Otsu’s thresholding technique for MRI image brain tumor segmentation
MRI image segmentation is very challenging area in medical image processing. It is implemented with the low contract of MRI scan. In terms of certain input features or expert information, the major objective of medical image segmentation is to isolate and describe anatomical constitutions. In MRI im...
Saved in:
Published in | Multimedia tools and applications Vol. 81; no. 30; pp. 43837 - 43849 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-022-13215-1 |
Cover
Loading…
Abstract | MRI image segmentation is very challenging area in medical image processing. It is implemented with the low contract of MRI scan. In terms of certain input features or expert information, the major objective of medical image segmentation is to isolate and describe anatomical constitutions. In MRI image segmentation, brain tumor segmentation is more difficult because of its complex structure. The Otsu’s thresholding method is well-known method in image segmentation. In this paper, choosing the classes or bins of Otsu’s thresholding are analyzed on MRI image brain tumor segmentation. As a preprocessing, the 2D MRI images are convert the grayscale image and resized to the same size. And then, median filter is utilized to eliminate the noise from MRI image. In MRI image segmentation, the varieties of classes or bins of Otsu’s thresholding are utilized to segment the brain tumor from MRI images. Then, the morphological operation is used to achieve the accurate tumor regions. All of the experiments are tested on 2015 BRATS dataset. As segmentation quality validation metric, Jaccard similarity index, true positive rate (Sensitivity), true negative rate (Specificity) and accuracy are used to validate the segmented results and their ground truth. According to the results, level 4 or class 4 got 68.7955% in true positive and 95.5593% in accuracy. Class 4 is the best or suitable for MRI image segmentation according to experiments. |
---|---|
AbstractList | MRI image segmentation is very challenging area in medical image processing. It is implemented with the low contract of MRI scan. In terms of certain input features or expert information, the major objective of medical image segmentation is to isolate and describe anatomical constitutions. In MRI image segmentation, brain tumor segmentation is more difficult because of its complex structure. The Otsu’s thresholding method is well-known method in image segmentation. In this paper, choosing the classes or bins of Otsu’s thresholding are analyzed on MRI image brain tumor segmentation. As a preprocessing, the 2D MRI images are convert the grayscale image and resized to the same size. And then, median filter is utilized to eliminate the noise from MRI image. In MRI image segmentation, the varieties of classes or bins of Otsu’s thresholding are utilized to segment the brain tumor from MRI images. Then, the morphological operation is used to achieve the accurate tumor regions. All of the experiments are tested on 2015 BRATS dataset. As segmentation quality validation metric, Jaccard similarity index, true positive rate (Sensitivity), true negative rate (Specificity) and accuracy are used to validate the segmented results and their ground truth. According to the results, level 4 or class 4 got 68.7955% in true positive and 95.5593% in accuracy. Class 4 is the best or suitable for MRI image segmentation according to experiments. |
Author | Mebarek-Oudina, F. Khan, Nadeem A. Nyo, Myat Thet Hlaing, Su Su |
Author_xml | – sequence: 1 givenname: Myat Thet surname: Nyo fullname: Nyo, Myat Thet organization: Faculty of Computer Science – sequence: 2 givenname: F. surname: Mebarek-Oudina fullname: Mebarek-Oudina, F. email: f.mebarek_oudina@univ-skikda.dz organization: Department of Physics, Faculty of Sciences, University of 20 août 1955-Skikda – sequence: 3 givenname: Su Su surname: Hlaing fullname: Hlaing, Su Su organization: Faculty of Information Science, Myanmar Institute of Information Technology – sequence: 4 givenname: Nadeem A. surname: Khan fullname: Khan, Nadeem A. organization: Department of Civil Engineering, Jamia Millia Islamia |
BookMark | eNp9UMtOwzAQtFCRaAM_wCkSZ4PXjzg5oopCpaJKCM5W4jhpqtYptnPgxm_we3wJhiAhcehld7Wa2ZmdGZrY3hqELoFcAyHyxgMQTjGhFAOjIDCcoCkIybCUFCZxZjnBUhA4QzPvt4RAJiifosU6-OHz_cOnYeOM3_S7urNtGoze2O51MGnTu_TxaZl2-7I1aeXKzqZh2MetN-3e2FCGrrfn6LQpd95c_PYEvSzunucPeLW-X85vV1hTXgSsM84Fq7koSqioFg3THIDWVBBSEM65EbkGSasSdE1BF0bz2CtS87rKeMYSdDXePbg-uvNBbfvB2SipqOSEZTyPAgnKR5R2vffONEp3o88Q_e8UEPWdmhpTUzE19ZNarAmi_6gHF193b8dJbCT5CLatcX-ujrC-AG08gSI |
CitedBy_id | crossref_primary_10_1007_s11042_023_17548_3 crossref_primary_10_1016_j_health_2024_100323 crossref_primary_10_1007_s11042_023_15883_z crossref_primary_10_1007_s11042_023_15343_8 crossref_primary_10_1007_s11042_023_18030_w crossref_primary_10_1007_s11042_023_17193_w crossref_primary_10_1007_s11042_023_17149_0 crossref_primary_10_1109_ACCESS_2023_3276721 crossref_primary_10_1007_s42979_024_02756_x crossref_primary_10_1002_ima_22937 crossref_primary_10_1007_s11042_024_19771_y crossref_primary_10_1007_s11042_023_16314_9 crossref_primary_10_1007_s11042_023_17864_8 crossref_primary_10_3390_bioengineering11101034 crossref_primary_10_1007_s11042_023_15225_z crossref_primary_10_1080_19392699_2024_2346613 crossref_primary_10_1089_cmb_2023_0446 crossref_primary_10_3389_fbioe_2024_1392807 crossref_primary_10_1016_j_joes_2023_12_001 crossref_primary_10_1007_s11042_022_14159_2 crossref_primary_10_3390_app132212397 crossref_primary_10_3390_s24051479 crossref_primary_10_1007_s11042_023_17204_w crossref_primary_10_1016_j_asoc_2025_112940 crossref_primary_10_1016_j_knosys_2024_112171 crossref_primary_10_1007_s11042_024_19080_4 crossref_primary_10_1016_j_procs_2023_01_439 crossref_primary_10_1007_s11831_025_10238_3 crossref_primary_10_1007_s11760_024_03451_3 crossref_primary_10_1007_s11042_023_17226_4 crossref_primary_10_1016_j_measurement_2025_116701 crossref_primary_10_1007_s11042_023_16723_w crossref_primary_10_1007_s11042_024_19684_w crossref_primary_10_1007_s42979_025_03683_1 crossref_primary_10_1007_s11042_022_14106_1 crossref_primary_10_1007_s11042_023_16760_5 crossref_primary_10_1007_s40815_024_01878_x crossref_primary_10_1016_j_rineng_2022_100625 crossref_primary_10_1007_s11042_024_20386_6 crossref_primary_10_1007_s11042_024_18283_z crossref_primary_10_1007_s11042_023_16033_1 crossref_primary_10_1007_s11042_024_18726_7 crossref_primary_10_3390_app13021087 crossref_primary_10_1007_s11042_024_18459_7 crossref_primary_10_1016_j_neucom_2024_127551 crossref_primary_10_1109_ACCESS_2024_3437254 crossref_primary_10_3390_fractalfract6070396 crossref_primary_10_1007_s11269_023_03511_2 crossref_primary_10_1007_s42979_024_02677_9 crossref_primary_10_1007_s11042_023_17787_4 crossref_primary_10_1007_s11042_024_18148_5 crossref_primary_10_1007_s11042_023_15355_4 crossref_primary_10_1007_s11042_023_15399_6 crossref_primary_10_1007_s11042_024_19461_9 crossref_primary_10_3390_app15052355 crossref_primary_10_1007_s11042_023_14829_9 crossref_primary_10_1109_ACCESS_2022_3225908 crossref_primary_10_1007_s11042_024_19210_y crossref_primary_10_1007_s11042_022_14132_z crossref_primary_10_1007_s11042_023_16040_2 crossref_primary_10_1016_j_bspc_2024_106916 crossref_primary_10_1007_s11042_023_16209_9 crossref_primary_10_1016_j_neucom_2024_128531 crossref_primary_10_2174_1386207326666230413085646 crossref_primary_10_1007_s11042_023_15967_w |
Cites_doi | 10.1158/1078-0432.CCR-08-1608 10.1016/j.eswa.2019.113114 10.1016/j.imavis.2009.04.005 10.1007/s00401-007-0243-4 10.1007/s10586-022-03598-z 10.1007/s00371-020-01814-8 10.1109/ECS.2014.6892783 10.1200/JCO.2006.09.7030 10.1016/j.eswa.2020.114485 10.14257/ijbsbt.2014.6.2.19 10.1007/s11831-019-09344-w 10.1007/s11042-019-7327-8 10.1007/s11042-020-10457-9 10.35940/ijeat.A2025.109119 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-022-13215-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 43849 |
ExternalDocumentID | 10_1007_s11042_022_13215_1 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c249t-c64453d459a1b2c5f3c4112d250090444e58c172ba1cd21c9ec4d21b0d4db6463 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 06:04:43 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Tue Jul 01 04:13:15 EDT 2025 Fri Feb 21 02:44:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | BRATS Otsu’s thresholding MRI Median filter |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-c64453d459a1b2c5f3c4112d250090444e58c172ba1cd21c9ec4d21b0d4db6463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2740364845 |
PQPubID | 54626 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2740364845 crossref_citationtrail_10_1007_s11042_022_13215_1 crossref_primary_10_1007_s11042_022_13215_1 springer_journals_10_1007_s11042_022_13215_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221200 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | TaheriSOngSHChongVFHLevel-set segmentation of brain tumors using a threshold-based speed functionImage Vis Comput2010281263710.1016/j.imavis.2009.04.005 GaikwadDPAbhangPBedekarPMedical image segmentation for brain tumor detection2011MumbaiProceedings of the International Conference & Workshop on Emerging Trends in Technology6365 DarganSKumarMAyyagariMRKumarGA survey of deep learning and its applications: a new paradigm to machine learningArch Computat Methods Eng20202710711092413844910.1007/s11831-019-09344-w XuanXLiaoQStatistical structure analysis in MRI brain tumor segmentation2007ChinaFourth International Conference on Image and Graphics. Sichuan421426 DarganSKumarMA comprehensive survey on the biometric recognition systems based on physiological and behavioral modalitiesExpert Syst Appl202014311311410.1016/j.eswa.2019.113114 TanujaPSPatilSBDetection of brain tumor based on segmentation using region growing methodInt J Eng Innov & Res201652173176 Min A, War N (2019) Comparative Experiments of Brain Tumor Segmentation Methods in MRI image. Proceedings of the seventeenth international conference on computer applications (ICCA 2019), Yangon, Myanmar, Feb. 2019, pp. 287–293 GaoQWangXYQiuSJYamatoIShoMNakajimaYXuYOver expression of PD-L1 significantly associates with tumor aggressiveness and post operative recurrence in human hepatocellular carcinomaClin Cancer Res200915397197910.1158/1078-0432.CCR-08-1608 GhoshKKBegumSSardarAAdhikarySGhoshMKumarMSarkarRTheoretical and empirical analysis of filter ranking methods: experimental study on benchmark DNA microarray dataExpert Syst Appl202116911448510.1016/j.eswa.2020.114485 KaziIMChowhanSSKulkarniUVMRI brain image segmentation using adaptive thresholding and K-means algorithmInt J Compr Appl201716781115 KaurPKumarRKumarMA healthcare monitoring system using random forest and internet of things (IoT)Multimedia Tools Applications201978199051991610.1007/s11042-019-7327-8 Ahmad S, Mebarek-Oudina F, Mehfuz S, Beg J (2022) RSM analysis based cloud access security broker: a systematic literature review. Clust Comput. https://doi.org/10.1007/s10586-022-03598-z BinduandCHPrasadKSAn efficient medical image segmentation using conventional OTSU methodInt J Adv Sci Tech2012386774 VijayaranganVMultiscale modeling for image analysis of brain tumor detection and segmentation using histogram thresholdingInt J Eng Comp Sci20143875257534 Ali AH, Khalaph KA, Nema IS (2014) IOSR J Res Method Educ (IOSR-JRME) 4 (1.-II): 58-62 KumarAKumarMKaurAFace detection in still images under occlusion and non-uniform illuminationMultimed Tools Appl202180145651459010.1007/s11042-020-10457-9 Sheeba A, Manikandan S (2014) Image segmentation using bi-level thresholding, proceedings of the 2014 international conference on electronics and communication systems (ICECS). IEEE, pp 1-5 SrikanthRBikshaluKSegmentation of low contrast satellite and medical images based on level set function with harmony search optimization algorithmInt J Eng Adv Tech (IJEAT)201997306731310.35940/ijeat.A2025.109119 AnandgaonkarGSableGBrain tumor detection and identification from T1 post contrast MR images using cluster-based segmentationInt J Scid Res201434814817 LouisDNOhgakiHWiestlerODCaveneeWKBurgerPCJouvetAKleihuesPThe 2007 WHO classification of tumours of the central nervous systemActa Neuropathol200711429710910.1007/s00401-007-0243-4 GuptaSThakurKKumarM2D-human face recognition using SIFT and SURF descriptors of face’s feature regionsVis Comput20213744745610.1007/s00371-020-01814-8 MishraARaiAYadavAMedical image processing: a challenging analysisInternational Journal of Bio-Science and Bio-Technology20146218719410.14257/ijbsbt.2014.6.2.19 SasilathaTMahalakshmiRKumarand DhanyaPSMAn efficient strategy over brain tumour analysis using image processing techniquesInternational Journal of Pharmacy & Technology2017933068830697 OzolsRFHerbstRSColsonYLGralowJBonnerJCurranWJMarkmanMMajor research advances in cancer treatment, prevention, and screening report from the American Society of Clinical OncologyJ Clin Oncol200625114616210.1200/JCO.2006.09.7030 SujanMAlamNAbdullahSJahirulMA segmentation based automated system for brain tumor detectionInt J Comp Appl2016153104149 Prince JL, Links JM (2006) Medical imaging signals and systems. Upper Saddle River, New Jersey BinduCHAn improved medical image segmentation algorithm using Otsu methodInt J Recent Trends Eng2009238890 S Taheri (13215_CR24) 2010; 28 DP Gaikwad (13215_CR8) 2011 S Gupta (13215_CR11) 2021; 37 A Mishra (13215_CR17) 2014; 6 M Sujan (13215_CR23) 2016; 153 13215_CR19 13215_CR21 S Dargan (13215_CR7) 2020; 27 PS Tanuja (13215_CR25) 2016; 5 CH Bindu (13215_CR4) 2009; 2 Q Gao (13215_CR9) 2009; 15 RF Ozols (13215_CR18) 2006; 25 DN Louis (13215_CR15) 2007; 114 R Srikanth (13215_CR22) 2019; 9 X Xuan (13215_CR27) 2007 KK Ghosh (13215_CR10) 2021; 169 P Kaur (13215_CR12) 2019; 78 CH Binduand (13215_CR5) 2012; 38 V Vijayarangan (13215_CR26) 2014; 3 G Anandgaonkar (13215_CR3) 2014; 3 13215_CR1 13215_CR16 13215_CR2 T Sasilatha (13215_CR20) 2017; 9 S Dargan (13215_CR6) 2020; 143 A Kumar (13215_CR14) 2021; 80 IM Kazi (13215_CR13) 2017; 167 |
References_xml | – reference: KaziIMChowhanSSKulkarniUVMRI brain image segmentation using adaptive thresholding and K-means algorithmInt J Compr Appl201716781115 – reference: AnandgaonkarGSableGBrain tumor detection and identification from T1 post contrast MR images using cluster-based segmentationInt J Scid Res201434814817 – reference: Ahmad S, Mebarek-Oudina F, Mehfuz S, Beg J (2022) RSM analysis based cloud access security broker: a systematic literature review. Clust Comput. https://doi.org/10.1007/s10586-022-03598-z – reference: KaurPKumarRKumarMA healthcare monitoring system using random forest and internet of things (IoT)Multimedia Tools Applications201978199051991610.1007/s11042-019-7327-8 – reference: TaheriSOngSHChongVFHLevel-set segmentation of brain tumors using a threshold-based speed functionImage Vis Comput2010281263710.1016/j.imavis.2009.04.005 – reference: BinduCHAn improved medical image segmentation algorithm using Otsu methodInt J Recent Trends Eng2009238890 – reference: GhoshKKBegumSSardarAAdhikarySGhoshMKumarMSarkarRTheoretical and empirical analysis of filter ranking methods: experimental study on benchmark DNA microarray dataExpert Syst Appl202116911448510.1016/j.eswa.2020.114485 – reference: GuptaSThakurKKumarM2D-human face recognition using SIFT and SURF descriptors of face’s feature regionsVis Comput20213744745610.1007/s00371-020-01814-8 – reference: Prince JL, Links JM (2006) Medical imaging signals and systems. Upper Saddle River, New Jersey – reference: XuanXLiaoQStatistical structure analysis in MRI brain tumor segmentation2007ChinaFourth International Conference on Image and Graphics. Sichuan421426 – reference: DarganSKumarMA comprehensive survey on the biometric recognition systems based on physiological and behavioral modalitiesExpert Syst Appl202014311311410.1016/j.eswa.2019.113114 – reference: Sheeba A, Manikandan S (2014) Image segmentation using bi-level thresholding, proceedings of the 2014 international conference on electronics and communication systems (ICECS). IEEE, pp 1-5 – reference: SasilathaTMahalakshmiRKumarand DhanyaPSMAn efficient strategy over brain tumour analysis using image processing techniquesInternational Journal of Pharmacy & Technology2017933068830697 – reference: Ali AH, Khalaph KA, Nema IS (2014) IOSR J Res Method Educ (IOSR-JRME) 4 (1.-II): 58-62 – reference: TanujaPSPatilSBDetection of brain tumor based on segmentation using region growing methodInt J Eng Innov & Res201652173176 – reference: GaoQWangXYQiuSJYamatoIShoMNakajimaYXuYOver expression of PD-L1 significantly associates with tumor aggressiveness and post operative recurrence in human hepatocellular carcinomaClin Cancer Res200915397197910.1158/1078-0432.CCR-08-1608 – reference: KumarAKumarMKaurAFace detection in still images under occlusion and non-uniform illuminationMultimed Tools Appl202180145651459010.1007/s11042-020-10457-9 – reference: LouisDNOhgakiHWiestlerODCaveneeWKBurgerPCJouvetAKleihuesPThe 2007 WHO classification of tumours of the central nervous systemActa Neuropathol200711429710910.1007/s00401-007-0243-4 – reference: SrikanthRBikshaluKSegmentation of low contrast satellite and medical images based on level set function with harmony search optimization algorithmInt J Eng Adv Tech (IJEAT)201997306731310.35940/ijeat.A2025.109119 – reference: SujanMAlamNAbdullahSJahirulMA segmentation based automated system for brain tumor detectionInt J Comp Appl2016153104149 – reference: GaikwadDPAbhangPBedekarPMedical image segmentation for brain tumor detection2011MumbaiProceedings of the International Conference & Workshop on Emerging Trends in Technology6365 – reference: MishraARaiAYadavAMedical image processing: a challenging analysisInternational Journal of Bio-Science and Bio-Technology20146218719410.14257/ijbsbt.2014.6.2.19 – reference: Min A, War N (2019) Comparative Experiments of Brain Tumor Segmentation Methods in MRI image. Proceedings of the seventeenth international conference on computer applications (ICCA 2019), Yangon, Myanmar, Feb. 2019, pp. 287–293 – reference: VijayaranganVMultiscale modeling for image analysis of brain tumor detection and segmentation using histogram thresholdingInt J Eng Comp Sci20143875257534 – reference: DarganSKumarMAyyagariMRKumarGA survey of deep learning and its applications: a new paradigm to machine learningArch Computat Methods Eng20202710711092413844910.1007/s11831-019-09344-w – reference: BinduandCHPrasadKSAn efficient medical image segmentation using conventional OTSU methodInt J Adv Sci Tech2012386774 – reference: OzolsRFHerbstRSColsonYLGralowJBonnerJCurranWJMarkmanMMajor research advances in cancer treatment, prevention, and screening report from the American Society of Clinical OncologyJ Clin Oncol200625114616210.1200/JCO.2006.09.7030 – start-page: 421 volume-title: Statistical structure analysis in MRI brain tumor segmentation year: 2007 ident: 13215_CR27 – volume: 15 start-page: 971 issue: 3 year: 2009 ident: 13215_CR9 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-1608 – ident: 13215_CR16 – volume: 3 start-page: 7525 issue: 8 year: 2014 ident: 13215_CR26 publication-title: Int J Eng Comp Sci – volume: 143 start-page: 113114 year: 2020 ident: 13215_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113114 – volume: 28 start-page: 26 issue: 1 year: 2010 ident: 13215_CR24 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2009.04.005 – volume: 114 start-page: 97 issue: 2 year: 2007 ident: 13215_CR15 publication-title: Acta Neuropathol doi: 10.1007/s00401-007-0243-4 – volume: 167 start-page: 11 issue: 8 year: 2017 ident: 13215_CR13 publication-title: Int J Compr Appl – ident: 13215_CR1 doi: 10.1007/s10586-022-03598-z – ident: 13215_CR2 – start-page: 63 volume-title: Medical image segmentation for brain tumor detection year: 2011 ident: 13215_CR8 – volume: 37 start-page: 447 year: 2021 ident: 13215_CR11 publication-title: Vis Comput doi: 10.1007/s00371-020-01814-8 – volume: 9 start-page: 30688 issue: 3 year: 2017 ident: 13215_CR20 publication-title: International Journal of Pharmacy & Technology – volume: 38 start-page: 67 year: 2012 ident: 13215_CR5 publication-title: Int J Adv Sci Tech – volume: 2 start-page: 88 issue: 3 year: 2009 ident: 13215_CR4 publication-title: Int J Recent Trends Eng – volume: 153 start-page: 41 issue: 10 year: 2016 ident: 13215_CR23 publication-title: Int J Comp Appl – ident: 13215_CR21 doi: 10.1109/ECS.2014.6892783 – ident: 13215_CR19 – volume: 25 start-page: 146 issue: 1 year: 2006 ident: 13215_CR18 publication-title: J Clin Oncol doi: 10.1200/JCO.2006.09.7030 – volume: 169 start-page: 114485 year: 2021 ident: 13215_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114485 – volume: 3 start-page: 814 issue: 4 year: 2014 ident: 13215_CR3 publication-title: Int J Scid Res – volume: 6 start-page: 187 issue: 2 year: 2014 ident: 13215_CR17 publication-title: International Journal of Bio-Science and Bio-Technology doi: 10.14257/ijbsbt.2014.6.2.19 – volume: 27 start-page: 1071 year: 2020 ident: 13215_CR7 publication-title: Arch Computat Methods Eng doi: 10.1007/s11831-019-09344-w – volume: 78 start-page: 19905 year: 2019 ident: 13215_CR12 publication-title: Multimedia Tools Applications doi: 10.1007/s11042-019-7327-8 – volume: 5 start-page: 173 issue: 2 year: 2016 ident: 13215_CR25 publication-title: Int J Eng Innov & Res – volume: 80 start-page: 14565 year: 2021 ident: 13215_CR14 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10457-9 – volume: 9 start-page: 7306 year: 2019 ident: 13215_CR22 publication-title: Int J Eng Adv Tech (IJEAT) doi: 10.35940/ijeat.A2025.109119 |
SSID | ssj0016524 |
Score | 2.547645 |
Snippet | MRI image segmentation is very challenging area in medical image processing. It is implemented with the low contract of MRI scan. In terms of certain input... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 43837 |
SubjectTerms | Bins Brain Brain cancer Computer Communication Networks Computer Science Data Structures and Information Theory Image processing Image segmentation Magnetic resonance imaging Medical imaging Multimedia Information Systems Special Purpose and Application-Based Systems Tumors |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5SL3rwpypWq-TgTQObNNkmxyKWKlRBLPS2ZJOsCHYVd3v3NXw9n8TJNttVUcHTwm42h5lJ5htm5huETsCJKtWnmjieMcJVbIjMIkMs17FTJrNZxbM9vo5HE341FdPQFFbU1e51SrK6qZtmN-pbSXz1OURQVBCIeVaFj93BiidssMwdxCKMspURAX9IQ6vMz3t8dUcNxvyWFq28zXALbQSYiAcLvW6jFZe30WY9ggGHE9lG65_4BHfQ8KYs5u-vbwUuQUVFyCzhJU8rBoSKx7eX-GEG1whO_XgIXM5n8LZw97PQhpTvosnw4u58RMKgBGIgeiqJAVAjepYLpWnKjMh6hgOOsgBvIuUJ4ZyQBpBKqqmxjBrlDIdnGllu05jHvT3Uyp9yt49wlLJMWEk9Bw8XTGshLTNGqr6WVlDdQbSWV2ICi7gfZvGYNPzHXsYJyDipZJzQDjpd_vO84ND4c3W3VkMSzlORQOzsE6aSiw46q1XTfP59t4P_LT9Ea6yyDl-v0kWt8mXujgB1lOlxZWQfbBbL4g priority: 102 providerName: Springer Nature |
Title | Otsu’s thresholding technique for MRI image brain tumor segmentation |
URI | https://link.springer.com/article/10.1007/s11042-022-13215-1 https://www.proquest.com/docview/2740364845 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTsMwDLZgu8CBnwFiMKYcuEFE0yUlPaGBtvGjDTQxCU5Vm7QIiW1AuzuvwevxJDhdugESO1VK2xzsxP4cx58BDtGJ-v4pC2nME5dy31NUJo6imode7KtEJznPdrfnXQ749YN4sAduqb1WWdjE3FDrsTJn5CcYPZmUmeTi7PWNmq5RJrtqW2gsQxlNsMTgq3ze6t31Z3kET9i2ttKh6BuZLZuZFs8xU5pibrNjRMYEZb9d0xxv_kmR5p6nvQFrFjKS5lTHm7AUjyqwXrRjIHZ3VmD1B7fgFrRvs3Ty9fGZkgzVldosE5lxthJEq6TbvyLPQzQpJDKtIkg2GeJoGj8NbUnSaBsG7db9xSW1TROowkgqowoBjmhoLvyQRa4SSUNxxFQaoY7jG3K4WEiFqCUKmdIuU36sOD4jR3Mdedxr7EBpNB7Fu0CcyE2Elszw8XDhhqGQ2lVK-qeh1IKFVWCFvAJlGcVNY4uXYM6FbGQcoIyDXMYBq8LR7J_XKZ_Gwq9rhRoCu7fSYL4SqnBcqGb--v_Z9hbPtg8rbr4azF2VGpSy90l8gIgji-qwLNudOpSbncebVt0uMhwduM1vr0TT6g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5Remg5QPlTl9LiAz0Vi9ixg31ACLVddoGlUgUSt5DYDqrE7gLJquqtr8FL9KH6JIyzzm6LBDdOkfLjw8zn-cl4vgHYRCeq9Q7LqBMFp0InhqoiMtSKLHHaFLaoebZ7J0nnTByey_MZ-NP0wvhjlY1NrA21HRr_j3wbsydfMlNC7l3fUD81yldXmxEaY1gcuV8_MWUrd7tfUL8fOW9_Pf3coWGqADWYalTUYAQgYyukzljOjSxiIzDosBgLRNqzpzmpDLr1PGPGcma0MwKveWSFzRORxLjuC3gp4lj7HaXaB5OqRSLDEF0VUfTELDTpjFv1mG-E8WfnMf9jkrL_HeE0un1QkK39XPsNzIcAleyPEbUIM26wBAvN8AcSbMESzP3DZLgM7W9VOfr7-64kFYKjDDUtMmGIJRgbk973LvnRRwNGcj-YglSjPt4t3WU_NEANVuDsWYS5CrOD4cC9BRLlvJBWMc_-IyTPMqksN0bpnUxZybIWsEZeqQn85X6MxlU6ZV72Mk5Rxmkt45S14NPkm-sxe8eTb683akjDTi7TKe5asNWoZvr48dXWnl5tA151TnvH6XH35OgdvOY1MvwpmXWYrW5H7j3GOlX-oQYYgYvnRvQ9LvoK0g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB5BkBA9FAigpg1lD-UEK7ybXcc-VAgKESlNQAgkbsbeXSMk8gN2VPXW1-ir8Dg8CbPOOilIcONkyT8ra_bz_HhmvgH4hkY0DJsspkaknIrQVzRIPUW1iH0TqlSnBc92p-sfXYifl_JyBh7KXhhbVlnqxEJR64Gy_8h3MHqyKbNAyJ3UlUWcHrR2h3fUTpCymdZynMYYIsfmz28M37Lv7QPc603OW4fnP46omzBAFYYdOVXoDciGFjKMWcKVTBtKoAOi0S_wQsukZmSg0MQnMVOaMxUaJfCYeFroxBd-A9edhTl8taZXgbn9w-7p2SSH4Us3UjfwKNpl5lp2xo17zLbF2Ep6jAaZpOy5WZz6ui_Ss4XVay3BR-eukr0xvpZhxvSrsFiOgiBOM1Thw3-8hivQOsmz0ePffxnJESqZy3CRCV8sQU-ZdM7a5KaH6owkdkwFyUc9PJuZ655rh-qvwsW7iHMNKv1B33wC4iU8lTpglgtISB7HMtBcqSBsxoGWLK4BK-UVKcdmbodq3EZTHmYr4whlHBUyjlgNtibPDMdcHm_eXS-3IXLfdRZNUViD7XJrppdfX-3z26ttwDyiOfrV7h5_gQVeAMOWzNShkt-PzDo6Pnny1SGMwNV7g_oJUIQQZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Otsu%E2%80%99s+thresholding+technique+for+MRI+image+brain+tumor+segmentation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Nyo%2C+Myat+Thet&rft.au=Mebarek-Oudina%2C+F.&rft.au=Hlaing%2C+Su+Su&rft.au=Khan%2C+Nadeem+A.&rft.date=2022-12-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=30&rft.spage=43837&rft.epage=43849&rft_id=info:doi/10.1007%2Fs11042-022-13215-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_022_13215_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |