Otsu’s thresholding technique for MRI image brain tumor segmentation

MRI image segmentation is very challenging area in medical image processing. It is implemented with the low contract of MRI scan. In terms of certain input features or expert information, the major objective of medical image segmentation is to isolate and describe anatomical constitutions. In MRI im...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 30; pp. 43837 - 43849
Main Authors Nyo, Myat Thet, Mebarek-Oudina, F., Hlaing, Su Su, Khan, Nadeem A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-022-13215-1

Cover

Loading…
Abstract MRI image segmentation is very challenging area in medical image processing. It is implemented with the low contract of MRI scan. In terms of certain input features or expert information, the major objective of medical image segmentation is to isolate and describe anatomical constitutions. In MRI image segmentation, brain tumor segmentation is more difficult because of its complex structure. The Otsu’s thresholding method is well-known method in image segmentation. In this paper, choosing the classes or bins of Otsu’s thresholding are analyzed on MRI image brain tumor segmentation. As a preprocessing, the 2D MRI images are convert the grayscale image and resized to the same size. And then, median filter is utilized to eliminate the noise from MRI image. In MRI image segmentation, the varieties of classes or bins of Otsu’s thresholding are utilized to segment the brain tumor from MRI images. Then, the morphological operation is used to achieve the accurate tumor regions. All of the experiments are tested on 2015 BRATS dataset. As segmentation quality validation metric, Jaccard similarity index, true positive rate (Sensitivity), true negative rate (Specificity) and accuracy are used to validate the segmented results and their ground truth. According to the results, level 4 or class 4 got 68.7955% in true positive and 95.5593% in accuracy. Class 4 is the best or suitable for MRI image segmentation according to experiments.
AbstractList MRI image segmentation is very challenging area in medical image processing. It is implemented with the low contract of MRI scan. In terms of certain input features or expert information, the major objective of medical image segmentation is to isolate and describe anatomical constitutions. In MRI image segmentation, brain tumor segmentation is more difficult because of its complex structure. The Otsu’s thresholding method is well-known method in image segmentation. In this paper, choosing the classes or bins of Otsu’s thresholding are analyzed on MRI image brain tumor segmentation. As a preprocessing, the 2D MRI images are convert the grayscale image and resized to the same size. And then, median filter is utilized to eliminate the noise from MRI image. In MRI image segmentation, the varieties of classes or bins of Otsu’s thresholding are utilized to segment the brain tumor from MRI images. Then, the morphological operation is used to achieve the accurate tumor regions. All of the experiments are tested on 2015 BRATS dataset. As segmentation quality validation metric, Jaccard similarity index, true positive rate (Sensitivity), true negative rate (Specificity) and accuracy are used to validate the segmented results and their ground truth. According to the results, level 4 or class 4 got 68.7955% in true positive and 95.5593% in accuracy. Class 4 is the best or suitable for MRI image segmentation according to experiments.
Author Mebarek-Oudina, F.
Khan, Nadeem A.
Nyo, Myat Thet
Hlaing, Su Su
Author_xml – sequence: 1
  givenname: Myat Thet
  surname: Nyo
  fullname: Nyo, Myat Thet
  organization: Faculty of Computer Science
– sequence: 2
  givenname: F.
  surname: Mebarek-Oudina
  fullname: Mebarek-Oudina, F.
  email: f.mebarek_oudina@univ-skikda.dz
  organization: Department of Physics, Faculty of Sciences, University of 20 août 1955-Skikda
– sequence: 3
  givenname: Su Su
  surname: Hlaing
  fullname: Hlaing, Su Su
  organization: Faculty of Information Science, Myanmar Institute of Information Technology
– sequence: 4
  givenname: Nadeem A.
  surname: Khan
  fullname: Khan, Nadeem A.
  organization: Department of Civil Engineering, Jamia Millia Islamia
BookMark eNp9UMtOwzAQtFCRaAM_wCkSZ4PXjzg5oopCpaJKCM5W4jhpqtYptnPgxm_we3wJhiAhcehld7Wa2ZmdGZrY3hqELoFcAyHyxgMQTjGhFAOjIDCcoCkIybCUFCZxZjnBUhA4QzPvt4RAJiifosU6-OHz_cOnYeOM3_S7urNtGoze2O51MGnTu_TxaZl2-7I1aeXKzqZh2MetN-3e2FCGrrfn6LQpd95c_PYEvSzunucPeLW-X85vV1hTXgSsM84Fq7koSqioFg3THIDWVBBSEM65EbkGSasSdE1BF0bz2CtS87rKeMYSdDXePbg-uvNBbfvB2SipqOSEZTyPAgnKR5R2vffONEp3o88Q_e8UEPWdmhpTUzE19ZNarAmi_6gHF193b8dJbCT5CLatcX-ujrC-AG08gSI
CitedBy_id crossref_primary_10_1007_s11042_023_17548_3
crossref_primary_10_1016_j_health_2024_100323
crossref_primary_10_1007_s11042_023_15883_z
crossref_primary_10_1007_s11042_023_15343_8
crossref_primary_10_1007_s11042_023_18030_w
crossref_primary_10_1007_s11042_023_17193_w
crossref_primary_10_1007_s11042_023_17149_0
crossref_primary_10_1109_ACCESS_2023_3276721
crossref_primary_10_1007_s42979_024_02756_x
crossref_primary_10_1002_ima_22937
crossref_primary_10_1007_s11042_024_19771_y
crossref_primary_10_1007_s11042_023_16314_9
crossref_primary_10_1007_s11042_023_17864_8
crossref_primary_10_3390_bioengineering11101034
crossref_primary_10_1007_s11042_023_15225_z
crossref_primary_10_1080_19392699_2024_2346613
crossref_primary_10_1089_cmb_2023_0446
crossref_primary_10_3389_fbioe_2024_1392807
crossref_primary_10_1016_j_joes_2023_12_001
crossref_primary_10_1007_s11042_022_14159_2
crossref_primary_10_3390_app132212397
crossref_primary_10_3390_s24051479
crossref_primary_10_1007_s11042_023_17204_w
crossref_primary_10_1016_j_asoc_2025_112940
crossref_primary_10_1016_j_knosys_2024_112171
crossref_primary_10_1007_s11042_024_19080_4
crossref_primary_10_1016_j_procs_2023_01_439
crossref_primary_10_1007_s11831_025_10238_3
crossref_primary_10_1007_s11760_024_03451_3
crossref_primary_10_1007_s11042_023_17226_4
crossref_primary_10_1016_j_measurement_2025_116701
crossref_primary_10_1007_s11042_023_16723_w
crossref_primary_10_1007_s11042_024_19684_w
crossref_primary_10_1007_s42979_025_03683_1
crossref_primary_10_1007_s11042_022_14106_1
crossref_primary_10_1007_s11042_023_16760_5
crossref_primary_10_1007_s40815_024_01878_x
crossref_primary_10_1016_j_rineng_2022_100625
crossref_primary_10_1007_s11042_024_20386_6
crossref_primary_10_1007_s11042_024_18283_z
crossref_primary_10_1007_s11042_023_16033_1
crossref_primary_10_1007_s11042_024_18726_7
crossref_primary_10_3390_app13021087
crossref_primary_10_1007_s11042_024_18459_7
crossref_primary_10_1016_j_neucom_2024_127551
crossref_primary_10_1109_ACCESS_2024_3437254
crossref_primary_10_3390_fractalfract6070396
crossref_primary_10_1007_s11269_023_03511_2
crossref_primary_10_1007_s42979_024_02677_9
crossref_primary_10_1007_s11042_023_17787_4
crossref_primary_10_1007_s11042_024_18148_5
crossref_primary_10_1007_s11042_023_15355_4
crossref_primary_10_1007_s11042_023_15399_6
crossref_primary_10_1007_s11042_024_19461_9
crossref_primary_10_3390_app15052355
crossref_primary_10_1007_s11042_023_14829_9
crossref_primary_10_1109_ACCESS_2022_3225908
crossref_primary_10_1007_s11042_024_19210_y
crossref_primary_10_1007_s11042_022_14132_z
crossref_primary_10_1007_s11042_023_16040_2
crossref_primary_10_1016_j_bspc_2024_106916
crossref_primary_10_1007_s11042_023_16209_9
crossref_primary_10_1016_j_neucom_2024_128531
crossref_primary_10_2174_1386207326666230413085646
crossref_primary_10_1007_s11042_023_15967_w
Cites_doi 10.1158/1078-0432.CCR-08-1608
10.1016/j.eswa.2019.113114
10.1016/j.imavis.2009.04.005
10.1007/s00401-007-0243-4
10.1007/s10586-022-03598-z
10.1007/s00371-020-01814-8
10.1109/ECS.2014.6892783
10.1200/JCO.2006.09.7030
10.1016/j.eswa.2020.114485
10.14257/ijbsbt.2014.6.2.19
10.1007/s11831-019-09344-w
10.1007/s11042-019-7327-8
10.1007/s11042-020-10457-9
10.35940/ijeat.A2025.109119
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-022-13215-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 43849
ExternalDocumentID 10_1007_s11042_022_13215_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c249t-c64453d459a1b2c5f3c4112d250090444e58c172ba1cd21c9ec4d21b0d4db6463
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 06:04:43 EDT 2025
Thu Apr 24 22:55:15 EDT 2025
Tue Jul 01 04:13:15 EDT 2025
Fri Feb 21 02:44:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords BRATS
Otsu’s thresholding
MRI
Median filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-c64453d459a1b2c5f3c4112d250090444e58c172ba1cd21c9ec4d21b0d4db6463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2740364845
PQPubID 54626
PageCount 13
ParticipantIDs proquest_journals_2740364845
crossref_citationtrail_10_1007_s11042_022_13215_1
crossref_primary_10_1007_s11042_022_13215_1
springer_journals_10_1007_s11042_022_13215_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References TaheriSOngSHChongVFHLevel-set segmentation of brain tumors using a threshold-based speed functionImage Vis Comput2010281263710.1016/j.imavis.2009.04.005
GaikwadDPAbhangPBedekarPMedical image segmentation for brain tumor detection2011MumbaiProceedings of the International Conference & Workshop on Emerging Trends in Technology6365
DarganSKumarMAyyagariMRKumarGA survey of deep learning and its applications: a new paradigm to machine learningArch Computat Methods Eng20202710711092413844910.1007/s11831-019-09344-w
XuanXLiaoQStatistical structure analysis in MRI brain tumor segmentation2007ChinaFourth International Conference on Image and Graphics. Sichuan421426
DarganSKumarMA comprehensive survey on the biometric recognition systems based on physiological and behavioral modalitiesExpert Syst Appl202014311311410.1016/j.eswa.2019.113114
TanujaPSPatilSBDetection of brain tumor based on segmentation using region growing methodInt J Eng Innov & Res201652173176
Min A, War N (2019) Comparative Experiments of Brain Tumor Segmentation Methods in MRI image. Proceedings of the seventeenth international conference on computer applications (ICCA 2019), Yangon, Myanmar, Feb. 2019, pp. 287–293
GaoQWangXYQiuSJYamatoIShoMNakajimaYXuYOver expression of PD-L1 significantly associates with tumor aggressiveness and post operative recurrence in human hepatocellular carcinomaClin Cancer Res200915397197910.1158/1078-0432.CCR-08-1608
GhoshKKBegumSSardarAAdhikarySGhoshMKumarMSarkarRTheoretical and empirical analysis of filter ranking methods: experimental study on benchmark DNA microarray dataExpert Syst Appl202116911448510.1016/j.eswa.2020.114485
KaziIMChowhanSSKulkarniUVMRI brain image segmentation using adaptive thresholding and K-means algorithmInt J Compr Appl201716781115
KaurPKumarRKumarMA healthcare monitoring system using random forest and internet of things (IoT)Multimedia Tools Applications201978199051991610.1007/s11042-019-7327-8
Ahmad S, Mebarek-Oudina F, Mehfuz S, Beg J (2022) RSM analysis based cloud access security broker: a systematic literature review. Clust Comput. https://doi.org/10.1007/s10586-022-03598-z
BinduandCHPrasadKSAn efficient medical image segmentation using conventional OTSU methodInt J Adv Sci Tech2012386774
VijayaranganVMultiscale modeling for image analysis of brain tumor detection and segmentation using histogram thresholdingInt J Eng Comp Sci20143875257534
Ali AH, Khalaph KA, Nema IS (2014) IOSR J Res Method Educ (IOSR-JRME) 4 (1.-II): 58-62
KumarAKumarMKaurAFace detection in still images under occlusion and non-uniform illuminationMultimed Tools Appl202180145651459010.1007/s11042-020-10457-9
Sheeba A, Manikandan S (2014) Image segmentation using bi-level thresholding, proceedings of the 2014 international conference on electronics and communication systems (ICECS). IEEE, pp 1-5
SrikanthRBikshaluKSegmentation of low contrast satellite and medical images based on level set function with harmony search optimization algorithmInt J Eng Adv Tech (IJEAT)201997306731310.35940/ijeat.A2025.109119
AnandgaonkarGSableGBrain tumor detection and identification from T1 post contrast MR images using cluster-based segmentationInt J Scid Res201434814817
LouisDNOhgakiHWiestlerODCaveneeWKBurgerPCJouvetAKleihuesPThe 2007 WHO classification of tumours of the central nervous systemActa Neuropathol200711429710910.1007/s00401-007-0243-4
GuptaSThakurKKumarM2D-human face recognition using SIFT and SURF descriptors of face’s feature regionsVis Comput20213744745610.1007/s00371-020-01814-8
MishraARaiAYadavAMedical image processing: a challenging analysisInternational Journal of Bio-Science and Bio-Technology20146218719410.14257/ijbsbt.2014.6.2.19
SasilathaTMahalakshmiRKumarand DhanyaPSMAn efficient strategy over brain tumour analysis using image processing techniquesInternational Journal of Pharmacy & Technology2017933068830697
OzolsRFHerbstRSColsonYLGralowJBonnerJCurranWJMarkmanMMajor research advances in cancer treatment, prevention, and screening report from the American Society of Clinical OncologyJ Clin Oncol200625114616210.1200/JCO.2006.09.7030
SujanMAlamNAbdullahSJahirulMA segmentation based automated system for brain tumor detectionInt J Comp Appl2016153104149
Prince JL, Links JM (2006) Medical imaging signals and systems. Upper Saddle River, New Jersey
BinduCHAn improved medical image segmentation algorithm using Otsu methodInt J Recent Trends Eng2009238890
S Taheri (13215_CR24) 2010; 28
DP Gaikwad (13215_CR8) 2011
S Gupta (13215_CR11) 2021; 37
A Mishra (13215_CR17) 2014; 6
M Sujan (13215_CR23) 2016; 153
13215_CR19
13215_CR21
S Dargan (13215_CR7) 2020; 27
PS Tanuja (13215_CR25) 2016; 5
CH Bindu (13215_CR4) 2009; 2
Q Gao (13215_CR9) 2009; 15
RF Ozols (13215_CR18) 2006; 25
DN Louis (13215_CR15) 2007; 114
R Srikanth (13215_CR22) 2019; 9
X Xuan (13215_CR27) 2007
KK Ghosh (13215_CR10) 2021; 169
P Kaur (13215_CR12) 2019; 78
CH Binduand (13215_CR5) 2012; 38
V Vijayarangan (13215_CR26) 2014; 3
G Anandgaonkar (13215_CR3) 2014; 3
13215_CR1
13215_CR16
13215_CR2
T Sasilatha (13215_CR20) 2017; 9
S Dargan (13215_CR6) 2020; 143
A Kumar (13215_CR14) 2021; 80
IM Kazi (13215_CR13) 2017; 167
References_xml – reference: KaziIMChowhanSSKulkarniUVMRI brain image segmentation using adaptive thresholding and K-means algorithmInt J Compr Appl201716781115
– reference: AnandgaonkarGSableGBrain tumor detection and identification from T1 post contrast MR images using cluster-based segmentationInt J Scid Res201434814817
– reference: Ahmad S, Mebarek-Oudina F, Mehfuz S, Beg J (2022) RSM analysis based cloud access security broker: a systematic literature review. Clust Comput. https://doi.org/10.1007/s10586-022-03598-z
– reference: KaurPKumarRKumarMA healthcare monitoring system using random forest and internet of things (IoT)Multimedia Tools Applications201978199051991610.1007/s11042-019-7327-8
– reference: TaheriSOngSHChongVFHLevel-set segmentation of brain tumors using a threshold-based speed functionImage Vis Comput2010281263710.1016/j.imavis.2009.04.005
– reference: BinduCHAn improved medical image segmentation algorithm using Otsu methodInt J Recent Trends Eng2009238890
– reference: GhoshKKBegumSSardarAAdhikarySGhoshMKumarMSarkarRTheoretical and empirical analysis of filter ranking methods: experimental study on benchmark DNA microarray dataExpert Syst Appl202116911448510.1016/j.eswa.2020.114485
– reference: GuptaSThakurKKumarM2D-human face recognition using SIFT and SURF descriptors of face’s feature regionsVis Comput20213744745610.1007/s00371-020-01814-8
– reference: Prince JL, Links JM (2006) Medical imaging signals and systems. Upper Saddle River, New Jersey
– reference: XuanXLiaoQStatistical structure analysis in MRI brain tumor segmentation2007ChinaFourth International Conference on Image and Graphics. Sichuan421426
– reference: DarganSKumarMA comprehensive survey on the biometric recognition systems based on physiological and behavioral modalitiesExpert Syst Appl202014311311410.1016/j.eswa.2019.113114
– reference: Sheeba A, Manikandan S (2014) Image segmentation using bi-level thresholding, proceedings of the 2014 international conference on electronics and communication systems (ICECS). IEEE, pp 1-5
– reference: SasilathaTMahalakshmiRKumarand DhanyaPSMAn efficient strategy over brain tumour analysis using image processing techniquesInternational Journal of Pharmacy & Technology2017933068830697
– reference: Ali AH, Khalaph KA, Nema IS (2014) IOSR J Res Method Educ (IOSR-JRME) 4 (1.-II): 58-62
– reference: TanujaPSPatilSBDetection of brain tumor based on segmentation using region growing methodInt J Eng Innov & Res201652173176
– reference: GaoQWangXYQiuSJYamatoIShoMNakajimaYXuYOver expression of PD-L1 significantly associates with tumor aggressiveness and post operative recurrence in human hepatocellular carcinomaClin Cancer Res200915397197910.1158/1078-0432.CCR-08-1608
– reference: KumarAKumarMKaurAFace detection in still images under occlusion and non-uniform illuminationMultimed Tools Appl202180145651459010.1007/s11042-020-10457-9
– reference: LouisDNOhgakiHWiestlerODCaveneeWKBurgerPCJouvetAKleihuesPThe 2007 WHO classification of tumours of the central nervous systemActa Neuropathol200711429710910.1007/s00401-007-0243-4
– reference: SrikanthRBikshaluKSegmentation of low contrast satellite and medical images based on level set function with harmony search optimization algorithmInt J Eng Adv Tech (IJEAT)201997306731310.35940/ijeat.A2025.109119
– reference: SujanMAlamNAbdullahSJahirulMA segmentation based automated system for brain tumor detectionInt J Comp Appl2016153104149
– reference: GaikwadDPAbhangPBedekarPMedical image segmentation for brain tumor detection2011MumbaiProceedings of the International Conference & Workshop on Emerging Trends in Technology6365
– reference: MishraARaiAYadavAMedical image processing: a challenging analysisInternational Journal of Bio-Science and Bio-Technology20146218719410.14257/ijbsbt.2014.6.2.19
– reference: Min A, War N (2019) Comparative Experiments of Brain Tumor Segmentation Methods in MRI image. Proceedings of the seventeenth international conference on computer applications (ICCA 2019), Yangon, Myanmar, Feb. 2019, pp. 287–293
– reference: VijayaranganVMultiscale modeling for image analysis of brain tumor detection and segmentation using histogram thresholdingInt J Eng Comp Sci20143875257534
– reference: DarganSKumarMAyyagariMRKumarGA survey of deep learning and its applications: a new paradigm to machine learningArch Computat Methods Eng20202710711092413844910.1007/s11831-019-09344-w
– reference: BinduandCHPrasadKSAn efficient medical image segmentation using conventional OTSU methodInt J Adv Sci Tech2012386774
– reference: OzolsRFHerbstRSColsonYLGralowJBonnerJCurranWJMarkmanMMajor research advances in cancer treatment, prevention, and screening report from the American Society of Clinical OncologyJ Clin Oncol200625114616210.1200/JCO.2006.09.7030
– start-page: 421
  volume-title: Statistical structure analysis in MRI brain tumor segmentation
  year: 2007
  ident: 13215_CR27
– volume: 15
  start-page: 971
  issue: 3
  year: 2009
  ident: 13215_CR9
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-1608
– ident: 13215_CR16
– volume: 3
  start-page: 7525
  issue: 8
  year: 2014
  ident: 13215_CR26
  publication-title: Int J Eng Comp Sci
– volume: 143
  start-page: 113114
  year: 2020
  ident: 13215_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113114
– volume: 28
  start-page: 26
  issue: 1
  year: 2010
  ident: 13215_CR24
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2009.04.005
– volume: 114
  start-page: 97
  issue: 2
  year: 2007
  ident: 13215_CR15
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-007-0243-4
– volume: 167
  start-page: 11
  issue: 8
  year: 2017
  ident: 13215_CR13
  publication-title: Int J Compr Appl
– ident: 13215_CR1
  doi: 10.1007/s10586-022-03598-z
– ident: 13215_CR2
– start-page: 63
  volume-title: Medical image segmentation for brain tumor detection
  year: 2011
  ident: 13215_CR8
– volume: 37
  start-page: 447
  year: 2021
  ident: 13215_CR11
  publication-title: Vis Comput
  doi: 10.1007/s00371-020-01814-8
– volume: 9
  start-page: 30688
  issue: 3
  year: 2017
  ident: 13215_CR20
  publication-title: International Journal of Pharmacy & Technology
– volume: 38
  start-page: 67
  year: 2012
  ident: 13215_CR5
  publication-title: Int J Adv Sci Tech
– volume: 2
  start-page: 88
  issue: 3
  year: 2009
  ident: 13215_CR4
  publication-title: Int J Recent Trends Eng
– volume: 153
  start-page: 41
  issue: 10
  year: 2016
  ident: 13215_CR23
  publication-title: Int J Comp Appl
– ident: 13215_CR21
  doi: 10.1109/ECS.2014.6892783
– ident: 13215_CR19
– volume: 25
  start-page: 146
  issue: 1
  year: 2006
  ident: 13215_CR18
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2006.09.7030
– volume: 169
  start-page: 114485
  year: 2021
  ident: 13215_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114485
– volume: 3
  start-page: 814
  issue: 4
  year: 2014
  ident: 13215_CR3
  publication-title: Int J Scid Res
– volume: 6
  start-page: 187
  issue: 2
  year: 2014
  ident: 13215_CR17
  publication-title: International Journal of Bio-Science and Bio-Technology
  doi: 10.14257/ijbsbt.2014.6.2.19
– volume: 27
  start-page: 1071
  year: 2020
  ident: 13215_CR7
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-019-09344-w
– volume: 78
  start-page: 19905
  year: 2019
  ident: 13215_CR12
  publication-title: Multimedia Tools Applications
  doi: 10.1007/s11042-019-7327-8
– volume: 5
  start-page: 173
  issue: 2
  year: 2016
  ident: 13215_CR25
  publication-title: Int J Eng Innov & Res
– volume: 80
  start-page: 14565
  year: 2021
  ident: 13215_CR14
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10457-9
– volume: 9
  start-page: 7306
  year: 2019
  ident: 13215_CR22
  publication-title: Int J Eng Adv Tech (IJEAT)
  doi: 10.35940/ijeat.A2025.109119
SSID ssj0016524
Score 2.547645
Snippet MRI image segmentation is very challenging area in medical image processing. It is implemented with the low contract of MRI scan. In terms of certain input...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 43837
SubjectTerms Bins
Brain
Brain cancer
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Image processing
Image segmentation
Magnetic resonance imaging
Medical imaging
Multimedia Information Systems
Special Purpose and Application-Based Systems
Tumors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5SL3rwpypWq-TgTQObNNkmxyKWKlRBLPS2ZJOsCHYVd3v3NXw9n8TJNttVUcHTwm42h5lJ5htm5huETsCJKtWnmjieMcJVbIjMIkMs17FTJrNZxbM9vo5HE341FdPQFFbU1e51SrK6qZtmN-pbSXz1OURQVBCIeVaFj93BiidssMwdxCKMspURAX9IQ6vMz3t8dUcNxvyWFq28zXALbQSYiAcLvW6jFZe30WY9ggGHE9lG65_4BHfQ8KYs5u-vbwUuQUVFyCzhJU8rBoSKx7eX-GEG1whO_XgIXM5n8LZw97PQhpTvosnw4u58RMKgBGIgeiqJAVAjepYLpWnKjMh6hgOOsgBvIuUJ4ZyQBpBKqqmxjBrlDIdnGllu05jHvT3Uyp9yt49wlLJMWEk9Bw8XTGshLTNGqr6WVlDdQbSWV2ICi7gfZvGYNPzHXsYJyDipZJzQDjpd_vO84ND4c3W3VkMSzlORQOzsE6aSiw46q1XTfP59t4P_LT9Ea6yyDl-v0kWt8mXujgB1lOlxZWQfbBbL4g
  priority: 102
  providerName: Springer Nature
Title Otsu’s thresholding technique for MRI image brain tumor segmentation
URI https://link.springer.com/article/10.1007/s11042-022-13215-1
https://www.proquest.com/docview/2740364845
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTsMwDLZgu8CBnwFiMKYcuEFE0yUlPaGBtvGjDTQxCU5Vm7QIiW1AuzuvwevxJDhdugESO1VK2xzsxP4cx58BDtGJ-v4pC2nME5dy31NUJo6imode7KtEJznPdrfnXQ749YN4sAduqb1WWdjE3FDrsTJn5CcYPZmUmeTi7PWNmq5RJrtqW2gsQxlNsMTgq3ze6t31Z3kET9i2ttKh6BuZLZuZFs8xU5pibrNjRMYEZb9d0xxv_kmR5p6nvQFrFjKS5lTHm7AUjyqwXrRjIHZ3VmD1B7fgFrRvs3Ty9fGZkgzVldosE5lxthJEq6TbvyLPQzQpJDKtIkg2GeJoGj8NbUnSaBsG7db9xSW1TROowkgqowoBjmhoLvyQRa4SSUNxxFQaoY7jG3K4WEiFqCUKmdIuU36sOD4jR3Mdedxr7EBpNB7Fu0CcyE2Elszw8XDhhqGQ2lVK-qeh1IKFVWCFvAJlGcVNY4uXYM6FbGQcoIyDXMYBq8LR7J_XKZ_Gwq9rhRoCu7fSYL4SqnBcqGb--v_Z9hbPtg8rbr4azF2VGpSy90l8gIgji-qwLNudOpSbncebVt0uMhwduM1vr0TT6g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5Remg5QPlTl9LiAz0Vi9ixg31ACLVddoGlUgUSt5DYDqrE7gLJquqtr8FL9KH6JIyzzm6LBDdOkfLjw8zn-cl4vgHYRCeq9Q7LqBMFp0InhqoiMtSKLHHaFLaoebZ7J0nnTByey_MZ-NP0wvhjlY1NrA21HRr_j3wbsydfMlNC7l3fUD81yldXmxEaY1gcuV8_MWUrd7tfUL8fOW9_Pf3coWGqADWYalTUYAQgYyukzljOjSxiIzDosBgLRNqzpzmpDLr1PGPGcma0MwKveWSFzRORxLjuC3gp4lj7HaXaB5OqRSLDEF0VUfTELDTpjFv1mG-E8WfnMf9jkrL_HeE0un1QkK39XPsNzIcAleyPEbUIM26wBAvN8AcSbMESzP3DZLgM7W9VOfr7-64kFYKjDDUtMmGIJRgbk973LvnRRwNGcj-YglSjPt4t3WU_NEANVuDsWYS5CrOD4cC9BRLlvJBWMc_-IyTPMqksN0bpnUxZybIWsEZeqQn85X6MxlU6ZV72Mk5Rxmkt45S14NPkm-sxe8eTb683akjDTi7TKe5asNWoZvr48dXWnl5tA151TnvH6XH35OgdvOY1MvwpmXWYrW5H7j3GOlX-oQYYgYvnRvQ9LvoK0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB5BkBA9FAigpg1lD-UEK7ybXcc-VAgKESlNQAgkbsbeXSMk8gN2VPXW1-ir8Dg8CbPOOilIcONkyT8ra_bz_HhmvgH4hkY0DJsspkaknIrQVzRIPUW1iH0TqlSnBc92p-sfXYifl_JyBh7KXhhbVlnqxEJR64Gy_8h3MHqyKbNAyJ3UlUWcHrR2h3fUTpCymdZynMYYIsfmz28M37Lv7QPc603OW4fnP46omzBAFYYdOVXoDciGFjKMWcKVTBtKoAOi0S_wQsukZmSg0MQnMVOaMxUaJfCYeFroxBd-A9edhTl8taZXgbn9w-7p2SSH4Us3UjfwKNpl5lp2xo17zLbF2Ep6jAaZpOy5WZz6ui_Ss4XVay3BR-eukr0xvpZhxvSrsFiOgiBOM1Thw3-8hivQOsmz0ePffxnJESqZy3CRCV8sQU-ZdM7a5KaH6owkdkwFyUc9PJuZ655rh-qvwsW7iHMNKv1B33wC4iU8lTpglgtISB7HMtBcqSBsxoGWLK4BK-UVKcdmbodq3EZTHmYr4whlHBUyjlgNtibPDMdcHm_eXS-3IXLfdRZNUViD7XJrppdfX-3z26ttwDyiOfrV7h5_gQVeAMOWzNShkt-PzDo6Pnny1SGMwNV7g_oJUIQQZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Otsu%E2%80%99s+thresholding+technique+for+MRI+image+brain+tumor+segmentation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Nyo%2C+Myat+Thet&rft.au=Mebarek-Oudina%2C+F.&rft.au=Hlaing%2C+Su+Su&rft.au=Khan%2C+Nadeem+A.&rft.date=2022-12-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=30&rft.spage=43837&rft.epage=43849&rft_id=info:doi/10.1007%2Fs11042-022-13215-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_022_13215_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon