Knowledge-informed randomized machine learning and data fusion for anomaly areas detection in multimodal 3D images
We consider a long-standing yet hard and largely open machine learning problem of anomaly areas detection in multimodal 3D images. Purely data-driven methods often fail in such tasks because rarely incorporating domain-specific knowledge into the algorithm and do not fully utilize information from m...
Saved in:
Published in | Information sciences Vol. 686; p. 121354 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0020-0255 |
DOI | 10.1016/j.ins.2024.121354 |
Cover
Loading…
Abstract | We consider a long-standing yet hard and largely open machine learning problem of anomaly areas detection in multimodal 3D images. Purely data-driven methods often fail in such tasks because rarely incorporating domain-specific knowledge into the algorithm and do not fully utilize information from multiple modalities. We address these issues by proposing a novel framework with data fusion technology to leverage domain-specific knowledge and multimodal labeled data, as well as employ the power of randomized learning techniques. To demonstrate the proposed framework efficiency, we apply it to the challenging task of detecting subtle pathologies in MRI scans. A distinct feature of the resulting solution is that it explicitly incorporates evidence-based medical knowledge about pathologies into the feature maps. Our experiments show that the method is capable of achieving lesion detection in 71% of subjects by using just one such feature. Integrating information from all feature maps and data modalities enhances detection rate to 78%. Using stochastic configuration networks to initialize the weights of the classification model enables to increase precision metric by 18% as compared to deterministic approaches. This demonstrates the possibility and practical viability of building efficient and interpretable randomised algorithms for automated anomaly detection in complex multimodal data. |
---|---|
AbstractList | We consider a long-standing yet hard and largely open machine learning problem of anomaly areas detection in multimodal 3D images. Purely data-driven methods often fail in such tasks because rarely incorporating domain-specific knowledge into the algorithm and do not fully utilize information from multiple modalities. We address these issues by proposing a novel framework with data fusion technology to leverage domain-specific knowledge and multimodal labeled data, as well as employ the power of randomized learning techniques. To demonstrate the proposed framework efficiency, we apply it to the challenging task of detecting subtle pathologies in MRI scans. A distinct feature of the resulting solution is that it explicitly incorporates evidence-based medical knowledge about pathologies into the feature maps. Our experiments show that the method is capable of achieving lesion detection in 71% of subjects by using just one such feature. Integrating information from all feature maps and data modalities enhances detection rate to 78%. Using stochastic configuration networks to initialize the weights of the classification model enables to increase precision metric by 18% as compared to deterministic approaches. This demonstrates the possibility and practical viability of building efficient and interpretable randomised algorithms for automated anomaly detection in complex multimodal data. |
ArticleNumber | 121354 |
Author | Bychenko, V. Karpov, O. Syrkashev, E. Yarkin, V. Bernstein, A. Alferova, V. Sharaev, M. Burnaev, E. Bronov, O. Marinets, A. Alsahanova, N. Spodarev, E. |
Author_xml | – sequence: 1 givenname: N. orcidid: 0009-0002-8185-2493 surname: Alsahanova fullname: Alsahanova, N. email: n.alsahanova@skoltech.ru organization: Skolkovo Institute of Science and Technology, 121205, Moscow, Russia – sequence: 2 givenname: V. orcidid: 0000-0002-7973-7165 surname: Yarkin fullname: Yarkin, V. email: yarkinslav@gmail.com organization: Skolkovo Institute of Science and Technology, 121205, Moscow, Russia – sequence: 3 givenname: E. surname: Spodarev fullname: Spodarev, E. email: evgeny.spodarev@uni-ulm.de organization: Institute of Stochastics, Ulm University, Ulm, D-89069, Germany – sequence: 4 givenname: O. orcidid: 0000-0002-2784-302X surname: Bronov fullname: Bronov, O. email: doctorbronov@gmail.com organization: Pirogov National Medical and Surgical Center, 105203, Moscow, Russia – sequence: 5 givenname: V. orcidid: 0000-0002-1459-4124 surname: Bychenko fullname: Bychenko, V. email: v_bychenko@oparina4.ru organization: Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia – sequence: 6 givenname: A. surname: Marinets fullname: Marinets, A. email: aleksei_marinets@mail.ru organization: Pirogov National Medical and Surgical Center, 105203, Moscow, Russia – sequence: 7 givenname: E. surname: Syrkashev fullname: Syrkashev, E. email: e_syrkashev@oparina4.ru organization: Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia – sequence: 8 givenname: O. surname: Karpov fullname: Karpov, O. email: karpov_oe@mail.ru organization: Pirogov National Medical and Surgical Center, 105203, Moscow, Russia – sequence: 9 givenname: E. orcidid: 0000-0001-8424-0690 surname: Burnaev fullname: Burnaev, E. email: e.burnaev@skoltech.ru organization: Skolkovo Institute of Science and Technology, 121205, Moscow, Russia – sequence: 10 givenname: A. orcidid: 0000-0002-5250-1849 surname: Bernstein fullname: Bernstein, A. email: a.bernstein@skoltech.ru organization: Skolkovo Institute of Science and Technology, 121205, Moscow, Russia – sequence: 11 givenname: V. orcidid: 0000-0003-1325-992X surname: Alferova fullname: Alferova, V. email: valferova@mail.ru organization: Pirogov Russian National Research Medical University, Moscow, 117513, Russia – sequence: 12 givenname: M. orcidid: 0000-0002-5670-2891 surname: Sharaev fullname: Sharaev, M. email: m.sharaev@skoltech.ru organization: Skolkovo Institute of Science and Technology, 121205, Moscow, Russia |
BookMark | eNp9kEtPAyEQgDnUxLb6A7zxB3Yd2CfxZOqjxiYe9E4QhkqzCwa2mvrrpalnTzOZyTePb0FmPngk5IpByYC117vS-VRy4HXJOKuaekbmABwK4E1zThYp7QCg7tp2TuKzD98Dmi0WztsQRzQ0Km_C6H5yOir94TzSAVX0zm9pblGjJkXtPrngaUZyLYxqOFAVUSVqcEI9HXvO03E_TG4MRg20uqNuVFtMF-TMqiHh5V9ckteH-7fVuti8PD6tbjeF5rWYCt1UrOM9swJq0JWuO2Z6YQCNgE6zHgW33Oq2hxY6zut3ITgy0TBtu8pUS8JOU3UMKUW08jPm_fEgGcijJrmTWZM8apInTZm5OTGYz_pyGGXSDr1G42L-SZrg_qF_AXR-dRU |
Cites_doi | 10.1006/nimg.1998.0396 10.1002/ima.20138 10.1016/S0304-3940(02)00111-8 10.1212/WNL.0000000000000543 10.2307/1937992 10.1111/ene.13916 10.1016/j.media.2021.102200 10.1136/jamia.1997.0040199 10.1016/j.yebeh.2015.04.055 10.1186/s12883-021-02358-7 10.1002/jmri.26556 10.1016/j.eplepsyres.2005.07.009 10.1016/j.neuroimage.2011.10.025 10.1007/978-3-319-16811-1_40 10.1016/j.neuroimage.2012.01.021 10.1212/WNL.0000000000002374 10.1007/978-1-4614-4720-7 10.1038/s41598-020-64803-w 10.1002/cyto.a.20022 10.1111/epi.14064 10.1109/TCYB.2017.2734043 10.1111/epi.16853 10.1016/j.neuroimage.2006.01.015 10.1109/42.836373 10.1002/9781118136188 10.1212/WNL.0000000000012698 10.1016/j.seizure.2020.09.022 10.1016/j.cageo.2013.07.006 10.1038/modpathol.2013.52 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. |
Copyright_xml | – notice: 2024 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2024.121354 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
ExternalDocumentID | 10_1016_j_ins_2024_121354 S0020025524012684 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH ADVLN AEBSH AECPX AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c249t-c5317281f9040c3c471d89d0ed907c18e92f2fc680607224b992e1951cf73d3 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Tue Jul 01 01:27:08 EDT 2025 Sat Nov 16 15:59:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stochastic configuration networks Brain segmentation Focal epilepsy Randomized machine learning Statistical image analysis Multimodal data fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-c5317281f9040c3c471d89d0ed907c18e92f2fc680607224b992e1951cf73d3 |
ORCID | 0009-0002-8185-2493 0000-0002-1459-4124 0000-0002-7973-7165 0000-0001-8424-0690 0000-0002-5250-1849 0000-0003-1325-992X 0000-0002-5670-2891 0000-0002-2784-302X |
ParticipantIDs | crossref_primary_10_1016_j_ins_2024_121354 elsevier_sciencedirect_doi_10_1016_j_ins_2024_121354 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Information sciences |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Fischl (br0140) 2012; 62 Gastwirth (br0180) 1972; 54 Lee, Lee, Kim, Park (br0270) 2021; 21 Dipu, Shohan, Salam (br0120) 2021 Frangi, Niessen, Vincken, Viergever (br0160) 1998 Chitalia, Kontos (br0100) 2019; 49 Kingma, Ba (br0250) 2014 Friston (br0170) 2003 Nyul, Udupa, Zhang (br0300) 2000; 19 Jin (br0230) 2018; 59 Rényi (br0330) 1960; 10 Bernasconi (br0050) 2019; 60 Gill (br0190) 2021; 97 Wang, Alexopoulos, Jones, Jaisani, Najm, Prayson (br0390) 2013; 26 Yitzhaki, Schechtman (br0410) 2013 Fischl, Sereno, Dale (br0150) 1999; 9 Kassubek, Juengling, Jüngling, Hellwig, Spreer, Lücking (br0240) 2002; 323 David (br0110) 2021; 62 Hong, Kim, Schrader, Bernasconi, Bernhardt, Bernasconi (br0210) 2014; 83 Lee, Kim, Lee, Kim, Park (br0260) 2020; 82 Zhang, Chung (br0430) 2021; 73 Ahmed, Yamany, Mohamed, Farag, Moriarty (br0020) 2019 Hong, Bernhardt, Schrader, Bernasconi, Bernasconi (br0200) 2016; 86 Bidgood, Horii, Prior, Van Syckle (br0060) 1997; 4 Chilès, Delfiner (br0090) 2012 Rényi (br0340) 1961 Pienaar, Fischl, Caviness, Makris, Grant (br0320) 2008; 18 Huppertz (br0220) 2005; 67 Suresh, Shunmuganathan (br0350) 2012; 75 Chen, Guestrin (br0080) 2016 Meijering, Jacob, Sarria, Steiner, Hirling, Unser (br0280) 2004; 58A World Health Organization (br0400) 2024 Wang, Lin, Wang, Jones, Prayson, Moosa, McBride, Gonzalez-Martinez, Bingaman, Najm (br0380) 2019; 26 Ahmed (br0010) 2015; 48 Carass (br0070) 2020; 10 Ashburner (br0030) 2012; 62 Ng, Yap, Costen, Li (br0290) 2015 Wackernagel (br0360) 2013 Yushkevich (br0420) 2006; 31 Wang, Li (br0370) 2017; 47 Paszke (br0310) 2019; vol. 32 Eichkitz, Amtmann, Schreilechner (br0130) 2013; 60 Fischl (10.1016/j.ins.2024.121354_br0150) 1999; 9 Rényi (10.1016/j.ins.2024.121354_br0330) 1960; 10 Huppertz (10.1016/j.ins.2024.121354_br0220) 2005; 67 World Health Organization (10.1016/j.ins.2024.121354_br0400) Ng (10.1016/j.ins.2024.121354_br0290) 2015 Zhang (10.1016/j.ins.2024.121354_br0430) 2021; 73 Paszke (10.1016/j.ins.2024.121354_br0310) 2019; vol. 32 Gill (10.1016/j.ins.2024.121354_br0190) 2021; 97 Jin (10.1016/j.ins.2024.121354_br0230) 2018; 59 Nyul (10.1016/j.ins.2024.121354_br0300) 2000; 19 Rényi (10.1016/j.ins.2024.121354_br0340) 1961 Chen (10.1016/j.ins.2024.121354_br0080) 2016 Ahmed (10.1016/j.ins.2024.121354_br0020) 2019 Lee (10.1016/j.ins.2024.121354_br0270) 2021; 21 Ashburner (10.1016/j.ins.2024.121354_br0030) 2012; 62 Pienaar (10.1016/j.ins.2024.121354_br0320) 2008; 18 Dipu (10.1016/j.ins.2024.121354_br0120) 2021 Gastwirth (10.1016/j.ins.2024.121354_br0180) 1972; 54 Chitalia (10.1016/j.ins.2024.121354_br0100) 2019; 49 Wang (10.1016/j.ins.2024.121354_br0390) 2013; 26 Kingma (10.1016/j.ins.2024.121354_br0250) 2014 Carass (10.1016/j.ins.2024.121354_br0070) 2020; 10 Fischl (10.1016/j.ins.2024.121354_br0140) 2012; 62 Wang (10.1016/j.ins.2024.121354_br0380) 2019; 26 Eichkitz (10.1016/j.ins.2024.121354_br0130) 2013; 60 Hong (10.1016/j.ins.2024.121354_br0210) 2014; 83 Bidgood (10.1016/j.ins.2024.121354_br0060) 1997; 4 Chilès (10.1016/j.ins.2024.121354_br0090) 2012 Wang (10.1016/j.ins.2024.121354_br0370) 2017; 47 Friston (10.1016/j.ins.2024.121354_br0170) 2003 Kassubek (10.1016/j.ins.2024.121354_br0240) 2002; 323 Yushkevich (10.1016/j.ins.2024.121354_br0420) 2006; 31 Suresh (10.1016/j.ins.2024.121354_br0350) 2012; 75 Ahmed (10.1016/j.ins.2024.121354_br0010) 2015; 48 Hong (10.1016/j.ins.2024.121354_br0200) 2016; 86 Wackernagel (10.1016/j.ins.2024.121354_br0360) 2013 David (10.1016/j.ins.2024.121354_br0110) 2021; 62 Meijering (10.1016/j.ins.2024.121354_br0280) 2004; 58A Yitzhaki (10.1016/j.ins.2024.121354_br0410) 2013 Bernasconi (10.1016/j.ins.2024.121354_br0050) 2019; 60 Frangi (10.1016/j.ins.2024.121354_br0160) 1998 Lee (10.1016/j.ins.2024.121354_br0260) 2020; 82 |
References_xml | – start-page: 547 year: 1961 end-page: 561 ident: br0340 article-title: On measures of entropy and information publication-title: Proc. 4th Berkeley Sympos. Math. Statist. and Prob., vol. I – volume: 323 start-page: 29 year: 2002 end-page: 32 ident: br0240 article-title: Thalamic gray matter changes in unilateral parkinsonian resting tremor: a voxel-based morphometric analysis of 3-dimensional magnetic resonance imaging publication-title: Neurosci. Lett. – start-page: 609 year: 2015 end-page: 622 ident: br0290 article-title: Automatic wrinkle detection using hybrid Hessian filter publication-title: Lecture Notes in Computer Science – year: 2024 ident: br0400 article-title: Epilepsy – year: 2021 ident: br0120 article-title: Deep Learning Based Brain Tumor Detection and Classification publication-title: International Conference on Intelligent Technologies (CONIT) – volume: 26 start-page: 1051 year: 2013 end-page: 1058 ident: br0390 article-title: The pathology of magnetic-resonance-imaging-negative epilepsy publication-title: Mod. Pathol. – volume: 48 start-page: 21 year: 2015 end-page: 28 ident: br0010 article-title: Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia publication-title: Epilepsy Behav. – volume: 26 year: 2019 ident: br0380 article-title: Voxel-based morphometric magnetic resonance imaging postprocessing in non-lesional pediatric epilepsy patients using pediatric normal databases publication-title: Eur. J. Neurol. – volume: 18 start-page: 42 year: 2008 end-page: 68 ident: br0320 article-title: A methodology for analyzing curvature in the developing brain from preterm to adult publication-title: Imaging Syst. Technol. – volume: 54 start-page: 306 year: 1972 end-page: 316 ident: br0180 article-title: The estimation of the Lorenz curve and Gini index publication-title: Rev. Econ. Stat. – volume: 82 start-page: 91 year: 2020 end-page: 98 ident: br0260 article-title: Network characteristics of genetic generalized epilepsy: are the syndromes distinct? publication-title: Seizure – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: br0140 article-title: Freesurfer publication-title: NeuroImage – volume: 60 year: 2019 ident: br0050 article-title: Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force publication-title: Epilepsia – start-page: 237 year: 2003 end-page: 250 ident: br0170 article-title: Statistical parametric mapping publication-title: Neuroscience Databases: a Practical Guide – volume: 58A start-page: 167 year: 2004 end-page: 176 ident: br0280 article-title: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images publication-title: Cytometry, Part A – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: br0150 article-title: Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage – volume: 97 start-page: e1571 year: 2021 end-page: e1582 ident: br0190 article-title: Multicenter validation of a deep learning detection algorithm for focal cortical dysplasia publication-title: Neurology – start-page: 785 year: 2016 end-page: 794 ident: br0080 article-title: XGBoost: a scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 2013 ident: br0410 article-title: The Gini Methodology publication-title: Springer Series in Statistics – volume: 49 start-page: 927 year: 2019 end-page: 938 ident: br0100 article-title: Role of texture analysis in breast MRI as a cancer biomarker: a review publication-title: J. Magn. Reson. Imaging – volume: 67 start-page: 35 year: 2005 end-page: 50 ident: br0220 article-title: Enhanced visualization of blurred gray–white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis publication-title: Epilepsy Res. – volume: 21 year: 2021 ident: br0270 article-title: Alterations of structural connectivity and structural co-variance network in focal cortical dysplasia publication-title: BMC Neurol. – volume: 10 year: 2020 ident: br0070 article-title: Evaluating white matter lesion segmentations with refined Sørensen-Dice analysis publication-title: Sci. Rep. – year: 2012 ident: br0090 article-title: Geostatistics publication-title: Wiley Series in Probability and Statistics – volume: 83 start-page: 48 year: 2014 end-page: 55 ident: br0210 article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy publication-title: Neurology – volume: vol. 32 start-page: 8024 year: 2019 end-page: 8035 ident: br0310 article-title: PyTorch: an imperative style, high-performance deep learning library publication-title: Advances in Neural Information Processing Systems – volume: 86 start-page: 643 year: 2016 end-page: 650 ident: br0200 article-title: Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy publication-title: Neurology – volume: 60 start-page: 176 year: 2013 end-page: 183 ident: br0130 article-title: Calculation of grey level co-occurrence matrix-based seismic attributes in three dimensions publication-title: Comput. Geosci. – volume: 75 start-page: 591 year: 2012 end-page: 597 ident: br0350 article-title: Image texture classification using gray level co-occurrence matrix based statistical features publication-title: Eur. J. Sci. Res. – volume: 62 year: 2021 ident: br0110 article-title: External validation of automated focal cortical dysplasia detection using morphometric analysis publication-title: Epilepsia – start-page: 1 year: 2019 end-page: 13 ident: br0020 article-title: Automated brain extraction of multisequence MRI using artificial neural networks publication-title: Hum. Brain Mapp. – volume: 19 start-page: 143 year: 2000 end-page: 150 ident: br0300 article-title: New variants of a method of MRI scale standardization publication-title: IEEE Trans. Med. Imaging – volume: 73 year: 2021 ident: br0430 article-title: Medq: lossless ultra-low-bit neural network quantization for medical image segmentation publication-title: Med. Image Anal. – volume: 10 start-page: 251 year: 1960 end-page: 282 ident: br0330 article-title: A few fundamental problems of information theory publication-title: Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. – volume: 59 start-page: 982 year: 2018 end-page: 992 ident: br0230 article-title: Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning publication-title: Epilepsia – start-page: 130 year: 1998 end-page: 137 ident: br0160 article-title: Multiscale vessel enhancement filtering publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2014 ident: br0250 article-title: Adam: a method for stochastic optimization publication-title: International Conference on Learning Representations – volume: 31 year: 2006 ident: br0420 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: NeuroImage – volume: 47 start-page: 3466 year: 2017 end-page: 3479 ident: br0370 article-title: Stochastic configuration networks: fundamentals and algorithms publication-title: IEEE Trans. Cybern. – volume: 4 start-page: 199 year: 1997 end-page: 212 ident: br0060 article-title: Understanding and using DICOM, the data interchange standard for biomedical imaging publication-title: J. Am. Med. Inform. Assoc. – volume: 62 start-page: 791 year: 2012 end-page: 800 ident: br0030 article-title: SPM: a history publication-title: NeuroImage – year: 2013 ident: br0360 article-title: Multivariate Geostatistics: An Introduction with Applications – volume: 9 start-page: 195 year: 1999 ident: 10.1016/j.ins.2024.121354_br0150 article-title: Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage doi: 10.1006/nimg.1998.0396 – volume: 18 start-page: 42 year: 2008 ident: 10.1016/j.ins.2024.121354_br0320 article-title: A methodology for analyzing curvature in the developing brain from preterm to adult publication-title: Imaging Syst. Technol. doi: 10.1002/ima.20138 – volume: 323 start-page: 29 year: 2002 ident: 10.1016/j.ins.2024.121354_br0240 article-title: Thalamic gray matter changes in unilateral parkinsonian resting tremor: a voxel-based morphometric analysis of 3-dimensional magnetic resonance imaging publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(02)00111-8 – volume: 83 start-page: 48 year: 2014 ident: 10.1016/j.ins.2024.121354_br0210 article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy publication-title: Neurology doi: 10.1212/WNL.0000000000000543 – year: 2014 ident: 10.1016/j.ins.2024.121354_br0250 article-title: Adam: a method for stochastic optimization – volume: 54 start-page: 306 year: 1972 ident: 10.1016/j.ins.2024.121354_br0180 article-title: The estimation of the Lorenz curve and Gini index publication-title: Rev. Econ. Stat. doi: 10.2307/1937992 – volume: 26 year: 2019 ident: 10.1016/j.ins.2024.121354_br0380 article-title: Voxel-based morphometric magnetic resonance imaging postprocessing in non-lesional pediatric epilepsy patients using pediatric normal databases publication-title: Eur. J. Neurol. doi: 10.1111/ene.13916 – ident: 10.1016/j.ins.2024.121354_br0400 – start-page: 237 year: 2003 ident: 10.1016/j.ins.2024.121354_br0170 article-title: Statistical parametric mapping – volume: 75 start-page: 591 year: 2012 ident: 10.1016/j.ins.2024.121354_br0350 article-title: Image texture classification using gray level co-occurrence matrix based statistical features publication-title: Eur. J. Sci. Res. – volume: 73 year: 2021 ident: 10.1016/j.ins.2024.121354_br0430 article-title: Medq: lossless ultra-low-bit neural network quantization for medical image segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102200 – volume: 4 start-page: 199 year: 1997 ident: 10.1016/j.ins.2024.121354_br0060 article-title: Understanding and using DICOM, the data interchange standard for biomedical imaging publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/jamia.1997.0040199 – year: 2021 ident: 10.1016/j.ins.2024.121354_br0120 article-title: Deep Learning Based Brain Tumor Detection and Classification – volume: 48 start-page: 21 year: 2015 ident: 10.1016/j.ins.2024.121354_br0010 article-title: Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2015.04.055 – volume: 60 year: 2019 ident: 10.1016/j.ins.2024.121354_br0050 article-title: Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force publication-title: Epilepsia – volume: 21 year: 2021 ident: 10.1016/j.ins.2024.121354_br0270 article-title: Alterations of structural connectivity and structural co-variance network in focal cortical dysplasia publication-title: BMC Neurol. doi: 10.1186/s12883-021-02358-7 – volume: vol. 32 start-page: 8024 year: 2019 ident: 10.1016/j.ins.2024.121354_br0310 article-title: PyTorch: an imperative style, high-performance deep learning library – volume: 49 start-page: 927 year: 2019 ident: 10.1016/j.ins.2024.121354_br0100 article-title: Role of texture analysis in breast MRI as a cancer biomarker: a review publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26556 – start-page: 785 year: 2016 ident: 10.1016/j.ins.2024.121354_br0080 article-title: XGBoost: a scalable tree boosting system – volume: 67 start-page: 35 issue: 1–2 year: 2005 ident: 10.1016/j.ins.2024.121354_br0220 article-title: Enhanced visualization of blurred gray–white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2005.07.009 – start-page: 1 year: 2019 ident: 10.1016/j.ins.2024.121354_br0020 article-title: Automated brain extraction of multisequence MRI using artificial neural networks publication-title: Hum. Brain Mapp. – volume: 62 start-page: 791 year: 2012 ident: 10.1016/j.ins.2024.121354_br0030 article-title: SPM: a history publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.025 – start-page: 130 year: 1998 ident: 10.1016/j.ins.2024.121354_br0160 article-title: Multiscale vessel enhancement filtering – start-page: 609 year: 2015 ident: 10.1016/j.ins.2024.121354_br0290 article-title: Automatic wrinkle detection using hybrid Hessian filter doi: 10.1007/978-3-319-16811-1_40 – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.ins.2024.121354_br0140 article-title: Freesurfer publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 86 start-page: 643 year: 2016 ident: 10.1016/j.ins.2024.121354_br0200 article-title: Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy publication-title: Neurology doi: 10.1212/WNL.0000000000002374 – start-page: 547 year: 1961 ident: 10.1016/j.ins.2024.121354_br0340 article-title: On measures of entropy and information – year: 2013 ident: 10.1016/j.ins.2024.121354_br0410 article-title: The Gini Methodology doi: 10.1007/978-1-4614-4720-7 – volume: 10 year: 2020 ident: 10.1016/j.ins.2024.121354_br0070 article-title: Evaluating white matter lesion segmentations with refined Sørensen-Dice analysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-64803-w – volume: 58A start-page: 167 year: 2004 ident: 10.1016/j.ins.2024.121354_br0280 article-title: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images publication-title: Cytometry, Part A doi: 10.1002/cyto.a.20022 – volume: 59 start-page: 982 year: 2018 ident: 10.1016/j.ins.2024.121354_br0230 article-title: Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning publication-title: Epilepsia doi: 10.1111/epi.14064 – volume: 47 start-page: 3466 year: 2017 ident: 10.1016/j.ins.2024.121354_br0370 article-title: Stochastic configuration networks: fundamentals and algorithms publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2734043 – volume: 62 year: 2021 ident: 10.1016/j.ins.2024.121354_br0110 article-title: External validation of automated focal cortical dysplasia detection using morphometric analysis publication-title: Epilepsia doi: 10.1111/epi.16853 – volume: 31 year: 2006 ident: 10.1016/j.ins.2024.121354_br0420 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 19 start-page: 143 year: 2000 ident: 10.1016/j.ins.2024.121354_br0300 article-title: New variants of a method of MRI scale standardization publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.836373 – year: 2012 ident: 10.1016/j.ins.2024.121354_br0090 article-title: Geostatistics doi: 10.1002/9781118136188 – volume: 10 start-page: 251 year: 1960 ident: 10.1016/j.ins.2024.121354_br0330 article-title: A few fundamental problems of information theory publication-title: Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. – year: 2013 ident: 10.1016/j.ins.2024.121354_br0360 – volume: 97 start-page: e1571 year: 2021 ident: 10.1016/j.ins.2024.121354_br0190 article-title: Multicenter validation of a deep learning detection algorithm for focal cortical dysplasia publication-title: Neurology doi: 10.1212/WNL.0000000000012698 – volume: 82 start-page: 91 year: 2020 ident: 10.1016/j.ins.2024.121354_br0260 article-title: Network characteristics of genetic generalized epilepsy: are the syndromes distinct? publication-title: Seizure doi: 10.1016/j.seizure.2020.09.022 – volume: 60 start-page: 176 year: 2013 ident: 10.1016/j.ins.2024.121354_br0130 article-title: Calculation of grey level co-occurrence matrix-based seismic attributes in three dimensions publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.07.006 – volume: 26 start-page: 1051 year: 2013 ident: 10.1016/j.ins.2024.121354_br0390 article-title: The pathology of magnetic-resonance-imaging-negative epilepsy publication-title: Mod. Pathol. doi: 10.1038/modpathol.2013.52 |
SSID | ssj0004766 |
Score | 2.4611912 |
Snippet | We consider a long-standing yet hard and largely open machine learning problem of anomaly areas detection in multimodal 3D images. Purely data-driven methods... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 121354 |
SubjectTerms | Brain segmentation Focal epilepsy Multimodal data fusion Randomized machine learning Statistical image analysis Stochastic configuration networks |
Title | Knowledge-informed randomized machine learning and data fusion for anomaly areas detection in multimodal 3D images |
URI | https://dx.doi.org/10.1016/j.ins.2024.121354 |
Volume | 686 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCAoIAo0MoDYkAKzYfjJGNVqAoVXQCpW5TEZxRE0qqkAwz8ds6OI4oEC1t0yUnW2b47O-_dEXKehkHIU84tySRYjHvCSsFXPTRsFySzwdestPsZnzyxu7k_b5FRw4VRsErj-2ufrr21kQyMNQfLPFccX1dnxBiTHFWzRDHYWaBW-dXnN8wDJbyGediW-rr5s6kxXnmpKna7TNVY8Hz2e2zaiDfjPbJrEkU6rMeyT1pQdsjORvnADukZ0gG9oIZVpKxMzXY9IKtpc2Fm1fVRQVAMTWJR5B_4WGgcJVDTOOKZ4iuqEKNUrtUdGkUVlC2K5PWdJgq8TgVUGrpV0rykGotYLASO0rumeYGe6e2QPIxvHkcTy_RYsDI8eFVWhnswcENHRribMy_DWCXCSNgg8NScOSFErnRlxkOb2wGG-zSKXHAwLctk4AnviLTLRQnHhDoATCZO5gGPGCjCKxc-6gdBkoRRKrrksrFtvKwLacQNwuwlxomI1UTE9UR0CWusH_9YDTE6-r_VTv6ndkq2XdXVV1-snJF2tVpDD1ONKu3rtdQnW8Pb6WT2BdKB0y4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYABQQHxxgNiQIqah-MkY1WoCqVdKBJblMRnFETSqpQBfj3nxBFFgoUtcnSSdfY9bH_fHcBFGgahSIWwFFdoceFJK0Vf99CwXVTcRr9ipY3GYvDI7578pxXoNVwYDas0vr_26ZW3NiMdo83OLM81x9etMmKKSY6uWbIKa7o6ld-Cte7tcDD-pkcG9ZOlPilpgeZxs4J55aUu2u1yXWbB8_nv4Wkp5PS3YcvkiqxbT2cHVrBsw-ZSBcE2nBreAbtkhlikFc2Mxe7CfNjcmVl1iVSUjKKTnBb5J30WFZQSmekd8czoF9OgUabe9TUaIxEamxbJ6wdLNH6dSVxU6K2S5SWr4IjFVNIsvWuWF-Sc3vbgoX8z6Q0s02bByujstbAyMsPADR0VkUFnXkbhSoaRtFHSwTlzQoxc5apMhLawA4r4aRS56FBmlqnAk94-tMppiQfAHESuEifzUEQcNedVSJ_kgyBJwiiVh3DV6Dae1bU04gZk9hLTQsR6IeJ6IQ6BN9qPf2yImHz932JH_xM7h_XBZHQf39-Oh8ew4eomv9U9ywm0FvN3PKXMY5GemZ31BR4t1d8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge-informed+randomized+machine+learning+and+data+fusion+for+anomaly+areas+detection+in+multimodal+3D+images&rft.jtitle=Information+sciences&rft.au=Alsahanova%2C+N.&rft.au=Yarkin%2C+V.&rft.au=Spodarev%2C+E.&rft.au=Bronov%2C+O.&rft.date=2025-01-01&rft.issn=0020-0255&rft.volume=686&rft.spage=121354&rft_id=info:doi/10.1016%2Fj.ins.2024.121354&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2024_121354 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |