The stylic monoid

The free monoid A ∗ on a finite totally ordered alphabet A acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted Styl ( A ) and called the stylic monoid. It is canonically a quotient of the plactic monoid. Main results are: the cardinality of Styl ( A ) is e...

Full description

Saved in:
Bibliographic Details
Published inSemigroup forum Vol. 105; no. 1; pp. 1 - 45
Main Authors Abram, A., Reutenauer, C.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0037-1912
1432-2137
DOI10.1007/s00233-022-10285-3

Cover

Abstract The free monoid A ∗ on a finite totally ordered alphabet A acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted Styl ( A ) and called the stylic monoid. It is canonically a quotient of the plactic monoid. Main results are: the cardinality of Styl ( A ) is equal to the number of partitions of a set on | A | + 1 elements. We give a bijection with so-called N -tableaux, similar to Schensted’s algorithm, explaining this fact. Presentation of Styl ( A ) : it is generated by A subject to the plactic (Knuth) relations and the idempotent relations a 2 = a , a ∈ A . The canonical involutive anti-automorphism on A ∗ , which reverses the order on A , induces an involution of Styl ( A ) , which similarly to the corresponding involution of the plactic monoid, may be computed by an evacuation-like operation (Schützenberger involution on tableaux) on so-called standard immaculate tableaux (which are in bijection with partitions). The monoid Styl ( A ) is J -trivial, and the J -order of Styl ( A ) is graded: the co-rank is given by the number of elements in the N -tableau. The monoid Styl ( A ) is the syntactic monoid for the the function which associates to each word w ∈ A ∗ the length of its longest strictly decreasing subword.
AbstractList The free monoid A ∗ on a finite totally ordered alphabet A acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted Styl ( A ) and called the stylic monoid. It is canonically a quotient of the plactic monoid. Main results are: the cardinality of Styl ( A ) is equal to the number of partitions of a set on | A | + 1 elements. We give a bijection with so-called N -tableaux, similar to Schensted’s algorithm, explaining this fact. Presentation of Styl ( A ) : it is generated by A subject to the plactic (Knuth) relations and the idempotent relations a 2 = a , a ∈ A . The canonical involutive anti-automorphism on A ∗ , which reverses the order on A , induces an involution of Styl ( A ) , which similarly to the corresponding involution of the plactic monoid, may be computed by an evacuation-like operation (Schützenberger involution on tableaux) on so-called standard immaculate tableaux (which are in bijection with partitions). The monoid Styl ( A ) is J -trivial, and the J -order of Styl ( A ) is graded: the co-rank is given by the number of elements in the N -tableau. The monoid Styl ( A ) is the syntactic monoid for the the function which associates to each word w ∈ A ∗ the length of its longest strictly decreasing subword.
The free monoid A∗ on a finite totally ordered alphabet A acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted Styl(A) and called the stylic monoid. It is canonically a quotient of the plactic monoid. Main results are: the cardinality of Styl(A) is equal to the number of partitions of a set on |A|+1 elements. We give a bijection with so-called N-tableaux, similar to Schensted’s algorithm, explaining this fact. Presentation of Styl(A): it is generated by A subject to the plactic (Knuth) relations and the idempotent relations a2=a, a∈A. The canonical involutive anti-automorphism on A∗, which reverses the order on A, induces an involution of Styl(A), which similarly to the corresponding involution of the plactic monoid, may be computed by an evacuation-like operation (Schützenberger involution on tableaux) on so-called standard immaculate tableaux (which are in bijection with partitions). The monoid Styl(A) is J-trivial, and the J-order of Styl(A) is graded: the co-rank is given by the number of elements in the N-tableau. The monoid Styl(A) is the syntactic monoid for the the function which associates to each word w∈A∗ the length of its longest strictly decreasing subword.
Author Reutenauer, C.
Abram, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Abram
  fullname: Abram, A.
  organization: Département de mathématiques, Université du Québec à Montréal
– sequence: 2
  givenname: C.
  surname: Reutenauer
  fullname: Reutenauer, C.
  email: Reutenauer.Christophe@uqam.ca
  organization: Département de mathématiques, Université du Québec à Montréal
BookMark eNp9jzFPwzAQRi1UJNrCwMpUidlwvkvieEQVFKRKLGW2EseGVGlc7HTov8cQJCSGTqeTvnffvRmb9L63jN0IuBMA8j4CIBEHRC4Ay5zTGZuKjJCjIDlhUwCSXCiBF2wW4xbSDgVN2fXmwy7icOxas9j53rfNJTt3VRft1e-cs7enx83yma9fVy_LhzU3mKmBK4e1MhbRWWeELaQxJUGZiRxl3TS2qBuBtpKyRBJONTXJTFoFuTI1UoU0Z7fj3X3wnwcbB731h9CnSo0yvZdTlhUphWPKBB9jsE7vQ7urwlEL0N_qelTXSV3_qGtKUPkPMu1QDa3vh1C13WmURjSmnv7dhr-vTlBfM-ls7Q
CitedBy_id crossref_primary_10_1016_j_jalgebra_2024_07_031
crossref_primary_10_1007_s00233_022_10328_9
crossref_primary_10_1007_s00233_023_10388_5
crossref_primary_10_1007_s00233_022_10316_z
crossref_primary_10_1007_s00233_024_10431_z
crossref_primary_10_1080_00927872_2023_2255669
crossref_primary_10_1007_s00233_024_10484_0
crossref_primary_10_1016_j_jalgebra_2023_06_014
crossref_primary_10_1007_s00233_022_10305_2
crossref_primary_10_5802_alco_321
Cites_doi 10.4153/CJM-2016-018-8
10.1016/j.jalgebra.2014.09.037
10.1016/j.jcta.2018.01.006
10.4153/CJM-2013-013-0
10.7146/math.scand.a-10676
10.1016/j.jcta.2017.05.003
10.5802/alco.28
10.1016/j.jalgebra.2014.10.010
10.1007/978-1-4757-6804-6
10.1016/j.jcta.2009.11.002
10.1007/978-1-4614-7300-8
10.1007/978-3-642-60539-0_9
10.1016/j.ejc.2004.06.005
10.1016/j.disc.2016.09.025
10.1017/CBO9780511609589
10.4153/CJM-1961-015-3
10.2140/pjm.1970.34.709
10.1142/S1005386714000534
10.1007/BFb0090012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s00233-022-10285-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-2137
EndPage 45
ExternalDocumentID 10_1007_s00233_022_10285_3
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
692
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
YNT
Z45
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c249t-9f2b9ce22fefc1e67cc830841527bdde6bd12ea778231f9db3747e9059cb23a23
IEDL.DBID AGYKE
ISSN 0037-1912
IngestDate Sat Sep 13 16:31:38 EDT 2025
Tue Jul 01 02:21:54 EDT 2025
Thu Apr 24 22:59:20 EDT 2025
Fri Feb 21 02:46:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Partitions
trivial
Plactic monoid
Evacuation
Stylic monoid
Standard immaculate tableaux
Tableaux
order
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-9f2b9ce22fefc1e67cc830841527bdde6bd12ea778231f9db3747e9059cb23a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2700353446
PQPubID 2043612
PageCount 45
ParticipantIDs proquest_journals_2700353446
crossref_primary_10_1007_s00233_022_10285_3
crossref_citationtrail_10_1007_s00233_022_10285_3
springer_journals_10_1007_s00233_022_10285_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationTitle Semigroup forum
PublicationTitleAbbrev Semigroup Forum
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Schensted (CR21) 1961; 13
Berg, Bergeron, Saliola, Serrano, Zabrocki (CR2) 2014; 66
Berg, Bergeron, Saliola, Serrano, Zabrocki (CR3) 2017; 152
Grinberg (CR9) 2017; 69
CR19
Froidure, Pin, Cucker, Shub (CR8) 1997
Bokut (CR5) 2015; 423
Haglund, Luoto, Mason, van Willigenburg (CR10) 2011; 118
Knuth (CR12) 1970; 43
CR16
CR15
Stanley (CR24) 1999
CR14
Allen, Hallam, Mason (CR1) 2018; 157
Kubat, Okniński (CR13) 2014; 21
CR23
Campbell (CR7) 2017; 340
Sagan (CR20) 2001
Novelli, Thibon, Toumazet (CR18) 2018; 1
Schützenberger (CR22) 1963; 12
Bergeron, Bousquet-Melou, Dulucq (CR4) 1995; 19
Halverson, Ram (CR11) 2005; 26
Cain, Gray, Malheiro (CR6) 2015; 423
Luoto, Mykytiuk, van Willigenburg (CR17) 2013
10285_CR19
J-C Novelli (10285_CR18) 2018; 1
C Berg (10285_CR2) 2014; 66
F Bergeron (10285_CR4) 1995; 19
10285_CR15
LA Bokut (10285_CR5) 2015; 423
10285_CR16
JM Campbell (10285_CR7) 2017; 340
10285_CR14
C Schensted (10285_CR21) 1961; 13
T Halverson (10285_CR11) 2005; 26
B Sagan (10285_CR20) 2001
J Haglund (10285_CR10) 2011; 118
L Kubat (10285_CR13) 2014; 21
V Froidure (10285_CR8) 1997
MP Schützenberger (10285_CR22) 1963; 12
10285_CR23
AJ Cain (10285_CR6) 2015; 423
K Luoto (10285_CR17) 2013
C Berg (10285_CR3) 2017; 152
D Knuth (10285_CR12) 1970; 43
EE Allen (10285_CR1) 2018; 157
D Grinberg (10285_CR9) 2017; 69
R Stanley (10285_CR24) 1999
References_xml – volume: 69
  start-page: 21
  year: 2017
  end-page: 53
  ident: CR9
  article-title: Dual creation operators and a dendriform algebra structure on the quasisymmetric functions
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2016-018-8
– volume: 423
  start-page: 37
  year: 2015
  end-page: 53
  ident: CR6
  article-title: Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2014.09.037
– volume: 157
  start-page: 70
  year: 2018
  end-page: 108
  ident: CR1
  article-title: Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions
  publication-title: J. Combinatorial Theory A
  doi: 10.1016/j.jcta.2018.01.006
– volume: 66
  start-page: 525
  year: 2014
  end-page: 565
  ident: CR2
  article-title: A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2013-013-0
– ident: CR19
– ident: CR14
– ident: CR15
– volume: 12
  start-page: 117
  year: 1963
  end-page: 128
  ident: CR22
  article-title: Quelques remarques sur une construction de Schensted
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-10676
– volume: 152
  start-page: 10
  year: 2017
  end-page: 44
  ident: CR3
  article-title: Multiplicative structures of the immaculate basis of non-commutative symmetric functions
  publication-title: J. Combinatorial Theory A
  doi: 10.1016/j.jcta.2017.05.003
– ident: CR16
– volume: 1
  start-page: 653
  year: 2018
  end-page: 676
  ident: CR18
  article-title: Noncommutative Bell polynomials and the dual immaculate basis
  publication-title: Algebraic Combinatorics
  doi: 10.5802/alco.28
– volume: 423
  start-page: 301
  year: 2015
  end-page: 317
  ident: CR5
  article-title: Yuqun Chen, Weiping Chen, Jing Li, New approaches to plactic monoid via Gröbner-Shirshov bases
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2014.10.010
– year: 2001
  ident: CR20
  publication-title: The Symmetric Group
  doi: 10.1007/978-1-4757-6804-6
– volume: 118
  start-page: 463
  year: 2011
  end-page: 490
  ident: CR10
  article-title: Quasisymmetric Schur functions
  publication-title: J. Combinatorial Theory A
  doi: 10.1016/j.jcta.2009.11.002
– year: 2013
  ident: CR17
  publication-title: An Introduction to Quasisymmetric Schur Functions, Hopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux
  doi: 10.1007/978-1-4614-7300-8
– start-page: 112
  year: 1997
  end-page: 126
  ident: CR8
  article-title: Algorithms for computing finite semigroups
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/978-3-642-60539-0_9
– volume: 26
  start-page: 869
  year: 2005
  end-page: 921
  ident: CR11
  article-title: Partition algebras
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2004.06.005
– volume: 19
  start-page: 139
  year: 1995
  end-page: 151
  ident: CR4
  article-title: Standard paths in the composition poset
  publication-title: Ann. Sci. Math. Québec
– volume: 340
  start-page: 1716
  year: 2017
  end-page: 1726
  ident: CR7
  article-title: The expansion of immaculate functions in the ribbon basis
  publication-title: Discret. Math.
  doi: 10.1016/j.disc.2016.09.025
– year: 1999
  ident: CR24
  publication-title: Enumerative Combinatorics
  doi: 10.1017/CBO9780511609589
– volume: 13
  start-page: 179
  year: 1961
  end-page: 191
  ident: CR21
  article-title: Longest increasing and decreasing subsequences
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1961-015-3
– ident: CR23
– volume: 43
  start-page: 709
  year: 1970
  end-page: 727
  ident: CR12
  article-title: Permutations, matrices, and generalized Young tableaux
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1970.34.709
– volume: 21
  start-page: 591
  year: 2014
  end-page: 596
  ident: CR13
  article-title: Gröbner-Shirshov bases for plactic algebras
  publication-title: Algebra Colloq.
  doi: 10.1142/S1005386714000534
– volume-title: The Symmetric Group
  year: 2001
  ident: 10285_CR20
  doi: 10.1007/978-1-4757-6804-6
– volume: 43
  start-page: 709
  year: 1970
  ident: 10285_CR12
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1970.34.709
– volume: 66
  start-page: 525
  year: 2014
  ident: 10285_CR2
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2013-013-0
– volume: 69
  start-page: 21
  year: 2017
  ident: 10285_CR9
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2016-018-8
– volume: 19
  start-page: 139
  year: 1995
  ident: 10285_CR4
  publication-title: Ann. Sci. Math. Québec
– volume: 340
  start-page: 1716
  year: 2017
  ident: 10285_CR7
  publication-title: Discret. Math.
  doi: 10.1016/j.disc.2016.09.025
– volume-title: Enumerative Combinatorics
  year: 1999
  ident: 10285_CR24
  doi: 10.1017/CBO9780511609589
– ident: 10285_CR23
  doi: 10.1007/BFb0090012
– volume: 13
  start-page: 179
  year: 1961
  ident: 10285_CR21
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1961-015-3
– volume: 1
  start-page: 653
  year: 2018
  ident: 10285_CR18
  publication-title: Algebraic Combinatorics
  doi: 10.5802/alco.28
– start-page: 112
  volume-title: Foundations of Computational Mathematics
  year: 1997
  ident: 10285_CR8
  doi: 10.1007/978-3-642-60539-0_9
– ident: 10285_CR19
– volume: 12
  start-page: 117
  year: 1963
  ident: 10285_CR22
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-10676
– volume-title: An Introduction to Quasisymmetric Schur Functions, Hopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux
  year: 2013
  ident: 10285_CR17
  doi: 10.1007/978-1-4614-7300-8
– volume: 118
  start-page: 463
  year: 2011
  ident: 10285_CR10
  publication-title: J. Combinatorial Theory A
  doi: 10.1016/j.jcta.2009.11.002
– ident: 10285_CR15
– ident: 10285_CR16
– ident: 10285_CR14
– volume: 423
  start-page: 301
  year: 2015
  ident: 10285_CR5
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2014.10.010
– volume: 423
  start-page: 37
  year: 2015
  ident: 10285_CR6
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2014.09.037
– volume: 26
  start-page: 869
  year: 2005
  ident: 10285_CR11
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2004.06.005
– volume: 21
  start-page: 591
  year: 2014
  ident: 10285_CR13
  publication-title: Algebra Colloq.
  doi: 10.1142/S1005386714000534
– volume: 157
  start-page: 70
  year: 2018
  ident: 10285_CR1
  publication-title: J. Combinatorial Theory A
  doi: 10.1016/j.jcta.2018.01.006
– volume: 152
  start-page: 10
  year: 2017
  ident: 10285_CR3
  publication-title: J. Combinatorial Theory A
  doi: 10.1016/j.jcta.2017.05.003
SSID ssj0003063
Score 2.333054
Snippet The free monoid A ∗ on a finite totally ordered alphabet A acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted Styl...
The free monoid A∗ on a finite totally ordered alphabet A acts at the left on columns, by Schensted left insertion. This defines a finite monoid, denoted...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algebra
Algorithms
Automorphisms
Mathematics
Mathematics and Statistics
Monoids
Quotients
Research Article
Title The stylic monoid
URI https://link.springer.com/article/10.1007/s00233-022-10285-3
https://www.proquest.com/docview/2700353446
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOhB8SuiSHbwpiW03dr1SAxINHhyCZ6WtusSIgEj46B_ve3YRiRqwnld09e-vt97fV8ANxLTQFPFkOKhNVD8NEEqkBIxgmXgY82wdE8D42c2ivzHSTApksKWZbR76ZLMJXWV7ObgxfkcCXKgGCBag0aAQxHWodF_eH0aVBKYlh3UKEfWHiFFsszvs_wEpI2WueUYzfFmeARRudJ1mMlbd5Wprv7aKuK4KylNOCwUUK-_5phj2DPzEzgYV9Vbl6fQtLzjLbPP2VR7lksX0-QMouHg5X6EitYJSFt7KkMiJUpoQ0hqUo0N41qHtBc6tObKSjSmEkyM5Nx5AVORKGrNCiOsrqUVoZLQc6jPF3NzAR5mivOeElTz1PcNF9zIlAoLfklCKWYtwOX-xbqoK-7aW8ziqiJyTm5syY1zcmPagtvqn_d1VY1_R7fLY4mLG7aMncOcBtRasy24K3d58_nv2S53G34F-8QdVB7z14Z69rEy11YPyVSnYLsO1CLS_wb6Es7j
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROKgHxa-Iou7gTUtou7XsSAyI8nGCBE_N2nUJkYBx46B_ve3YRiRqwnlds9e-vt_77X0U4C7A1FNUMiR50xAUNwqR9IIAMYIDz8WK4cD-GhgMWXfsvky8SVYUFufZ7nlIMrXURbGbhRcbcyTIgqKH6C6UXcPBGyUot55ee-3CAtP8BjXKkeEjJCuW-X2Wn4C09jI3AqMp3nSOYJx_6SrN5K2-TGRdfW00cdxWlAocZg6o01ppzDHs6PkJHAyK7q3xKVSM7jhx8jmbKsdo6WIansG40x49dlF2dQJShk8lyI-I9JUmJNKRwppxpZq00bRozaWxaEyGmOiAcxsFjPxQUkMrtG98LSUJDQg9h9J8MdcX4GAmOW9Inyoeua7mPtdBRH0DfmFIKWZVwPn6CZX1FbfXW8xE0RE5FVcYcUUqrqBVuC_eeV911fh3dC3fFpGdsFjYgDn1qGGzVXjIV3n9-O_ZLrcbfgt73dGgL_rPw94V7BO7aWn-Xw1KycdSXxufJJE3mQp-A8pQ0Nc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfQg9YXVqnvwpqFNZjfpHota6qPFg4XeQpJNQCjbYteD_95kX1VRwfNmA_tldma-nZ1vELqQBCINimHFe46ghDbBKpISM0pkFBLNiPSfBkZjNpyE99No-qmLP__bvSpJFj0NXqUpzTqLxHbqxjcfanz9kWIfICMM62jDuWPiLX1C-7UvhmqWGnDsmAkt22Z-3uNraFrlm99KpHnkGTTRTpkyBv3ijHfRmkn30Pao1ltd7qOmO-1gmb3PXnTg7Gr-khygyeD2-XqIy2EHWDsGlOHYUhVrQ6k1VhPDuNY96PZ8fOXK-SCmEkKN5NzX7WycKHBEwMQuO9KKgqRwiBrpPDVHKCBMcd5VMWhuw9DwmBtpIXb4JAkAYS1EqucUulQC9wMpZqLWMM6xEQ4bkWMjoIUu63sWhQ7Gn6vbFXyifCeWwpe4IQLHP1voqoJ0dfn33Y7_t_wcbT7dDMTj3fjhBG3RLhT6taSNGtnrmzl1SUSmznI7-QDMyLgs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+stylic+monoid&rft.jtitle=Semigroup+forum&rft.au=Abram%2C+A.&rft.au=Reutenauer%2C+C.&rft.date=2022-08-01&rft.pub=Springer+US&rft.issn=0037-1912&rft.eissn=1432-2137&rft.volume=105&rft.issue=1&rft.spage=1&rft.epage=45&rft_id=info:doi/10.1007%2Fs00233-022-10285-3&rft.externalDocID=10_1007_s00233_022_10285_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-1912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-1912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-1912&client=summon