The stylic monoid
The free monoid A ∗ on a finite totally ordered alphabet A acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted Styl ( A ) and called the stylic monoid. It is canonically a quotient of the plactic monoid. Main results are: the cardinality of Styl ( A ) is e...
Saved in:
Published in | Semigroup forum Vol. 105; no. 1; pp. 1 - 45 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0037-1912 1432-2137 |
DOI | 10.1007/s00233-022-10285-3 |
Cover
Abstract | The free monoid
A
∗
on a finite totally ordered alphabet
A
acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted
Styl
(
A
)
and called the stylic monoid. It is canonically a quotient of the plactic monoid. Main results are: the cardinality of
Styl
(
A
)
is equal to the number of partitions of a set on
|
A
|
+
1
elements. We give a bijection with so-called
N
-tableaux, similar to Schensted’s algorithm, explaining this fact. Presentation of
Styl
(
A
)
: it is generated by
A
subject to the plactic (Knuth) relations and the idempotent relations
a
2
=
a
,
a
∈
A
. The canonical involutive anti-automorphism on
A
∗
, which reverses the order on
A
, induces an involution of
Styl
(
A
)
, which similarly to the corresponding involution of the plactic monoid, may be computed by an evacuation-like operation (Schützenberger involution on tableaux) on so-called standard immaculate tableaux (which are in bijection with partitions). The monoid
Styl
(
A
)
is
J
-trivial, and the
J
-order of
Styl
(
A
)
is graded: the co-rank is given by the number of elements in the
N
-tableau. The monoid
Styl
(
A
)
is the syntactic monoid for the the function which associates to each word
w
∈
A
∗
the length of its longest strictly decreasing subword. |
---|---|
AbstractList | The free monoid
A
∗
on a finite totally ordered alphabet
A
acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted
Styl
(
A
)
and called the stylic monoid. It is canonically a quotient of the plactic monoid. Main results are: the cardinality of
Styl
(
A
)
is equal to the number of partitions of a set on
|
A
|
+
1
elements. We give a bijection with so-called
N
-tableaux, similar to Schensted’s algorithm, explaining this fact. Presentation of
Styl
(
A
)
: it is generated by
A
subject to the plactic (Knuth) relations and the idempotent relations
a
2
=
a
,
a
∈
A
. The canonical involutive anti-automorphism on
A
∗
, which reverses the order on
A
, induces an involution of
Styl
(
A
)
, which similarly to the corresponding involution of the plactic monoid, may be computed by an evacuation-like operation (Schützenberger involution on tableaux) on so-called standard immaculate tableaux (which are in bijection with partitions). The monoid
Styl
(
A
)
is
J
-trivial, and the
J
-order of
Styl
(
A
)
is graded: the co-rank is given by the number of elements in the
N
-tableau. The monoid
Styl
(
A
)
is the syntactic monoid for the the function which associates to each word
w
∈
A
∗
the length of its longest strictly decreasing subword. The free monoid A∗ on a finite totally ordered alphabet A acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted Styl(A) and called the stylic monoid. It is canonically a quotient of the plactic monoid. Main results are: the cardinality of Styl(A) is equal to the number of partitions of a set on |A|+1 elements. We give a bijection with so-called N-tableaux, similar to Schensted’s algorithm, explaining this fact. Presentation of Styl(A): it is generated by A subject to the plactic (Knuth) relations and the idempotent relations a2=a, a∈A. The canonical involutive anti-automorphism on A∗, which reverses the order on A, induces an involution of Styl(A), which similarly to the corresponding involution of the plactic monoid, may be computed by an evacuation-like operation (Schützenberger involution on tableaux) on so-called standard immaculate tableaux (which are in bijection with partitions). The monoid Styl(A) is J-trivial, and the J-order of Styl(A) is graded: the co-rank is given by the number of elements in the N-tableau. The monoid Styl(A) is the syntactic monoid for the the function which associates to each word w∈A∗ the length of its longest strictly decreasing subword. |
Author | Reutenauer, C. Abram, A. |
Author_xml | – sequence: 1 givenname: A. surname: Abram fullname: Abram, A. organization: Département de mathématiques, Université du Québec à Montréal – sequence: 2 givenname: C. surname: Reutenauer fullname: Reutenauer, C. email: Reutenauer.Christophe@uqam.ca organization: Département de mathématiques, Université du Québec à Montréal |
BookMark | eNp9jzFPwzAQRi1UJNrCwMpUidlwvkvieEQVFKRKLGW2EseGVGlc7HTov8cQJCSGTqeTvnffvRmb9L63jN0IuBMA8j4CIBEHRC4Ay5zTGZuKjJCjIDlhUwCSXCiBF2wW4xbSDgVN2fXmwy7icOxas9j53rfNJTt3VRft1e-cs7enx83yma9fVy_LhzU3mKmBK4e1MhbRWWeELaQxJUGZiRxl3TS2qBuBtpKyRBJONTXJTFoFuTI1UoU0Z7fj3X3wnwcbB731h9CnSo0yvZdTlhUphWPKBB9jsE7vQ7urwlEL0N_qelTXSV3_qGtKUPkPMu1QDa3vh1C13WmURjSmnv7dhr-vTlBfM-ls7Q |
CitedBy_id | crossref_primary_10_1016_j_jalgebra_2024_07_031 crossref_primary_10_1007_s00233_022_10328_9 crossref_primary_10_1007_s00233_023_10388_5 crossref_primary_10_1007_s00233_022_10316_z crossref_primary_10_1007_s00233_024_10431_z crossref_primary_10_1080_00927872_2023_2255669 crossref_primary_10_1007_s00233_024_10484_0 crossref_primary_10_1016_j_jalgebra_2023_06_014 crossref_primary_10_1007_s00233_022_10305_2 crossref_primary_10_5802_alco_321 |
Cites_doi | 10.4153/CJM-2016-018-8 10.1016/j.jalgebra.2014.09.037 10.1016/j.jcta.2018.01.006 10.4153/CJM-2013-013-0 10.7146/math.scand.a-10676 10.1016/j.jcta.2017.05.003 10.5802/alco.28 10.1016/j.jalgebra.2014.10.010 10.1007/978-1-4757-6804-6 10.1016/j.jcta.2009.11.002 10.1007/978-1-4614-7300-8 10.1007/978-3-642-60539-0_9 10.1016/j.ejc.2004.06.005 10.1016/j.disc.2016.09.025 10.1017/CBO9780511609589 10.4153/CJM-1961-015-3 10.2140/pjm.1970.34.709 10.1142/S1005386714000534 10.1007/BFb0090012 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00233-022-10285-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-2137 |
EndPage | 45 |
ExternalDocumentID | 10_1007_s00233_022_10285_3 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 692 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF- PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 YLTOR YNT Z45 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c249t-9f2b9ce22fefc1e67cc830841527bdde6bd12ea778231f9db3747e9059cb23a23 |
IEDL.DBID | AGYKE |
ISSN | 0037-1912 |
IngestDate | Sat Sep 13 16:31:38 EDT 2025 Tue Jul 01 02:21:54 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 Fri Feb 21 02:46:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Partitions trivial Plactic monoid Evacuation Stylic monoid Standard immaculate tableaux Tableaux order |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-9f2b9ce22fefc1e67cc830841527bdde6bd12ea778231f9db3747e9059cb23a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2700353446 |
PQPubID | 2043612 |
PageCount | 45 |
ParticipantIDs | proquest_journals_2700353446 crossref_primary_10_1007_s00233_022_10285_3 crossref_citationtrail_10_1007_s00233_022_10285_3 springer_journals_10_1007_s00233_022_10285_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Heidelberg |
PublicationTitle | Semigroup forum |
PublicationTitleAbbrev | Semigroup Forum |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Schensted (CR21) 1961; 13 Berg, Bergeron, Saliola, Serrano, Zabrocki (CR2) 2014; 66 Berg, Bergeron, Saliola, Serrano, Zabrocki (CR3) 2017; 152 Grinberg (CR9) 2017; 69 CR19 Froidure, Pin, Cucker, Shub (CR8) 1997 Bokut (CR5) 2015; 423 Haglund, Luoto, Mason, van Willigenburg (CR10) 2011; 118 Knuth (CR12) 1970; 43 CR16 CR15 Stanley (CR24) 1999 CR14 Allen, Hallam, Mason (CR1) 2018; 157 Kubat, Okniński (CR13) 2014; 21 CR23 Campbell (CR7) 2017; 340 Sagan (CR20) 2001 Novelli, Thibon, Toumazet (CR18) 2018; 1 Schützenberger (CR22) 1963; 12 Bergeron, Bousquet-Melou, Dulucq (CR4) 1995; 19 Halverson, Ram (CR11) 2005; 26 Cain, Gray, Malheiro (CR6) 2015; 423 Luoto, Mykytiuk, van Willigenburg (CR17) 2013 10285_CR19 J-C Novelli (10285_CR18) 2018; 1 C Berg (10285_CR2) 2014; 66 F Bergeron (10285_CR4) 1995; 19 10285_CR15 LA Bokut (10285_CR5) 2015; 423 10285_CR16 JM Campbell (10285_CR7) 2017; 340 10285_CR14 C Schensted (10285_CR21) 1961; 13 T Halverson (10285_CR11) 2005; 26 B Sagan (10285_CR20) 2001 J Haglund (10285_CR10) 2011; 118 L Kubat (10285_CR13) 2014; 21 V Froidure (10285_CR8) 1997 MP Schützenberger (10285_CR22) 1963; 12 10285_CR23 AJ Cain (10285_CR6) 2015; 423 K Luoto (10285_CR17) 2013 C Berg (10285_CR3) 2017; 152 D Knuth (10285_CR12) 1970; 43 EE Allen (10285_CR1) 2018; 157 D Grinberg (10285_CR9) 2017; 69 R Stanley (10285_CR24) 1999 |
References_xml | – volume: 69 start-page: 21 year: 2017 end-page: 53 ident: CR9 article-title: Dual creation operators and a dendriform algebra structure on the quasisymmetric functions publication-title: Can. J. Math. doi: 10.4153/CJM-2016-018-8 – volume: 423 start-page: 37 year: 2015 end-page: 53 ident: CR6 article-title: Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids publication-title: J. Algebra doi: 10.1016/j.jalgebra.2014.09.037 – volume: 157 start-page: 70 year: 2018 end-page: 108 ident: CR1 article-title: Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions publication-title: J. Combinatorial Theory A doi: 10.1016/j.jcta.2018.01.006 – volume: 66 start-page: 525 year: 2014 end-page: 565 ident: CR2 article-title: A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions publication-title: Can. J. Math. doi: 10.4153/CJM-2013-013-0 – ident: CR19 – ident: CR14 – ident: CR15 – volume: 12 start-page: 117 year: 1963 end-page: 128 ident: CR22 article-title: Quelques remarques sur une construction de Schensted publication-title: Math. Scand. doi: 10.7146/math.scand.a-10676 – volume: 152 start-page: 10 year: 2017 end-page: 44 ident: CR3 article-title: Multiplicative structures of the immaculate basis of non-commutative symmetric functions publication-title: J. Combinatorial Theory A doi: 10.1016/j.jcta.2017.05.003 – ident: CR16 – volume: 1 start-page: 653 year: 2018 end-page: 676 ident: CR18 article-title: Noncommutative Bell polynomials and the dual immaculate basis publication-title: Algebraic Combinatorics doi: 10.5802/alco.28 – volume: 423 start-page: 301 year: 2015 end-page: 317 ident: CR5 article-title: Yuqun Chen, Weiping Chen, Jing Li, New approaches to plactic monoid via Gröbner-Shirshov bases publication-title: J. Algebra doi: 10.1016/j.jalgebra.2014.10.010 – year: 2001 ident: CR20 publication-title: The Symmetric Group doi: 10.1007/978-1-4757-6804-6 – volume: 118 start-page: 463 year: 2011 end-page: 490 ident: CR10 article-title: Quasisymmetric Schur functions publication-title: J. Combinatorial Theory A doi: 10.1016/j.jcta.2009.11.002 – year: 2013 ident: CR17 publication-title: An Introduction to Quasisymmetric Schur Functions, Hopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux doi: 10.1007/978-1-4614-7300-8 – start-page: 112 year: 1997 end-page: 126 ident: CR8 article-title: Algorithms for computing finite semigroups publication-title: Foundations of Computational Mathematics doi: 10.1007/978-3-642-60539-0_9 – volume: 26 start-page: 869 year: 2005 end-page: 921 ident: CR11 article-title: Partition algebras publication-title: Eur. J. Comb. doi: 10.1016/j.ejc.2004.06.005 – volume: 19 start-page: 139 year: 1995 end-page: 151 ident: CR4 article-title: Standard paths in the composition poset publication-title: Ann. Sci. Math. Québec – volume: 340 start-page: 1716 year: 2017 end-page: 1726 ident: CR7 article-title: The expansion of immaculate functions in the ribbon basis publication-title: Discret. Math. doi: 10.1016/j.disc.2016.09.025 – year: 1999 ident: CR24 publication-title: Enumerative Combinatorics doi: 10.1017/CBO9780511609589 – volume: 13 start-page: 179 year: 1961 end-page: 191 ident: CR21 article-title: Longest increasing and decreasing subsequences publication-title: Can. J. Math. doi: 10.4153/CJM-1961-015-3 – ident: CR23 – volume: 43 start-page: 709 year: 1970 end-page: 727 ident: CR12 article-title: Permutations, matrices, and generalized Young tableaux publication-title: Pac. J. Math. doi: 10.2140/pjm.1970.34.709 – volume: 21 start-page: 591 year: 2014 end-page: 596 ident: CR13 article-title: Gröbner-Shirshov bases for plactic algebras publication-title: Algebra Colloq. doi: 10.1142/S1005386714000534 – volume-title: The Symmetric Group year: 2001 ident: 10285_CR20 doi: 10.1007/978-1-4757-6804-6 – volume: 43 start-page: 709 year: 1970 ident: 10285_CR12 publication-title: Pac. J. Math. doi: 10.2140/pjm.1970.34.709 – volume: 66 start-page: 525 year: 2014 ident: 10285_CR2 publication-title: Can. J. Math. doi: 10.4153/CJM-2013-013-0 – volume: 69 start-page: 21 year: 2017 ident: 10285_CR9 publication-title: Can. J. Math. doi: 10.4153/CJM-2016-018-8 – volume: 19 start-page: 139 year: 1995 ident: 10285_CR4 publication-title: Ann. Sci. Math. Québec – volume: 340 start-page: 1716 year: 2017 ident: 10285_CR7 publication-title: Discret. Math. doi: 10.1016/j.disc.2016.09.025 – volume-title: Enumerative Combinatorics year: 1999 ident: 10285_CR24 doi: 10.1017/CBO9780511609589 – ident: 10285_CR23 doi: 10.1007/BFb0090012 – volume: 13 start-page: 179 year: 1961 ident: 10285_CR21 publication-title: Can. J. Math. doi: 10.4153/CJM-1961-015-3 – volume: 1 start-page: 653 year: 2018 ident: 10285_CR18 publication-title: Algebraic Combinatorics doi: 10.5802/alco.28 – start-page: 112 volume-title: Foundations of Computational Mathematics year: 1997 ident: 10285_CR8 doi: 10.1007/978-3-642-60539-0_9 – ident: 10285_CR19 – volume: 12 start-page: 117 year: 1963 ident: 10285_CR22 publication-title: Math. Scand. doi: 10.7146/math.scand.a-10676 – volume-title: An Introduction to Quasisymmetric Schur Functions, Hopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux year: 2013 ident: 10285_CR17 doi: 10.1007/978-1-4614-7300-8 – volume: 118 start-page: 463 year: 2011 ident: 10285_CR10 publication-title: J. Combinatorial Theory A doi: 10.1016/j.jcta.2009.11.002 – ident: 10285_CR15 – ident: 10285_CR16 – ident: 10285_CR14 – volume: 423 start-page: 301 year: 2015 ident: 10285_CR5 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2014.10.010 – volume: 423 start-page: 37 year: 2015 ident: 10285_CR6 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2014.09.037 – volume: 26 start-page: 869 year: 2005 ident: 10285_CR11 publication-title: Eur. J. Comb. doi: 10.1016/j.ejc.2004.06.005 – volume: 21 start-page: 591 year: 2014 ident: 10285_CR13 publication-title: Algebra Colloq. doi: 10.1142/S1005386714000534 – volume: 157 start-page: 70 year: 2018 ident: 10285_CR1 publication-title: J. Combinatorial Theory A doi: 10.1016/j.jcta.2018.01.006 – volume: 152 start-page: 10 year: 2017 ident: 10285_CR3 publication-title: J. Combinatorial Theory A doi: 10.1016/j.jcta.2017.05.003 |
SSID | ssj0003063 |
Score | 2.333054 |
Snippet | The free monoid
A
∗
on a finite totally ordered alphabet
A
acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted
Styl... The free monoid A∗ on a finite totally ordered alphabet A acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algebra Algorithms Automorphisms Mathematics Mathematics and Statistics Monoids Quotients Research Article |
Title | The stylic monoid |
URI | https://link.springer.com/article/10.1007/s00233-022-10285-3 https://www.proquest.com/docview/2700353446 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOhB8SuiSHbwpiW03dr1SAxINHhyCZ6WtusSIgEj46B_ve3YRiRqwnld09e-vt97fV8ANxLTQFPFkOKhNVD8NEEqkBIxgmXgY82wdE8D42c2ivzHSTApksKWZbR76ZLMJXWV7ObgxfkcCXKgGCBag0aAQxHWodF_eH0aVBKYlh3UKEfWHiFFsszvs_wEpI2WueUYzfFmeARRudJ1mMlbd5Wprv7aKuK4KylNOCwUUK-_5phj2DPzEzgYV9Vbl6fQtLzjLbPP2VR7lksX0-QMouHg5X6EitYJSFt7KkMiJUpoQ0hqUo0N41qHtBc6tObKSjSmEkyM5Nx5AVORKGrNCiOsrqUVoZLQc6jPF3NzAR5mivOeElTz1PcNF9zIlAoLfklCKWYtwOX-xbqoK-7aW8ziqiJyTm5syY1zcmPagtvqn_d1VY1_R7fLY4mLG7aMncOcBtRasy24K3d58_nv2S53G34F-8QdVB7z14Z69rEy11YPyVSnYLsO1CLS_wb6Es7j |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROKgHxa-Iou7gTUtou7XsSAyI8nGCBE_N2nUJkYBx46B_ve3YRiRqwnlds9e-vt_77X0U4C7A1FNUMiR50xAUNwqR9IIAMYIDz8WK4cD-GhgMWXfsvky8SVYUFufZ7nlIMrXURbGbhRcbcyTIgqKH6C6UXcPBGyUot55ee-3CAtP8BjXKkeEjJCuW-X2Wn4C09jI3AqMp3nSOYJx_6SrN5K2-TGRdfW00cdxWlAocZg6o01ppzDHs6PkJHAyK7q3xKVSM7jhx8jmbKsdo6WIansG40x49dlF2dQJShk8lyI-I9JUmJNKRwppxpZq00bRozaWxaEyGmOiAcxsFjPxQUkMrtG98LSUJDQg9h9J8MdcX4GAmOW9Inyoeua7mPtdBRH0DfmFIKWZVwPn6CZX1FbfXW8xE0RE5FVcYcUUqrqBVuC_eeV911fh3dC3fFpGdsFjYgDn1qGGzVXjIV3n9-O_ZLrcbfgt73dGgL_rPw94V7BO7aWn-Xw1KycdSXxufJJE3mQp-A8pQ0Nc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfQg9YXVqnvwpqFNZjfpHota6qPFg4XeQpJNQCjbYteD_95kX1VRwfNmA_tldma-nZ1vELqQBCINimHFe46ghDbBKpISM0pkFBLNiPSfBkZjNpyE99No-qmLP__bvSpJFj0NXqUpzTqLxHbqxjcfanz9kWIfICMM62jDuWPiLX1C-7UvhmqWGnDsmAkt22Z-3uNraFrlm99KpHnkGTTRTpkyBv3ijHfRmkn30Pao1ltd7qOmO-1gmb3PXnTg7Gr-khygyeD2-XqIy2EHWDsGlOHYUhVrQ6k1VhPDuNY96PZ8fOXK-SCmEkKN5NzX7WycKHBEwMQuO9KKgqRwiBrpPDVHKCBMcd5VMWhuw9DwmBtpIXb4JAkAYS1EqucUulQC9wMpZqLWMM6xEQ4bkWMjoIUu63sWhQ7Gn6vbFXyifCeWwpe4IQLHP1voqoJ0dfn33Y7_t_wcbT7dDMTj3fjhBG3RLhT6taSNGtnrmzl1SUSmznI7-QDMyLgs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+stylic+monoid&rft.jtitle=Semigroup+forum&rft.au=Abram%2C+A.&rft.au=Reutenauer%2C+C.&rft.date=2022-08-01&rft.pub=Springer+US&rft.issn=0037-1912&rft.eissn=1432-2137&rft.volume=105&rft.issue=1&rft.spage=1&rft.epage=45&rft_id=info:doi/10.1007%2Fs00233-022-10285-3&rft.externalDocID=10_1007_s00233_022_10285_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-1912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-1912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-1912&client=summon |