An Analysis Regarding to Approximate Controllability for Hilfer Fractional Neutral Evolution Hemivariational Inequality

The main motivation of our conversation is the approximate controllability of Hilfer fractional neutral evolution hemivariational inequalities. Using fractional calculus, the theory of operators semigroup and the probability density function, we first construct a new C 1 - β mild solution for Hilfer...

Full description

Saved in:
Bibliographic Details
Published inQualitative theory of dynamical systems Vol. 21; no. 3
Main Authors Kavitha, K., Vijayakumar, V.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1575-5460
1662-3592
DOI10.1007/s12346-022-00611-z

Cover

Abstract The main motivation of our conversation is the approximate controllability of Hilfer fractional neutral evolution hemivariational inequalities. Using fractional calculus, the theory of operators semigroup and the probability density function, we first construct a new C 1 - β mild solution for Hilfer fractional differential inclusion. Secondly, we prove the approximate controllability of Hilfer fractional evolution hemivariational inequalities to linear and semilinear systems using characteristic solution operators and fundamental features via a fixed point theorem for multi-valued mappings. Finally, two examples are provided to demonstrate our theory.
AbstractList The main motivation of our conversation is the approximate controllability of Hilfer fractional neutral evolution hemivariational inequalities. Using fractional calculus, the theory of operators semigroup and the probability density function, we first construct a new C1-β mild solution for Hilfer fractional differential inclusion. Secondly, we prove the approximate controllability of Hilfer fractional evolution hemivariational inequalities to linear and semilinear systems using characteristic solution operators and fundamental features via a fixed point theorem for multi-valued mappings. Finally, two examples are provided to demonstrate our theory.
The main motivation of our conversation is the approximate controllability of Hilfer fractional neutral evolution hemivariational inequalities. Using fractional calculus, the theory of operators semigroup and the probability density function, we first construct a new C 1 - β mild solution for Hilfer fractional differential inclusion. Secondly, we prove the approximate controllability of Hilfer fractional evolution hemivariational inequalities to linear and semilinear systems using characteristic solution operators and fundamental features via a fixed point theorem for multi-valued mappings. Finally, two examples are provided to demonstrate our theory.
ArticleNumber 80
Author Vijayakumar, V.
Kavitha, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Kavitha
  fullname: Kavitha, K.
  organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
– sequence: 2
  givenname: V.
  orcidid: 0000-0001-5976-5794
  surname: Vijayakumar
  fullname: Vijayakumar, V.
  email: vijaysarovel@gmail.com
  organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
BookMark eNp9kF9rwjAUxcNwMHX7AnsK7Llb_jRN-yiiU5ANxvYc0phKpDaapG766RetMNiDT_cSzjm55zcAvcY2GoBHjJ4xQvzFY0LTLEGEJAhlGCfHG9DHWUYSygrSizvjLGFphu7AwPt1FBFOSR98jxo4amR98MbDD72SbmmaFQwWjrZbZ3_MRgYNx7YJzta1LE1twgFW1sGZqSvt4NRJFYyNEfBNt8HFOdnbuj29wZnemL10Rl4U80bvWnmKuAe3lay9frjMIfiaTj7Hs2Tx_jofjxaJImkRElWmjCla5nRZKk0LnFOdUcUV51me4mXFES0xKfIC5Th25CmmBUKMMipRJRkdgqcuN5bZtdoHsbati7d4QTJOUGQU0Q0B6VTKWe-drsTWxebuIDASJ8CiAywiYHEGLI7RlP8zKRPOTSMFU1-30s7q4z_NSru_q664fgFmxZOI
CitedBy_id crossref_primary_10_1186_s13661_024_01925_4
crossref_primary_10_1515_ijnsns_2021_0412
crossref_primary_10_1080_02331934_2024_2306292
crossref_primary_10_1002_oca_2938
crossref_primary_10_3390_fractalfract7070562
crossref_primary_10_1080_02331934_2023_2239851
crossref_primary_10_1080_23307706_2024_2337113
crossref_primary_10_1080_02331934_2024_2306304
crossref_primary_10_1080_23307706_2024_2349635
crossref_primary_10_1080_23307706_2024_2343312
Cites_doi 10.1016/j.physleta.2021.127706
10.1002/asjc.2549
10.1002/num.22772
10.1002/num.22697
10.1002/asjc.2650
10.1142/S1793557118500882
10.1137/080733231
10.1007/s12215-015-0191-0
10.1007/s10883-016-9350-7
10.1137/1.9781611974072.25
10.1016/j.jmaa.2006.05.061
10.1093/imamci/dnx048
10.1016/j.matcom.2021.06.026
10.1007/978-1-4614-4232-5
10.1007/978-3-642-51677-1
10.1002/num.22573
10.1515/9783110874228
10.1142/3779
10.3182/20140313-3-IN-3024.00107
10.1142/8180
10.1093/imamci/dnaa001
10.1140/epjp/s13360-019-00059-2
10.1016/S0377-0427(00)00543-4
10.1016/j.chaos.2021.111264
10.1007/s11071-021-07075-x
10.1002/mma.7647
10.1016/j.jde.2012.02.014
10.1002/asjc.2282
10.1016/j.aej.2021.12.051
10.1016/j.chaos.2022.111924
10.1016/j.nonrwa.2014.08.010
10.1142/9069
10.1007/978-1-4612-5561-1
10.1016/j.cam.2018.05.031
10.1080/00036811.2017.1422727
10.1137/140994058
10.1007/978-1-4615-6359-4
10.1002/mma.7348
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.
DBID AAYXX
CITATION
DOI 10.1007/s12346-022-00611-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1662-3592
ExternalDocumentID 10_1007_s12346_022_00611_z
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3J0
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DC1
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c249t-cb455c3b83dbce39183e63c7c776841df703b1298908115774139005353a0fa53
IEDL.DBID AGYKE
ISSN 1575-5460
IngestDate Sat Sep 13 16:41:03 EDT 2025
Thu Apr 24 23:12:32 EDT 2025
Tue Jul 01 04:04:58 EDT 2025
Fri Feb 21 02:45:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Hemivariational inequality
34K40
34G10
Approximate controllability
Hilfer fractional derivative
Generalized Clarke’s subdifferential
Neutral systems
93B05
26A33
34G25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-cb455c3b83dbce39183e63c7c776841df703b1298908115774139005353a0fa53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5976-5794
PQID 2672016612
PQPubID 2044188
ParticipantIDs proquest_journals_2672016612
crossref_primary_10_1007_s12346_022_00611_z
crossref_citationtrail_10_1007_s12346_022_00611_z
springer_journals_10_1007_s12346_022_00611_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Qualitative theory of dynamical systems
PublicationTitleAbbrev Qual. Theory Dyn. Syst
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Kilbas, Srinivas, Trujillo (CR21) 2006
Shukla, Sukavanam (CR46) 2015; 64
Li, Liu, Bin (CR27) 2016; 286
Shukla, Sukavanam, Pandey (CR47) 2014; 47
Mohan Raja, Vijayakumar, Huynh, Udhayakumar, Nisar (CR37) 2021; 1
Pazy (CR40) 1983
Nisar, Vijayakumar (CR38) 2021; 44
Kumar, Biswas, Zhou, Yildirim, Alshehri, Belic (CR22) 2021; 417
Ahmed, El Borai, Okb El Bab, Ramadan (CR1) 2019; 233
Dineshkumar, Udhayakumar, Vijayakumar, Nisar, Shukla (CR6) 2021; 190
Podlubny (CR41) 1999
Liu, Li (CR26) 2015; 22
Santamaria, Peralta (CR44) 2022; 22
Jajarmi, Baleanu (CR16) 2021; 23
Vijayakumar, Panda, Nisar, Baskonus (CR53) 2021; 37
Vijayakumar, Murugesu, Tamil Selvan (CR56) 2019; 36
Vijayakumar, Murugesu (CR54) 2019; 98
Kavitha, Vijayakumar, Udhayakumar, Ravichandran (CR18) 2021; 1
CR45
Hilfer (CR14) 2000
Haq, Sukavanam (CR11) 2020; 139
Kumar, Sukavanam (CR24) 2012; 252
Dineshkumar, Nisar, Udhayakumar, Vijayakumar (CR7) 2021
Mohan Raja, Vijayakumar, Udhayakumar (CR36) 2020; 141
Hu, Papageorgiou (CR15) 1997
Singh, Kumar, Baleanu (CR50) 2021; 10
Malik, Kumar, Das (CR30) 2022; 107
Santamaria, Balc’h, Peralta (CR43) 2022; 10
Miller, Ross (CR35) 1993
Migórski, Ochal (CR33) 2009; 41
Williams, Vijayakumar, Udhayakumar, Panda, Nisar (CR57) 2020
Bohnenblust, Karlin, Kuhn, Tucker (CR4) 1950
Lasota, Opial (CR25) 1965; 13
Baleanu, Diethelm, Scalas, Trujillo (CR2) 2012
Clarke (CR5) 1983
Haq (CR12) 2022; 157
Harrat, Nieto, Debbouche (CR13) 2018; 344
Rahman, Nisar, Khan, Baleanu, Vijayakumar (CR42) 2021; 2021
Shukla, Sukavanam, Pandey (CR48) 2018; 11
Vijayakumar (CR51) 2018; 73
Gu, Trujillo (CR10) 2015; 257
Shukla, Sukavanam, Pandey (CR49) 2017; 23
Baleanu, Saadati, Sousa (CR3) 2021; 13
Ye, Gao, Ding (CR58) 2007; 328
Liu, Li, Motreanu (CR28) 2015; 53
Kavitha, Vijayakumar, Shukla, Nisar, Udhayakumar (CR19) 2021; 151
Panagiotopoulos (CR39) 1993
Jyoti, Kumar (CR17) 2020; 135
Malik, Kumar, Kumari, Nisar (CR31) 2022; 61
Vijayakumar, Udhayakumar, Dineshkumar (CR55) 2021; 38
Deimling (CR8) 1992
Migórski (CR32) 2001; 129
Kavitha, Vijayakumar (CR20) 2022; 157
Kumar, Malik (CR23) 2021; 242
Fattorini (CR9) 2000
Zhou (CR59) 2014
Vijayakumar, Ravichandran, Nisar, Kucche (CR52) 2021
Mahmudov, Udhayakumar, Vijayakumar (CR29) 2020; 75
Migórski, Ochal, Sofonea (CR34) 2013
A Jajarmi (611_CR16) 2021; 23
K Kavitha (611_CR20) 2022; 157
V Vijayakumar (611_CR56) 2019; 36
Y Zhou (611_CR59) 2014
WK Williams (611_CR57) 2020
V Vijayakumar (611_CR55) 2021; 38
G Rahman (611_CR42) 2021; 2021
V Vijayakumar (611_CR54) 2019; 98
A Harrat (611_CR13) 2018; 344
C Dineshkumar (611_CR7) 2021
S Malik (611_CR31) 2022; 61
A Shukla (611_CR49) 2017; 23
AA Kilbas (611_CR21) 2006
A Shukla (611_CR48) 2018; 11
A Haq (611_CR11) 2020; 139
K Deimling (611_CR8) 1992
K Kavitha (611_CR19) 2021; 151
S Migórski (611_CR34) 2013
C Dineshkumar (611_CR6) 2021; 190
HM Ahmed (611_CR1) 2019; 233
M Mohan Raja (611_CR36) 2020; 141
VH Santamaria (611_CR43) 2022; 10
J Singh (611_CR50) 2021; 10
HP Ye (611_CR58) 2007; 328
KS Nisar (611_CR38) 2021; 44
D Baleanu (611_CR3) 2021; 13
HO Fattorini (611_CR9) 2000
KS Miller (611_CR35) 1993
ZH Liu (611_CR26) 2015; 22
HB Gu (611_CR10) 2015; 257
PD Panagiotopoulos (611_CR39) 1993
D Baleanu (611_CR2) 2012
V Vijayakumar (611_CR53) 2021; 37
FH Clarke (611_CR5) 1983
S Kumar (611_CR24) 2012; 252
V Vijayakumar (611_CR51) 2018; 73
S Malik (611_CR30) 2022; 107
M Mohan Raja (611_CR37) 2021; 1
A Shukla (611_CR47) 2014; 47
A Haq (611_CR12) 2022; 157
S Kumar (611_CR22) 2021; 417
NI Mahmudov (611_CR29) 2020; 75
S Kumar (611_CR23) 2021; 242
I Podlubny (611_CR41) 1999
S Migórski (611_CR32) 2001; 129
A Pazy (611_CR40) 1983
A Lasota (611_CR25) 1965; 13
Z Liu (611_CR28) 2015; 53
HF Bohnenblust (611_CR4) 1950
611_CR45
L Li (611_CR27) 2016; 286
K Kavitha (611_CR18) 2021; 1
VH Santamaria (611_CR44) 2022; 22
R Hilfer (611_CR14) 2000
A Shukla (611_CR46) 2015; 64
S Migórski (611_CR33) 2009; 41
V Vijayakumar (611_CR52) 2021
S Hu (611_CR15) 1997
D Jyoti (611_CR17) 2020; 135
References_xml – volume: 417
  start-page: 127706
  year: 2021
  ident: CR22
  article-title: Straddled optical solitons for cubic-quartic Lakshmanan–Porsezian–Daniel model by Lie symmetry
  publication-title: Phys. Lett. Sect. A Gen. Atom. Solid State Phys.
  doi: 10.1016/j.physleta.2021.127706
– volume: 10
  start-page: 190
  issue: 1
  year: 2022
  end-page: 222
  ident: CR43
  article-title: Statistical null-controllability of stochastic nonlinear parabolic equations
  publication-title: Stoch. Partial Differ. Equ. Anal. Comput.
– ident: CR45
– volume: 242
  year: 2021
  ident: CR23
  article-title: Cubic-quartic optical solitons with Kudryashov’s law of refractive index by Lie symmetry analysis
  publication-title: Optik
– volume: 13
  start-page: 10905
  issue: 44
  year: 2021
  end-page: 10911
  ident: CR3
  article-title: The stability of the fractional Volterra integro-differential equation by means of -Hilfer operator revisited
  publication-title: Math. Methods Appl. Sci.
– volume: 37
  start-page: 1200
  issue: 2
  year: 2021
  end-page: 1221
  ident: CR53
  article-title: Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay
  publication-title: Numer. Methods Partial Differ. Equ.
– year: 2012
  ident: CR2
  publication-title: Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos
– volume: 328
  start-page: 1075
  year: 2007
  end-page: 1081
  ident: CR58
  article-title: A generalized Gronwall inequality and its application to a fractional differential equation
  publication-title: J. Math. Anal. Appl.
– volume: 98
  start-page: 1367
  issue: 7
  year: 2019
  end-page: 1385
  ident: CR54
  article-title: Controllability for a class of second-order evolution differential inclusions without compactness
  publication-title: Appl. Anal.
– year: 2000
  ident: CR9
  publication-title: Second Order Linear Differential Equations in Banach Spaces
– volume: 44
  start-page: 13615
  issue: 17
  year: 2021
  end-page: 13632
  ident: CR38
  article-title: Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system
  publication-title: Math. Methods Appl. Sci.
– year: 2014
  ident: CR59
  publication-title: Basic Theory of Fractional Differential Equations
– year: 1983
  ident: CR40
  publication-title: Semilgroups of Linear Operators and Applications to Partial Differential Equations
– volume: 157
  start-page: 1
  year: 2022
  end-page: 9
  ident: CR20
  article-title: A discussion concerning to partial-approximate controllability of Hilfer fractional system with nonlocal conditions via approximating method
  publication-title: Chaos Solitons Fractals
– year: 1983
  ident: CR5
  publication-title: Optimization and Nonsmooth Analysis
– volume: 344
  start-page: 725
  year: 2018
  end-page: 737
  ident: CR13
  article-title: Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with Clarke subdifferential
  publication-title: J. Comput. Appl. Math.
– volume: 61
  start-page: 7067
  issue: 9
  year: 2022
  end-page: 7074
  ident: CR31
  article-title: Some analytic and series solutions of integrable generalized Broer–Kaup system
  publication-title: Alex. Eng. J.
– volume: 135
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR17
  article-title: Modified Vakhnenko–Parkes equation with power law nonlinearity: Painleve analysis, analytic solutions and conservation laws
  publication-title: Eur. Phys. J. Plus
– volume: 38
  start-page: 192
  issue: 1
  year: 2021
  end-page: 210
  ident: CR55
  article-title: Approximate controllability of second order nonlocal neutral differential evolution inclusions
  publication-title: IMA J. Math. Control Inf.
– year: 1997
  ident: CR15
  publication-title: Hand Book of Multivalued Analysis (Theory)
– volume: 11
  start-page: 1
  issue: 6
  year: 2018
  end-page: 12
  ident: CR48
  article-title: Approximate controllability of semilinear fractional stochastic control system
  publication-title: Asian Eur. J. Math.
– volume: 1
  start-page: 10
  year: 2021
  ident: CR18
  article-title: Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness
  publication-title: Asian J. Control
  doi: 10.1002/asjc.2549
– year: 2000
  ident: CR14
  publication-title: Application of Fractional Calculus in Physics
– year: 2021
  ident: CR52
  article-title: New discussion on approximate controllability results for fractional Sobolev type Volterra–Fredholm integro-differential systems of order
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22772
– volume: 233
  start-page: 1
  year: 2019
  end-page: 23
  ident: CR1
  article-title: Controllability and constrained controllability for nonlocal Hilfer fractional differential systems with Clarke’s subdifferential
  publication-title: J. Inequal. Appl.
– volume: 10
  start-page: 1
  issue: 16
  year: 2021
  end-page: 14
  ident: CR50
  article-title: New aspects of fractional Bloch model associated with composite fractional derivative
  publication-title: Math. Model. Nat. Phenom.
– year: 1993
  ident: CR35
  publication-title: An Introduction to the Fractional Calculus and Differential Equations
– year: 2013
  ident: CR34
  publication-title: Nonlinear Inclusions and Hemivariational Inequalities, Advances in Mechanics and Mathematics
– year: 2020
  ident: CR57
  article-title: Existence and controllability of nonlocal mixed Volterra–Fredholm type fractional delay integro-differential equations of order
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22697
– year: 1993
  ident: CR39
  publication-title: Hemivariational Inequalities, Applications in Mechanics and Engineering
– volume: 252
  start-page: 6163
  year: 2012
  end-page: 6174
  ident: CR24
  article-title: Approximate controllability of fractional order semilinear systems with bounded delay
  publication-title: J. Differ. Equ.
– year: 1999
  ident: CR41
  publication-title: Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to method of Their Solution and Some of Their Applications
– year: 2021
  ident: CR7
  article-title: A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions
  publication-title: Asian J. Control
  doi: 10.1002/asjc.2650
– volume: 53
  start-page: 3228
  issue: 5
  year: 2015
  end-page: 3244
  ident: CR28
  article-title: Approximate controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces
  publication-title: SIAM J. Control Optim.
– volume: 75
  start-page: 1
  issue: 160
  year: 2020
  end-page: 19
  ident: CR29
  article-title: On the approximate controllability of second-order evolution hemivariational inequalities
  publication-title: Results Math.
– year: 1992
  ident: CR8
  publication-title: Multivalued Differential Equations
– volume: 257
  start-page: 344
  year: 2015
  end-page: 354
  ident: CR10
  article-title: Existence of mild solution for evolution equation with Hilfer fractional derivative
  publication-title: Appl. Math. Comput.
– volume: 22
  start-page: 1
  issue: 23
  year: 2022
  end-page: 32
  ident: CR44
  article-title: Controllability results for stochastic coupled systems of fourth- and second-order parabolic equations
  publication-title: J. Evol. Equ.
– volume: 2021
  start-page: 1
  issue: 18
  year: 2021
  end-page: 19
  ident: CR42
  article-title: On the weighted fractional integral inequalities for Chebyshev functionals
  publication-title: Adv. Differ. Equ.
– start-page: 155
  year: 1950
  end-page: 160
  ident: CR4
  article-title: On a theorem of Ville
  publication-title: Contributions to the Theory of Games
– volume: 139
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR11
  article-title: Existence and approximate controllability of Riemann–Liouville fractional integrodifferential systems with damping
  publication-title: Chaos Solitons Fractals
– year: 2006
  ident: CR21
  publication-title: Theory and Application of Fractional Differential Equations
– volume: 129
  start-page: 77
  year: 2001
  end-page: 87
  ident: CR32
  article-title: On existence of solutions for parabolic hemivariational inequalities
  publication-title: J. Comput. Appl. Math.
– volume: 1
  start-page: 1
  year: 2021
  end-page: 25
  ident: CR37
  article-title: Results on the approximate controllability of fractional hemivariational inequalities of order
  publication-title: Adv. Differ. Equ.
– volume: 190
  start-page: 1003
  year: 2021
  end-page: 1026
  ident: CR6
  article-title: A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order
  publication-title: Math. Comput. Simul.
– volume: 23
  start-page: 1062
  issue: 2
  year: 2021
  end-page: 1071
  ident: CR16
  article-title: On the fractional optimal control problems with a general derivative operator
  publication-title: Asian J. Control
– volume: 151
  start-page: 1
  year: 2021
  end-page: 8
  ident: CR19
  article-title: Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type
  publication-title: Chaos Solitons Fractals
– volume: 47
  start-page: 306
  issue: 1
  year: 2014
  end-page: 312
  ident: CR47
  article-title: Controllability of semilinear stochastic system with multiple delays in control
  publication-title: IFAC Proc. Vol.
– volume: 36
  start-page: 225
  issue: 1
  year: 2019
  end-page: 246
  ident: CR56
  article-title: Controllability for a class of second order functional evolution differential equations without uniqueness
  publication-title: IMA J. Math. Control Inf.
– volume: 41
  start-page: 1415
  year: 2009
  end-page: 1435
  ident: CR33
  article-title: Quasi-static hemivariational inequalities via vanishing acceleration approach
  publication-title: SIAM J. Math. Anal.
– volume: 141
  start-page: 1
  year: 2020
  end-page: 13
  ident: CR36
  article-title: A new approach on approximate controllability of fractional evolution inclusions of order with infinite delay
  publication-title: Chaos Solitons Fractals
– volume: 23
  start-page: 679
  year: 2017
  end-page: 691
  ident: CR49
  article-title: Approximate controllability of fractional semilinear stochastic system of order
  publication-title: J. Dyn. Control Syst.
– volume: 157
  start-page: 1
  year: 2022
  end-page: 8
  ident: CR12
  article-title: Partial-approximate controllability of semi-linear systems involving two Riemann–Liouville fractional derivatives
  publication-title: Chaos Solitons Fractals
– volume: 13
  start-page: 781
  year: 1965
  end-page: 786
  ident: CR25
  article-title: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map
  publication-title: Bulletin L’Acadamic Polonaise des Science, Series des Sciences Mathematiques, Astronomiques et Physiques
– volume: 22
  start-page: 581
  year: 2015
  end-page: 591
  ident: CR26
  article-title: Approximate controllability for a class of hemivariational inequalities
  publication-title: Nonlinear Anal. RWA
– volume: 73
  start-page: 1
  issue: 42
  year: 2018
  end-page: 23
  ident: CR51
  article-title: Approximate controllability for a class of second order stochastic evolution inclusions of Clarke’s subdifferential type
  publication-title: Results Math.
– volume: 107
  start-page: 2689
  issue: 3
  year: 2022
  end-page: 2701
  ident: CR30
  article-title: A -dimensional combined KdV–mKdV equation: integrability, stability analysis and soliton solutions
  publication-title: Nonlinear Dyn.
– volume: 286
  start-page: 201
  year: 2016
  end-page: 212
  ident: CR27
  article-title: Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type
  publication-title: Appl. Math. Comput
– volume: 64
  start-page: 209
  year: 2015
  end-page: 220
  ident: CR46
  article-title: Complete controllability of semi-linear stochastic system with delay
  publication-title: Rendiconti del Circolo Matematico di Palermo
– volume: 11
  start-page: 1
  issue: 6
  year: 2018
  ident: 611_CR48
  publication-title: Asian Eur. J. Math.
  doi: 10.1142/S1793557118500882
– volume: 41
  start-page: 1415
  year: 2009
  ident: 611_CR33
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/080733231
– volume: 64
  start-page: 209
  year: 2015
  ident: 611_CR46
  publication-title: Rendiconti del Circolo Matematico di Palermo
  doi: 10.1007/s12215-015-0191-0
– volume: 23
  start-page: 679
  year: 2017
  ident: 611_CR49
  publication-title: J. Dyn. Control Syst.
  doi: 10.1007/s10883-016-9350-7
– year: 2021
  ident: 611_CR52
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22772
– volume: 417
  start-page: 127706
  year: 2021
  ident: 611_CR22
  publication-title: Phys. Lett. Sect. A Gen. Atom. Solid State Phys.
  doi: 10.1016/j.physleta.2021.127706
– volume: 10
  start-page: 1
  issue: 16
  year: 2021
  ident: 611_CR50
  publication-title: Math. Model. Nat. Phenom.
– ident: 611_CR45
  doi: 10.1137/1.9781611974072.25
– volume: 328
  start-page: 1075
  year: 2007
  ident: 611_CR58
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.05.061
– volume: 13
  start-page: 781
  year: 1965
  ident: 611_CR25
  publication-title: Bulletin L’Acadamic Polonaise des Science, Series des Sciences Mathematiques, Astronomiques et Physiques
– volume: 10
  start-page: 190
  issue: 1
  year: 2022
  ident: 611_CR43
  publication-title: Stoch. Partial Differ. Equ. Anal. Comput.
– volume: 36
  start-page: 225
  issue: 1
  year: 2019
  ident: 611_CR56
  publication-title: IMA J. Math. Control Inf.
  doi: 10.1093/imamci/dnx048
– volume: 190
  start-page: 1003
  year: 2021
  ident: 611_CR6
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.06.026
– volume-title: Nonlinear Inclusions and Hemivariational Inequalities, Advances in Mechanics and Mathematics
  year: 2013
  ident: 611_CR34
  doi: 10.1007/978-1-4614-4232-5
– volume: 1
  start-page: 10
  year: 2021
  ident: 611_CR18
  publication-title: Asian J. Control
  doi: 10.1002/asjc.2549
– volume-title: Hemivariational Inequalities, Applications in Mechanics and Engineering
  year: 1993
  ident: 611_CR39
  doi: 10.1007/978-3-642-51677-1
– volume: 37
  start-page: 1200
  issue: 2
  year: 2021
  ident: 611_CR53
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22573
– volume-title: Multivalued Differential Equations
  year: 1992
  ident: 611_CR8
  doi: 10.1515/9783110874228
– volume-title: An Introduction to the Fractional Calculus and Differential Equations
  year: 1993
  ident: 611_CR35
– volume: 242
  year: 2021
  ident: 611_CR23
  publication-title: Optik
– volume-title: Application of Fractional Calculus in Physics
  year: 2000
  ident: 611_CR14
  doi: 10.1142/3779
– volume: 157
  start-page: 1
  year: 2022
  ident: 611_CR12
  publication-title: Chaos Solitons Fractals
– volume: 47
  start-page: 306
  issue: 1
  year: 2014
  ident: 611_CR47
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20140313-3-IN-3024.00107
– volume-title: Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos
  year: 2012
  ident: 611_CR2
  doi: 10.1142/8180
– volume: 38
  start-page: 192
  issue: 1
  year: 2021
  ident: 611_CR55
  publication-title: IMA J. Math. Control Inf.
  doi: 10.1093/imamci/dnaa001
– volume: 257
  start-page: 344
  year: 2015
  ident: 611_CR10
  publication-title: Appl. Math. Comput.
– volume: 135
  start-page: 1
  year: 2020
  ident: 611_CR17
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-019-00059-2
– volume: 1
  start-page: 1
  year: 2021
  ident: 611_CR37
  publication-title: Adv. Differ. Equ.
– volume-title: Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to method of Their Solution and Some of Their Applications
  year: 1999
  ident: 611_CR41
– volume: 129
  start-page: 77
  year: 2001
  ident: 611_CR32
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00543-4
– volume: 151
  start-page: 1
  year: 2021
  ident: 611_CR19
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111264
– start-page: 155
  volume-title: Contributions to the Theory of Games
  year: 1950
  ident: 611_CR4
– volume: 107
  start-page: 2689
  issue: 3
  year: 2022
  ident: 611_CR30
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-07075-x
– year: 2021
  ident: 611_CR7
  publication-title: Asian J. Control
  doi: 10.1002/asjc.2650
– volume: 44
  start-page: 13615
  issue: 17
  year: 2021
  ident: 611_CR38
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7647
– volume-title: Optimization and Nonsmooth Analysis
  year: 1983
  ident: 611_CR5
– volume: 252
  start-page: 6163
  year: 2012
  ident: 611_CR24
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2012.02.014
– volume: 75
  start-page: 1
  issue: 160
  year: 2020
  ident: 611_CR29
  publication-title: Results Math.
– volume: 139
  start-page: 1
  year: 2020
  ident: 611_CR11
  publication-title: Chaos Solitons Fractals
– volume: 286
  start-page: 201
  year: 2016
  ident: 611_CR27
  publication-title: Appl. Math. Comput
– volume: 23
  start-page: 1062
  issue: 2
  year: 2021
  ident: 611_CR16
  publication-title: Asian J. Control
  doi: 10.1002/asjc.2282
– volume: 61
  start-page: 7067
  issue: 9
  year: 2022
  ident: 611_CR31
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.12.051
– volume: 157
  start-page: 1
  year: 2022
  ident: 611_CR20
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.111924
– volume: 22
  start-page: 581
  year: 2015
  ident: 611_CR26
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2014.08.010
– volume: 233
  start-page: 1
  year: 2019
  ident: 611_CR1
  publication-title: J. Inequal. Appl.
– volume: 22
  start-page: 1
  issue: 23
  year: 2022
  ident: 611_CR44
  publication-title: J. Evol. Equ.
– volume-title: Basic Theory of Fractional Differential Equations
  year: 2014
  ident: 611_CR59
  doi: 10.1142/9069
– volume-title: Semilgroups of Linear Operators and Applications to Partial Differential Equations
  year: 1983
  ident: 611_CR40
  doi: 10.1007/978-1-4612-5561-1
– volume: 2021
  start-page: 1
  issue: 18
  year: 2021
  ident: 611_CR42
  publication-title: Adv. Differ. Equ.
– volume-title: Second Order Linear Differential Equations in Banach Spaces
  year: 2000
  ident: 611_CR9
– volume: 73
  start-page: 1
  issue: 42
  year: 2018
  ident: 611_CR51
  publication-title: Results Math.
– volume: 344
  start-page: 725
  year: 2018
  ident: 611_CR13
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.05.031
– volume: 141
  start-page: 1
  year: 2020
  ident: 611_CR36
  publication-title: Chaos Solitons Fractals
– volume-title: Theory and Application of Fractional Differential Equations
  year: 2006
  ident: 611_CR21
– volume: 98
  start-page: 1367
  issue: 7
  year: 2019
  ident: 611_CR54
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2017.1422727
– volume: 53
  start-page: 3228
  issue: 5
  year: 2015
  ident: 611_CR28
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/140994058
– year: 2020
  ident: 611_CR57
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22697
– volume-title: Hand Book of Multivalued Analysis (Theory)
  year: 1997
  ident: 611_CR15
  doi: 10.1007/978-1-4615-6359-4
– volume: 13
  start-page: 10905
  issue: 44
  year: 2021
  ident: 611_CR3
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7348
SSID ssj0062732
Score 2.3547509
Snippet The main motivation of our conversation is the approximate controllability of Hilfer fractional neutral evolution hemivariational inequalities. Using...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Controllability
Difference and Functional Equations
Dynamical Systems and Ergodic Theory
Evolution
Fixed points (mathematics)
Fractional calculus
Inequalities
Mathematics
Mathematics and Statistics
Operators (mathematics)
Probability density functions
Title An Analysis Regarding to Approximate Controllability for Hilfer Fractional Neutral Evolution Hemivariational Inequality
URI https://link.springer.com/article/10.1007/s12346-022-00611-z
https://www.proquest.com/docview/2672016612
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAGzEYUw7coKjvtMdq2hggOCAqjVPVpCmaGB3ausH263HalAoESJybpG3s2F9i-wvAaULTxLOTWPMRjWpoJf0yCQB3DtylRkzNgkrp9s7th_b1wBmoorBple1ehSQLS10Xu2E3mTBratLvGtpyFdYcw_O9BqwFl4833coCu-iSiygnQhHNsV1dFcv8PMpXh1SjzG-B0cLf9LYgrL60TDN5vpjl7IIvv5E4_vdXtmFTAVASlBqzAysi24WN20_21ukevAUZqchKyL14kkqUPZF8TALJQP4-xIaCdMok91FJ9L0giH5JfzhKxYT0JmW5BL7nTszkWQrpzpWOk754Gc5xh65OIclVJsrKzsU-hL3uQ6evqQsaNI67tlzjzHYcbjHPShgXlo_mQbgWp5zK8J6RpGhOmCE53hF4oDSo1IWCUcaK9TR2rANoZONMHAKhdproeooSk5SAjoPAxPeoYDrzWGzbrAlGJaWIK_ZyeYnGKKp5l-WkRjipUTGp0bIJZ599Xkvujj9btyrhR2odTyPTpYiQEMOYTTivZFk__n20o_81P4Z1s1AHmbzWgkY-mYkTRDs5ayvlbsNqaAYfTE71RA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADb8RgQA7coFPfWY_TtNGxxwExCU5Vk6bTxOjQ1vHYr8dpUyYQIHFumraxa3-O7S8AFxGNo5odhZqHaFRDK-nlRQAYOXCXGiE1MyqlXt_1B_bNvXOvmsJmRbV7kZLMLPWy2Q1vkwWzpib9rqEtVmHNxhhcL8Fa_fqh0ywssIsuOctyIhTRHNvVVbPMz7N8dUhLlPktMZr5m9Y2DIo3zctMHqvzlFX54huJ438_ZQe2FAAl9VxjdmFFJHuw2ftkb53tw2s9IQVZCbkVQ6lEyZCkE1KXDORvIxwoSCMvch_nRN_vBNEv8UfjWExJa5q3S-Bz-mIu91JI80XpOPHF0-gFI3S1C0naicg7O98PYNBq3jV8TR3QoHGM2lKNM9txuMVqVsS4sDw0D8K1OOVUpveMKEZzwgzJ8Y7AA6VBpS5kjDJWqMehYx1CKZkk4ggIteNI12OUmKQEdBwEJl6NCqazGgttm5XBKKQUcMVeLg_RGAdL3mW5qAEuapAtarAow-XnPc85d8efoyuF8AP1H88C06WIkBDDmGW4KmS5vPz7bMf_G34O6_5drxt02_3OCWyYmWrIQrYKlNLpXJwi8knZmVL0D_2Y9zg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah5807Le0z2WudKpGyIO9haaNB2D2Y2tm26_3pNeVhUVfG6aQL6TnC8553xB6DokUeiYYaA0gI0qsEs2siQAODlwm2gB0VMppU7X9nvmfd_qf6riT7Pdi5BkVtMgVZripD4Jo3pZ-AZdyORZXZE-WFNWm2gLBtKkpfd0t9iLbXDOabwTSIlimbaal8383MdX11TyzW8h0tTzePtoL6eM2M0wPkAbIj5Eu5213ursCL25MS7kRfCzGEjY4wFOxtiVmuHvQ2gocDNLSx9l0txLDHwV-8NRJKbYm2YFDjBOV8zl7QduLXKrxL54HS7gTJ3fG-J2LLJazOUx6nmtl6av5E8qKBzOWYnCmWlZ3GCOETIujAYsaGEbnHAiA3JaGMEGwDSpyg5UAWaNSPRSDRgjUKPAMk5QJR7H4hRhYkahqkYws1LEz7KASjQcIpjKHBaYJqsirZhNynO9cfnsxYiWSskSAQoI0BQBuqqim_U_k0xt48_WtQIkmq-8GdVtApwGWIdeRbcFcOXn33s7-1_zK7T9dOfRx3b34Rzt6KkZycyzGqok07m4AKqSsMvUGj8AjFneRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Analysis+Regarding+to+Approximate+Controllability+for+Hilfer+Fractional+Neutral+Evolution+Hemivariational+Inequality&rft.jtitle=Qualitative+theory+of+dynamical+systems&rft.au=Kavitha%2C+K&rft.au=Vijayakumar%2C+V&rft.date=2022-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1575-5460&rft.eissn=1662-3592&rft.volume=21&rft.issue=3&rft_id=info:doi/10.1007%2Fs12346-022-00611-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1575-5460&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1575-5460&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1575-5460&client=summon