.1007/s11517-021-02488-7 10.1016/j.neuroimage.2005.05.032 10.1109/TNSRE.2006.875642 10.1007/BF01129656 10.1109/TBME.2011.2131142 10.1109/TBME.2008.921154 10.1109/TBME.2010.2082539 10.1155/2019/8068357 10.1109/EMBC.2012.6347469 10.1177/1071181311551042 10.1016/j.patcog.2021.107918 10.1109/LSP.2018.2823683 10.3389/fnhum.2022.880304 10.1109/IEMBS.2009.5332383 10.1109/LSP.2009.2022557 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-022-07833-x |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 1445 |
ExternalDocumentID | 10_1007_s00521_022_07833_x |
GrantInformation_xml | – fundername: national key r &d program of china grantid: 2017YFE0118200 – fundername: nsfc grantid: 62076083 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c249t-d99dc37d23219fd1bb8024f9633f6b7742488d415d82e70ad27f5dd1269cd3f13 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 03:19:47 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Tue Jul 01 01:47:08 EDT 2025 Fri Feb 21 02:45:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Unified channels selection Cross-subjects Common spatial pattern Channels selection Subject-by-subject |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-d99dc37d23219fd1bb8024f9633f6b7742488d415d82e70ad27f5dd1269cd3f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5936-9775 0000-0001-6718-0980 |
PQID | 2762537514 |
PQPubID | 2043988 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2762537514 crossref_citationtrail_10_1007_s00521_022_07833_x crossref_primary_10_1007_s00521_022_07833_x springer_journals_10_1007_s00521_022_07833_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Wang Y, Gao S, Gao X (2006) Common spatial pattern method for channel selection in motor imagery based brain-computer interface. In: 2005 IEEE engineering in medicine and biology 27th annual conference, pp 5392–5395. https://doi.org/10.3389/fnhum.2022.880304 KolesZJLazarMSZhouSZSpatial patterns underlying population differences in the background EEGBrain Topogr19902427528410.1007/BF01129656 SunJWeiMLuoNLiZWangHEuler common spatial patterns for EEG classificationMed Biol Eng Comput202210.1007/s11517-021-02488-7 MishuhinaVJiangXFeature weighting and regularization of common spatial patterns in EEG-based motor imagery BCIIEEE Signal Process Lett201825678378710.1109/LSP.2018.2823683 MishuhinaVJiangXComplex common spatial patterns on time-frequency decomposed EEG for brain-computer interfacePattern Recognit202111510791810.1016/j.patcog.2021.107918 FengJKJinJDalyIZhouJNiuYWangXCichockiAAn optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI systemComput Intell Neurosci201910.1155/2019/8068357 BlankertzBMullerK-RKrusienskiDJSchalkGWolpawJRSchloglAPfurtschellerGMillanJRSchroderMBirbaumerNThe BCI competition iii: validating alternative approaches to actual BCI problemsIEEE Trans Neural Syst Rehabil Eng200614215315910.1109/TNSRE.2006.875642 ArvanehMGuanCAngKKQuekCOptimizing the channel selection and classification accuracy in EEG-based BCIIEEE Trans Biomed Eng20115861865187310.1109/TBME.2011.2131142 Borghini G, Vecchiato G, Toppi J, Astolfi L, Maglione A, Isabella R, Caltagirone C, Kong W, Wei D, Zhou Z et al (2012) Assessment of mental fatigue during car driving by using high resolution eeg activity and neurophysiologic indices. In: 2012 annual international conference of the IEEE engineering in medicine and biology society, pp 6442–6445 . https://doi.org/10.1109/EMBC.2012.6347469 Maglione A, Borghini G, Aricò P, Borgia F, Graziani I, Colosimo A, Kong W, Vecchiato G, Babiloni F (2014) Evaluation of the workload and drowsiness during car driving by using high resolution eeg activity and neurophysiologic indices. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, pp 6238–6241 . https://doi.org/10.1109/EMBC.2014.6945054 LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Trans Biomed Eng201058235536210.1109/TBME.2010.2082539 Chin ZY, Ang KK, Wang C, Guan C, Zhang H (2009) Multi-class filter bank common spatial pattern for four-class motor imagery BCI. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, pp 571–574 . https://doi.org/10.1109/IEMBS.2009.5332383 LiCZhouWLiuGZhangYGengMLiuZWangSShangWSeizure onset detection using empirical mode decomposition and common spatial patternIEEE Trans Neural Syst Rehabil Eng20212945846710.1109/TNSRE.2021.3055276 ParraLCSpenceCDGersonADSajdaPRecipes for the linear analysis of EEGNeuroimage200528232634110.1016/j.neuroimage.2005.05.032 KangHNamYChoiSComposite common spatial pattern for subject-to-subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557 Grosse-WentrupMBussMMulticlass common spatial patterns and information theoretic feature extractionIEEE Trans Biomed Eng20085581991200010.1109/TBME.2008.921154 Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Regularized common spatial patterns with generic learning for eeg signal classification. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, pp 6599–6602 . https://doi.org/10.1109/IEMBS.2005.1616947 Meng J, Liu G, Huang G, Zhu X (2009) Automated selecting subset of channels based on CSP in motor imagery brain-computer interface system. In: 2009 IEEE international conference on robotics and biomimetics (ROBIO), pp 2290–2294 . https://doi.org/10.1109/ROBIO.2009.5420462 RamoserHMuller-GerkingJPfurtschellerGOptimal spatial filtering of single trial EEG during imagined hand movementIEEE Trans Rehabil Eng20008444144610.1109/86.895946 Hope RM, Wang Z, Wang Z, Ji Q, Gray WD (2011) Workload classification across subjects using EEG. In: Proceedings of the human factors and ergonomics society annual meeting, vol 55, pp 202–206. https://doi.org/10.1177/1071181311551042 B Blankertz (7833_CR2) 2006; 14 7833_CR19 V Mishuhina (7833_CR8) 2018; 25 7833_CR18 JK Feng (7833_CR15) 2019 LC Parra (7833_CR9) 2005; 28 H Kang (7833_CR13) 2009; 16 C Li (7833_CR16) 2021; 29 F Lotte (7833_CR3) 2010; 58 ZJ Koles (7833_CR6) 1990; 2 V Mishuhina (7833_CR4) 2021; 115 7833_CR7 J Sun (7833_CR17) 2022 7833_CR10 7833_CR1 H Ramoser (7833_CR5) 2000; 8 7833_CR12 M Grosse-Wentrup (7833_CR11) 2008; 55 M Arvaneh (7833_CR14) 2011; 58 7833_CR20 |
References_xml | – reference: Maglione A, Borghini G, Aricò P, Borgia F, Graziani I, Colosimo A, Kong W, Vecchiato G, Babiloni F (2014) Evaluation of the workload and drowsiness during car driving by using high resolution eeg activity and neurophysiologic indices. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, pp 6238–6241 . https://doi.org/10.1109/EMBC.2014.6945054 – reference: KolesZJLazarMSZhouSZSpatial patterns underlying population differences in the background EEGBrain Topogr19902427528410.1007/BF01129656 – reference: ParraLCSpenceCDGersonADSajdaPRecipes for the linear analysis of EEGNeuroimage200528232634110.1016/j.neuroimage.2005.05.032 – reference: Hope RM, Wang Z, Wang Z, Ji Q, Gray WD (2011) Workload classification across subjects using EEG. In: Proceedings of the human factors and ergonomics society annual meeting, vol 55, pp 202–206. https://doi.org/10.1177/1071181311551042 – reference: MishuhinaVJiangXFeature weighting and regularization of common spatial patterns in EEG-based motor imagery BCIIEEE Signal Process Lett201825678378710.1109/LSP.2018.2823683 – reference: Borghini G, Vecchiato G, Toppi J, Astolfi L, Maglione A, Isabella R, Caltagirone C, Kong W, Wei D, Zhou Z et al (2012) Assessment of mental fatigue during car driving by using high resolution eeg activity and neurophysiologic indices. In: 2012 annual international conference of the IEEE engineering in medicine and biology society, pp 6442–6445 . https://doi.org/10.1109/EMBC.2012.6347469 – reference: Chin ZY, Ang KK, Wang C, Guan C, Zhang H (2009) Multi-class filter bank common spatial pattern for four-class motor imagery BCI. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, pp 571–574 . https://doi.org/10.1109/IEMBS.2009.5332383 – reference: LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Trans Biomed Eng201058235536210.1109/TBME.2010.2082539 – reference: Wang Y, Gao S, Gao X (2006) Common spatial pattern method for channel selection in motor imagery based brain-computer interface. In: 2005 IEEE engineering in medicine and biology 27th annual conference, pp 5392–5395. https://doi.org/10.3389/fnhum.2022.880304 – reference: Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Regularized common spatial patterns with generic learning for eeg signal classification. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, pp 6599–6602 . https://doi.org/10.1109/IEMBS.2005.1616947 – reference: SunJWeiMLuoNLiZWangHEuler common spatial patterns for EEG classificationMed Biol Eng Comput202210.1007/s11517-021-02488-7 – reference: BlankertzBMullerK-RKrusienskiDJSchalkGWolpawJRSchloglAPfurtschellerGMillanJRSchroderMBirbaumerNThe BCI competition iii: validating alternative approaches to actual BCI problemsIEEE Trans Neural Syst Rehabil Eng200614215315910.1109/TNSRE.2006.875642 – reference: Grosse-WentrupMBussMMulticlass common spatial patterns and information theoretic feature extractionIEEE Trans Biomed Eng20085581991200010.1109/TBME.2008.921154 – reference: FengJKJinJDalyIZhouJNiuYWangXCichockiAAn optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI systemComput Intell Neurosci201910.1155/2019/8068357 – reference: ArvanehMGuanCAngKKQuekCOptimizing the channel selection and classification accuracy in EEG-based BCIIEEE Trans Biomed Eng20115861865187310.1109/TBME.2011.2131142 – reference: MishuhinaVJiangXComplex common spatial patterns on time-frequency decomposed EEG for brain-computer interfacePattern Recognit202111510791810.1016/j.patcog.2021.107918 – reference: RamoserHMuller-GerkingJPfurtschellerGOptimal spatial filtering of single trial EEG during imagined hand movementIEEE Trans Rehabil Eng20008444144610.1109/86.895946 – reference: Meng J, Liu G, Huang G, Zhu X (2009) Automated selecting subset of channels based on CSP in motor imagery brain-computer interface system. In: 2009 IEEE international conference on robotics and biomimetics (ROBIO), pp 2290–2294 . https://doi.org/10.1109/ROBIO.2009.5420462 – reference: KangHNamYChoiSComposite common spatial pattern for subject-to-subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557 – reference: LiCZhouWLiuGZhangYGengMLiuZWangSShangWSeizure onset detection using empirical mode decomposition and common spatial patternIEEE Trans Neural Syst Rehabil Eng20212945846710.1109/TNSRE.2021.3055276 – ident: 7833_CR1 doi: 10.1109/EMBC.2014.6945054 – ident: 7833_CR7 doi: 10.1109/ROBIO.2009.5420462 – ident: 7833_CR12 doi: 10.1109/IEMBS.2005.1616947 – volume: 29 start-page: 458 year: 2021 ident: 7833_CR16 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2021.3055276 – volume: 8 start-page: 441 issue: 4 year: 2000 ident: 7833_CR5 publication-title: IEEE Trans Rehabil Eng doi: 10.1109/86.895946 – year: 2022 ident: 7833_CR17 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-021-02488-7 – volume: 28 start-page: 326 issue: 2 year: 2005 ident: 7833_CR9 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.032 – volume: 14 start-page: 153 issue: 2 year: 2006 ident: 7833_CR2 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2006.875642 – volume: 2 start-page: 275 issue: 4 year: 1990 ident: 7833_CR6 publication-title: Brain Topogr doi: 10.1007/BF01129656 – volume: 58 start-page: 1865 issue: 6 year: 2011 ident: 7833_CR14 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2131142 – volume: 55 start-page: 1991 issue: 8 year: 2008 ident: 7833_CR11 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.921154 – volume: 58 start-page: 355 issue: 2 year: 2010 ident: 7833_CR3 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2082539 – year: 2019 ident: 7833_CR15 publication-title: Comput Intell Neurosci doi: 10.1155/2019/8068357 – ident: 7833_CR18 doi: 10.1109/EMBC.2012.6347469 – ident: 7833_CR20 doi: 10.1177/1071181311551042 – volume: 115 start-page: 107918 year: 2021 ident: 7833_CR4 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2021.107918 – volume: 25 start-page: 783 issue: 6 year: 2018 ident: 7833_CR8 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2018.2823683 – ident: 7833_CR10 doi: 10.3389/fnhum.2022.880304 – ident: 7833_CR19 doi: 10.1109/IEMBS.2009.5332383 – volume: 16 start-page: 683 issue: 8 year: 2009 ident: 7833_CR13 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2009.2022557 |
SSID | ssj0004685 |
Score | 2.3087401 |
Snippet | The common spatial pattern (CSP) algorithm is efficient and accurate for channels selection and features extraction for electroencephalogram (EEG) signals... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1423 |
SubjectTerms | Algorithms Artificial Intelligence Channels Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Customization Data Mining and Knowledge Discovery Electroencephalography Feature extraction Image Processing and Computer Vision Original Article Probability and Statistics in Computer Science Signal classification |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWADi8bOc0IFpVQMFUJU6hbFdlyQSlqaVOrI3-Dv8Us4u04LSHRNYiu-h-87-x4IXVAFoJ5zl3itDBwUcLIIwIiAyBTEJ1VuSrmJtuj53b77MPAG9sCtsGGV1Z5oNmo5FvqM_JqC1nosAPt-M3knumuUvl21LTQ2UR224DCsofpt3Ht8-pEZaZpygg-j43tcZtNmTPKcPhGFp1RHX4aMkflv07TCm3-uSI3l6eyibQsZcXvB4z20keX7aKdqx4Ctdh6gcRsDRsawHPhXXOhQaRg2MQU0c6LNlcSz_FUB6MQ63zcHs4jT0RBWWb68YUCvWE51mMbXx2eBFQwfzjIcx_dYB3mAmGKhobaOLTLsPET9Tvx81yW2nwIR4GSVREaRFCyQAKKcSEmH8xAstAIVZMrngAMpaLMEiy5DmgWtVNJAeVI61I-EZMphR6iWj_PsGGEAbfo-kfsZeIjKidLAC8DTkikNRUsI2UBORcpE2GLjuufFKFmWSTbkT4D8iSF_Mm-gy-WYyaLUxtqvmxWHEqt2RbISkga6qri2ev3_bCfrZztFW7rN_OLopYlq5XSWnQEYKfm5lbhv18vb4g priority: 102 providerName: ProQuest |
Title | A new common spatial pattern-based unified channels algorithm for driver’s fatigue EEG signals classification |
URI | https://link.springer.com/article/10.1007/s00521-022-07833-x https://www.proquest.com/docview/2762537514 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ULl78bUSR9OBNl7BuY9tx6AbRhBgjCZ6WbV2RBAdhkHj03_Df8y_xa9lAjZp46mFtk73X9n2v_d57hJwzAVAfx6ZmNVM4KHCyNMAIW-MRlk8kzIjFim3Ra3X75s3AGhRBYXnJdi-fJNVJvQp2kzeYcH2ZZEs6hqEBOVYt-O6SyNVn3qdoSFWIE36L5PSYRhEq8_McX83RGmN-exZV1ibYJdsFTKTeUq97ZCPN9slOWYKBFjvygEw8ClxM8QdYTjSX9GgMm6qkmZkmTRSni2wkADSpjPHNYAppNB5OZqP50zMFYqV8JqkZ769vORUYPlyk1Pc7VBI7sDRpIuG15BMpFR6SfuA_XHW1ooaClsCxmmvcdXli2BzASXcF1-PYgVUW2HaGaMXAfgw7mMOKc4eldjPizBYW5zpruQk3hG4ckUo2ydJjQgHU5Bti3ErhFQrdjWzLhnfFI-YkzSThNaKXogyTIsG4rHMxDlepkZX4Q4g_VOIPX2rkYjVmukyv8WfveqmhsNhqechwnFuGDeBXI5el1taff5_t5H_dT8mWLDW_vH6pk8p8tkjPAEjmcYNsOkGnQape-7odyLbzeOujbfu9u_uGWp0fQ3bdZQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LUtswFL1D6YJuKKV0SAutFmVVNI0lO44XHYahCaE8VjDDztiSRTsDTkqSAXb9DX6Cj-JLOFexCe1M2bGNIy2ujnTOle6D6LNyEPV5HsqoWcBBgZMlISNiaTPAJ3NhpnIfbXHQ6h2FP46j4xm6rXNhOKyyPhP9QW37hu_Ivyrs2kjH4PeNwW_JXaP4dbVuoTGBxW5xfQmXbfht5zvWd02pbudwqyerrgLSwNUYSZsk1ujYQkoEibNBnrfBUw5A1K6VQw0pYNqC12xbFXEzsyp2kbWBaiXGahdozPuCXoYaTM6Z6d3tR3mYvgUoPCaOJgp1laTjU_X4_hW_Ko71bGstr_4mwqm6_edB1vNcd4HmK4EqNieIekMzRblIr-vmD6I6C95Sf1NAkQsYD5YRQw7MxrCBL9dZSiZHK8blLweJKzi7uAQJi-zsFDYd_TwX0MrCXnBQyN2fm6FwGH46LkSnsy04pASbQhgW9hzJ5MGzREfPYud3NFv2y2KZBCQiv17mrQL-qAuSLI5i-HU2U23TNMY2KKhNmZqqtDl32DhLH4oye_OnMH_qzZ9eNejLw5jBpLDHk_9eqVcorTb5MJ1CskHr9apNP_9_tvdPz_aJ5nqH-3vp3s7B7gd6xQ3uJ5c-KzQ7uhgXq5BBo_yjx56gk-cG-z1Xnhaf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTsMwEFwVkBAX3ojy9AFOENE4SdMcOFS05VGEOFCJW0jiGJAgrdpUwI3f4C_4Jr6EsZu0gACJA-fYVrQeZ2fj2V2iLS5B6sPQNpxSjAAFQZYBGuEaIgB8AmkHPNRqi7PyUcs-uXQuC_Sa58JotXt-JTnIaVBVmpJ0ryPk3jDxTf3NRBjMlXKyYlnGYyarbMZPDwjaevvHNezwNueN-sXBkZH1FTAiBBupITxPRJYrQCZMTwozDCvwVBJQtGQ5BB_iQLWAZxMVHrulQHBXOkKYvOxFwpKmhXXHaMJW2cc4QS1e_ZCJqZuAImZSeiLbytJ0vn_nz65wxG-_XMlqT9eYpemMorLqAFNzVIiTeZrJ2z-w7GuwQO0qAydnsB6gzHpKmo1pHV2wMzGUexSsn9xKkFym8osTuGEW3F23u7fpzT0DW2aiq2Qhb88vPSYx_bofs3r9kClRCY4FixS1V1omDZ9Fav2LnZdoPGkn8TIxkER1fxmWY0Sk0vQC13ER2YmAV6JSFIkimbkp_Sgrbq56bNz5w7LM2vw-zO9r8_uPRdoZzukMSnv8Onot3yE_O-Y9n8OVOJYL0lmk3XzXRo9_Xm3lb8M3afK81vBPj8-aqzSlOt4P_gKt0Xja7cfr4EVpuKGhyOjqv7H_DiMyGFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+common+spatial+pattern-based+unified+channels+algorithm+for+driver%E2%80%99s+fatigue+EEG+signals+classification&rft.jtitle=Neural+computing+%26+applications&rft.au=Zeng%2C+Hong&rft.au=Zakaria%2C+Wael&rft.date=2023-01-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=2&rft.spage=1423&rft.epage=1445&rft_id=info:doi/10.1007%2Fs00521-022-07833-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_022_07833_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |