DW-YOLO: An Efficient Object Detector for Drones and Self-driving Vehicles

Object detection is frequently a challenging task due to poor visual cues of objects in an image. In this paper, a new efficient deep learning-based detection method, named as deeper and wider YOLO (DW-YOLO), has been proposed for various-sized objects from various perspectives. DW-YOLO is based on...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 48; no. 2; pp. 1427 - 1436
Main Authors Chen, Yunfan, Zheng, Wenqi, Zhao, Yangyi, Song, Tae Hun, Shin, Hyunchul
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Object detection is frequently a challenging task due to poor visual cues of objects in an image. In this paper, a new efficient deep learning-based detection method, named as deeper and wider YOLO (DW-YOLO), has been proposed for various-sized objects from various perspectives. DW-YOLO is based on YOLOv5 and the following two enhancements have been developed to make the entire network deeper and wider. First, residual blocks in each cross stage partial structure are optimized to strengthen the ability of feature extraction in high-resolution drone images. Second, the entire network becomes wider by increasing the number of convolution kernels, aiming to obtain more discriminative features to fit complex data. The learning ability of a CNN model is related to its complexity. Making the network deeper can increase its complexity so that the ability of feature extraction is improved and the relationship between high-dimensional features can be easily learned. Increasing the network width can make each layer learn richer features in different directions and frequencies. Furthermore, a new large and diverse drone dataset named HDrone for object detection in real drone-view scenarios is introduced. This dataset involves six types of annotations in a wide range of scenarios, which is not limited to the traffic scenario. The experimental results on three datasets among which HDrone and VisDrone are the datasets for drone vision, and KITTI is the dataset for self-driving showing that the proposed DW-YOLO achieves the state-of-the-art results and can detect small-scaled objects well along with large-scaled objects.
AbstractList Object detection is frequently a challenging task due to poor visual cues of objects in an image. In this paper, a new efficient deep learning-based detection method, named as deeper and wider YOLO (DW-YOLO), has been proposed for various-sized objects from various perspectives. DW-YOLO is based on YOLOv5 and the following two enhancements have been developed to make the entire network deeper and wider. First, residual blocks in each cross stage partial structure are optimized to strengthen the ability of feature extraction in high-resolution drone images. Second, the entire network becomes wider by increasing the number of convolution kernels, aiming to obtain more discriminative features to fit complex data. The learning ability of a CNN model is related to its complexity. Making the network deeper can increase its complexity so that the ability of feature extraction is improved and the relationship between high-dimensional features can be easily learned. Increasing the network width can make each layer learn richer features in different directions and frequencies. Furthermore, a new large and diverse drone dataset named HDrone for object detection in real drone-view scenarios is introduced. This dataset involves six types of annotations in a wide range of scenarios, which is not limited to the traffic scenario. The experimental results on three datasets among which HDrone and VisDrone are the datasets for drone vision, and KITTI is the dataset for self-driving showing that the proposed DW-YOLO achieves the state-of-the-art results and can detect small-scaled objects well along with large-scaled objects.
Author Zhao, Yangyi
Shin, Hyunchul
Zheng, Wenqi
Song, Tae Hun
Chen, Yunfan
Author_xml – sequence: 1
  givenname: Yunfan
  surname: Chen
  fullname: Chen, Yunfan
  organization: School of Electrical and Electronic Engineering, Hubei University of Technology, Department of Electrical Engineering, Hanyang University
– sequence: 2
  givenname: Wenqi
  surname: Zheng
  fullname: Zheng, Wenqi
  organization: Department of Electrical Engineering, Hanyang University
– sequence: 3
  givenname: Yangyi
  surname: Zhao
  fullname: Zhao, Yangyi
  organization: Department of Electrical Engineering, Hanyang University
– sequence: 4
  givenname: Tae Hun
  surname: Song
  fullname: Song, Tae Hun
  organization: Huins Co
– sequence: 5
  givenname: Hyunchul
  orcidid: 0000-0003-3020-5130
  surname: Shin
  fullname: Shin, Hyunchul
  email: shin@hanyang.ac.kr
  organization: Department of Electrical Engineering, Hanyang University
BookMark eNp9kEtLAzEUhYNUsNb-AVcDrqN5TR7uSltfFGbhexXmkdSUmqnJVPDfGzuC4KKLy7mL891zOcdg4FtvADjF6BwjJC4ippQriAiBiEvBoDgAQ4IVhoxIPNjtFOZcvByBcYyuQkxSlWNMh-Bu9gxfi0VxmU18NrfW1c74Liuqlam7bGa6JG3IbJpZSLExK32T3Zu1hU1wn84vsyfz5uq1iSfg0JbraMa_OgKPV_OH6Q1cFNe308kC1oSpDlbWEoNFIzHDQtGK8LyhkltjRWk4p3XDlCRlbnKE0hgmVU0FboQqKyUZoSNw1t_dhPZja2KnV-02-BSpiRAs54gRnlykd9WhjTEYqzfBvZfhS2Okf2rTfW061aZ3tWmRIPkPql1Xdq71XSjdej9KezSmHL804e-rPdQ30baBdA
CitedBy_id crossref_primary_10_3390_agronomy14051034
crossref_primary_10_1145_3665649
crossref_primary_10_3390_agriculture14101739
crossref_primary_10_1049_ipr2_13185
crossref_primary_10_1109_JIOT_2023_3334742
crossref_primary_10_1109_ACCESS_2024_3518208
crossref_primary_10_1038_s41598_024_68934_2
crossref_primary_10_11834_jig_220836
crossref_primary_10_1016_j_jrras_2023_100705
crossref_primary_10_3390_app131911030
crossref_primary_10_1007_s13369_023_08700_0
crossref_primary_10_1093_comjnl_bxaf002
crossref_primary_10_1007_s00521_024_09510_7
crossref_primary_10_1109_ACCESS_2025_3550895
crossref_primary_10_1109_ACCESS_2023_3252021
crossref_primary_10_1016_j_eij_2024_100523
crossref_primary_10_1007_s13369_024_09188_y
crossref_primary_10_1109_ACCESS_2023_3327735
crossref_primary_10_1109_ACCESS_2024_3354076
crossref_primary_10_1007_s10489_022_04108_9
crossref_primary_10_1016_j_sasc_2024_200119
crossref_primary_10_3390_electronics13173564
crossref_primary_10_1016_j_imavis_2025_105485
Cites_doi 10.1109/TPAMI.2015.2389824
10.1109/LGRS.2016.2542358
10.1007/s11263-009-0275-4
10.1016/j.cviu.2021.103186
10.1364/JOSAA.386410
10.1109/JSTARS.2017.2694890
10.3390/rs9040368
10.1109/CVPR.2016.91
10.1109/CVPRW50498.2020.00203
10.1109/CVPR.2018.00442
10.1109/ICCV.2015.169
10.1109/ICCV.2017.322
10.1109/CVPR.2017.690
10.1007/978-3-319-46448-0_2
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2016.90
10.1109/WACV.2017.41
10.1109/ICCV.2017.324
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2022
King Fahd University of Petroleum & Minerals 2022.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2022
– notice: King Fahd University of Petroleum & Minerals 2022.
DBID AAYXX
CITATION
DOI 10.1007/s13369-022-06874-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 1436
ExternalDocumentID 10_1007_s13369_022_06874_7
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c249t-bff2e17d8141793b265d386fef7ae663cd4982a5e500e50e489c371d79ab98423
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 08:55:56 EDT 2025
Tue Jul 01 01:34:25 EDT 2025
Thu Apr 24 23:06:41 EDT 2025
Fri Feb 21 02:45:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Self-driving
Drone vision
Optimization
Object detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-bff2e17d8141793b265d386fef7ae663cd4982a5e500e50e489c371d79ab98423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3020-5130
PQID 2774560426
PQPubID 2044268
PageCount 10
ParticipantIDs proquest_journals_2774560426
crossref_primary_10_1007_s13369_022_06874_7
crossref_citationtrail_10_1007_s13369_022_06874_7
springer_journals_10_1007_s13369_022_06874_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References He, Zhang, Ren, Sun (CR23) 2015; 37
Audebert, Bertrand, Sébastien (CR3) 2017; 9
CR19
CR18
CR17
CR16
CR15
CR14
CR13
CR12
CR11
CR10
Ševo, Avramović (CR2) 2016; 13
CR4
Chen, Shin (CR8) 2020; 37
CR6
Sultani, Mubarak (CR1) 2021; 22
CR7
CR9
CR27
CR26
CR25
CR24
CR22
Everingham, Luc, Christopher, John, Andrew (CR21) 2010; 88
CR20
Deng, Sun, Zhou, Zhao, Zou (CR5) 2017; 10
Y Chen (6874_CR8) 2020; 37
6874_CR18
6874_CR19
6874_CR16
6874_CR17
6874_CR14
6874_CR15
6874_CR12
6874_CR13
6874_CR10
6874_CR11
I Ševo (6874_CR2) 2016; 13
M Everingham (6874_CR21) 2010; 88
N Audebert (6874_CR3) 2017; 9
Z Deng (6874_CR5) 2017; 10
K He (6874_CR23) 2015; 37
6874_CR27
6874_CR25
6874_CR26
W Sultani (6874_CR1) 2021; 22
6874_CR24
6874_CR22
6874_CR20
6874_CR9
6874_CR7
6874_CR6
6874_CR4
References_xml – ident: CR22
– ident: CR18
– ident: CR4
– ident: CR14
– ident: CR16
– ident: CR12
– ident: CR10
– ident: CR6
– ident: CR25
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  end-page: 1916
  ident: CR23
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: CR27
– volume: 13
  start-page: 740
  issue: 5
  year: 2016
  end-page: 744
  ident: CR2
  article-title: Convolutional neural network based automatic object detection on aerial images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2542358
– ident: CR19
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  end-page: 338
  ident: CR21
  article-title: The pascal visual object classes (voc) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– volume: 22
  start-page: 103186
  year: 2021
  ident: CR1
  article-title: Human action recognition in drone videos using a few aerial training examples
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2021.103186
– ident: CR15
– ident: CR17
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 37
  start-page: 768
  issue: 5
  year: 2020
  end-page: 779
  ident: CR8
  article-title: Multispectral image fusion based pedestrian detection using a multilayer fused deconvolutional single-shot detector
  publication-title: JOSA A
  doi: 10.1364/JOSAA.386410
– ident: CR7
– volume: 10
  start-page: 3652
  issue: 8
  year: 2017
  end-page: 3664
  ident: CR5
  article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2694890
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 9
  start-page: 368
  issue: 4
  year: 2017
  ident: CR3
  article-title: Segment-before-detect: vehicle detection and classification through semantic segmentation of aerial images
  publication-title: Remote Sens.
  doi: 10.3390/rs9040368
– ident: 6874_CR20
– volume: 22
  start-page: 103186
  year: 2021
  ident: 6874_CR1
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2021.103186
– ident: 6874_CR12
  doi: 10.1109/CVPR.2016.91
– ident: 6874_CR7
– ident: 6874_CR24
  doi: 10.1109/CVPRW50498.2020.00203
– volume: 13
  start-page: 740
  issue: 5
  year: 2016
  ident: 6874_CR2
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2542358
– volume: 37
  start-page: 768
  issue: 5
  year: 2020
  ident: 6874_CR8
  publication-title: JOSA A
  doi: 10.1364/JOSAA.386410
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 6874_CR21
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– ident: 6874_CR17
  doi: 10.1109/CVPR.2018.00442
– ident: 6874_CR9
  doi: 10.1109/ICCV.2015.169
– ident: 6874_CR11
  doi: 10.1109/ICCV.2017.322
– ident: 6874_CR13
  doi: 10.1109/CVPR.2017.690
– ident: 6874_CR15
– ident: 6874_CR16
  doi: 10.1007/978-3-319-46448-0_2
– ident: 6874_CR19
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 6874_CR23
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: 6874_CR25
– ident: 6874_CR27
– ident: 6874_CR22
  doi: 10.1007/978-3-319-10602-1_48
– ident: 6874_CR6
– volume: 9
  start-page: 368
  issue: 4
  year: 2017
  ident: 6874_CR3
  publication-title: Remote Sens.
  doi: 10.3390/rs9040368
– volume: 10
  start-page: 3652
  issue: 8
  year: 2017
  ident: 6874_CR5
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2694890
– ident: 6874_CR26
  doi: 10.1109/CVPR.2016.90
– ident: 6874_CR4
  doi: 10.1109/WACV.2017.41
– ident: 6874_CR18
  doi: 10.1109/ICCV.2017.324
– ident: 6874_CR10
– ident: 6874_CR14
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.4030993
Snippet Object detection is frequently a challenging task due to poor visual cues of objects in an image. In this paper, a new efficient deep learning-based detection...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1427
SubjectTerms Annotations
Autonomous cars
Complexity
Datasets
Deep learning
Drone vehicles
Engineering
Feature extraction
Humanities and Social Sciences
Image resolution
Machine learning
multidisciplinary
Object recognition
Research Article-Computer Engineering and Computer Science
Science
Visual tasks
Title DW-YOLO: An Efficient Object Detector for Drones and Self-driving Vehicles
URI https://link.springer.com/article/10.1007/s13369-022-06874-7
https://www.proquest.com/docview/2774560426
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKcoLCsfuJVUieM4DreWbVWtSnsgZVsuUdw4y0qrACU9wH_hvzJ-JaFaVsChUeW0E8XzeTwefzNG6BXM0WFJWOjRvIQFiqAwpEhSeEkswT8Al65kKt_53YLNVvR8Ha17vZ8d1tK-FsPtjxvzSv5Hq9AGelVZsv-g2UYoNMB30C9cQcNw_Ssdn114m-V8aYN7E10NQu3tL4WKroAtqXVMXlMJz3aqKr9hasrr0it2VzqW8EF-0sy4rpeqT2re5aocuduv1jKcIVBCOoUMhypqr3E01qa1vdOSB4x12-yrsoXjR2i9HFzI6utVJ379ebDJq8vvTdN7SxpOczmY7atumIKEjtl8EKZUHGy1M9Kk0WirqzKpuG8yoIdSt4ElBewQc56LM9WUdyBJOnY3oKbCgJ3DwQlkN84Pvs2XDkOWeCqRwWdcEVLb2dAxABbLbLqaz7N0sk7voGMCqxCdS74O2hAeuNb6_C4z8bOAa0JD8zY2R8tkah4-8Xc_qF3cHOzHazcnfYDuW23jkQHbQ9ST1SN0r6PSx-jcwu4NHlW4AR02oMMOdBgAgw3oMOAFd0GHHeieoNV0kr6defZIDm8L6_TaE2VJZBAXPFAn14WCsKgIOStlGecSnNdtQRNO8khGvg8fSXmyDeOgiJNcJBxc96foqIInP0NYRCxhgioqQEiJjAVlLCkEAdll7Be8jwLXQdnW1qtXx6ZcZ22lbdWpGXRqpjs1i_to0Pzni6nWcuuvT1y_Z3ZUf8tA0bCmUJGFPnrtdNHe_rO057dLe4HutsPiBB3Vu718Cf5sLU7R8Wg6Hi9ONbp-ARdPl6U
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DW-YOLO%3A+An+Efficient+Object+Detector+for+Drones+and+Self-driving+Vehicles&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Chen%2C+Yunfan&rft.au=Zheng+Wenqi&rft.au=Zhao+Yangyi&rft.au=Song%2C+Tae+Hun&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=48&rft.issue=2&rft.spage=1427&rft.epage=1436&rft_id=info:doi/10.1007%2Fs13369-022-06874-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon