Dual-functional lignin fuel cells: Coupling electricity generation with lignosulfonate valorization using dodecyl sulfate-intercalated NiS2 anode catalysts
[Display omitted] •NiS2-SDS/NF with multilayer structure are highly reactive towards lignin oxidation.•A dual functional and stable lignosulfonate fuel cell was developed.•The lignosulfonate fuel cell attains a peak power density of 113 mW/cm2 at 50 °C.•The fuel cell converts lignosulfonate into oxa...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 504; p. 158566 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•NiS2-SDS/NF with multilayer structure are highly reactive towards lignin oxidation.•A dual functional and stable lignosulfonate fuel cell was developed.•The lignosulfonate fuel cell attains a peak power density of 113 mW/cm2 at 50 °C.•The fuel cell converts lignosulfonate into oxalic acid during discharging.
This study presents a nickel sulfide catalyst intercalated with sodium dodecyl sulfate (NiS2-SDS/NF) synthesized through hydrothermal and pyrolytic methods. The unique “cabbage-like” morphology of NiS2-SDS/NF enhances accessibility and charge transfer of active sites, confirmed by SEM, TEM, XRD, and XPS analyses. Electrochemical performance assessments reveal exceptional catalytic activity towards the oxygen evolution reaction and lignin oxidation, with NiS2-SDS/NF demonstrating the highest current density and lowest Tafel slope among the tested catalysts. The lignosulfonate direct fuel cell utilizing NiS2-SDS/NF as anode catalyst achieves a peak power density of 113 mW/cm2 at 50 °C, with stable long-term performance and energy utilization rate of 70 %. This setup also converts lignosulfonate into oxalic acid with over 23 wt% yield and high selectivity. In-situ Raman and infrared spectroscopy elucidate the oxidation mechanism, showing the formation of NiOOH active sites and the cleavage of lignin macromolecules into aromatic and aliphatic acids. This work highlights the potential of NiS2-SDS/NF for efficient lignin valorization and sustainable energy production, paving the way for future optimization and application of lignin-based fuel cells. |
---|---|
AbstractList | [Display omitted]
•NiS2-SDS/NF with multilayer structure are highly reactive towards lignin oxidation.•A dual functional and stable lignosulfonate fuel cell was developed.•The lignosulfonate fuel cell attains a peak power density of 113 mW/cm2 at 50 °C.•The fuel cell converts lignosulfonate into oxalic acid during discharging.
This study presents a nickel sulfide catalyst intercalated with sodium dodecyl sulfate (NiS2-SDS/NF) synthesized through hydrothermal and pyrolytic methods. The unique “cabbage-like” morphology of NiS2-SDS/NF enhances accessibility and charge transfer of active sites, confirmed by SEM, TEM, XRD, and XPS analyses. Electrochemical performance assessments reveal exceptional catalytic activity towards the oxygen evolution reaction and lignin oxidation, with NiS2-SDS/NF demonstrating the highest current density and lowest Tafel slope among the tested catalysts. The lignosulfonate direct fuel cell utilizing NiS2-SDS/NF as anode catalyst achieves a peak power density of 113 mW/cm2 at 50 °C, with stable long-term performance and energy utilization rate of 70 %. This setup also converts lignosulfonate into oxalic acid with over 23 wt% yield and high selectivity. In-situ Raman and infrared spectroscopy elucidate the oxidation mechanism, showing the formation of NiOOH active sites and the cleavage of lignin macromolecules into aromatic and aliphatic acids. This work highlights the potential of NiS2-SDS/NF for efficient lignin valorization and sustainable energy production, paving the way for future optimization and application of lignin-based fuel cells. |
ArticleNumber | 158566 |
Author | Peng, Wang Qiqi, Dai Yan, Xu Xu, Zeng Qingyou, Liang Wu, Lan Chuanfu, Liu Danlu, Zhang |
Author_xml | – sequence: 1 givenname: Zhang surname: Danlu fullname: Danlu, Zhang organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 2 givenname: Wang surname: Peng fullname: Peng, Wang organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 3 givenname: Dai surname: Qiqi fullname: Qiqi, Dai organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 4 givenname: Xu surname: Yan fullname: Yan, Xu organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 5 givenname: Liang surname: Qingyou fullname: Qingyou, Liang organization: Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China – sequence: 6 givenname: Zeng surname: Xu fullname: Xu, Zeng organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 7 givenname: Liu surname: Chuanfu fullname: Chuanfu, Liu organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 8 givenname: Lan surname: Wu fullname: Wu, Lan email: lanwu@scut.edu.cn organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China |
BookMark | eNp9kMtOwzAQRb0oEi3wAez8AylxnCesUHlKFSyAteWMJ8WVcSrbKQq_ws_iUNasZjS652p0FmRme4uEnLN0yVJWXmyXgNtllmb5khV1UZYzMme8LpK6yatjsvB-m6Zp2bBmTr5vBmmSbrAQdG-loUZvrLa0G9BQQGP8JV31w85ou6FoEILToMNIN2jRyQminzq8_3K9H0wXWwLSvTS901-HwOAnWvUKYTR0CsVIom1AB9LEXdEn_ZJRaWOEggzSjD74U3LUSePx7G-ekLe729fVQ7J-vn9cXa8TyPImJI1CyRRkbdVxXqmsQK54BTXnrC3zEvMS4qnmSiqVcWy7QrU1wy6roamB5_yEsEMvuN57h53YOf0h3ShYKiajYiuiUTEZFQejkbk6MBgf22t0woNGC6i0i5KE6vU_9A9ZS4hD |
Cites_doi | 10.1016/j.apcatb.2023.122491 10.1002/anie.201408226 10.1016/j.cej.2022.139266 10.1002/ange.201408226 10.1016/j.rser.2021.111483 10.1039/D4GC00476K 10.1038/s41467-023-41588-w 10.1016/j.apcatb.2022.122149 10.1002/cssc.201601441 10.1021/acs.chemrev.9b00717 10.1016/j.cej.2021.129716 10.1016/j.jpowsour.2020.229023 10.1016/j.energy.2019.116171 10.1016/0022-4596(80)90543-5 10.1021/acssuschemeng.8b05775 10.1039/D4GC02156H 10.1039/D3GC04428A 10.1002/cssc.202001807 10.1016/j.apenergy.2021.117927 10.1002/ange.200501192 10.1016/j.cej.2020.125507 10.1002/anie.201004033 10.1002/adfm.201202786 10.1039/C9TA03825F 10.1002/adfm.201803690 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2024.158566 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2024_158566 S1385894724100575 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAYWO AAYXX ABXDB ACVFH ADCNI AEUPX AFFNX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- SSH ZY4 |
ID | FETCH-LOGICAL-c249t-9dea1dc2b7f337d25e3d37c8331b646e46c5e383dadd23ebf5db81ef28c98c343 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 05:26:16 EDT 2025 Sat Mar 22 15:54:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lignin Dicarboxylic acid Nickle sulfide In-situ spectroscopy Fuel cell |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-9dea1dc2b7f337d25e3d37c8331b646e46c5e383dadd23ebf5db81ef28c98c343 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2024_158566 elsevier_sciencedirect_doi_10_1016_j_cej_2024_158566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-15 |
PublicationDateYYYYMMDD | 2025-01-15 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xie, Zu, Lin, Qiu, Liang, Chen (b0100) 2024; 26 Liu, Li (b0095) 2019; 189 Anson, Stahl (b0015) 2020; 120 Antolini (b0010) 2021; 14 Ouyang, Gao, Qiang, Zhao (b0035) 2023; 328 She, Zu, Yang, Chen, Xie, Yang, Yang, Yi, Qin, Lin, Zhang, Dong, Qiu (b0105) 2023; 452 Zhao, Zhang, Yang, Jiang, Zhang, Hong, Tian, Zhao, Hu, Zhou (b0080) 2018; 28 Torres, Woiciechowski, de Andrade Tanobe, Karp, Lorenci, Faulds, Soccol (b0040) 2020; 263 Ouyang, Wang, Hong, Gao, Zhao (b0110) 2021; 304 Ouyang, Wang, Yang, Zhao (b0115) 2021; 420 Liang, Zu, Liu, Qiu, Xie, Wang, Yang (b0030) 2024; 26 Liu, Mu, Deng (b0020) 2014; 53 Weibel, Boulatov, Lee, Ferrigno, Whitesides (b0120) 2005; 117 Fang, Li, Wang, Li, Wu, Fan, Tang, Sun, Zhang (b0135) 2023; 323 Ding, Li, Li, Wang, Huang, Sun, Xu, Li (b0065) 2023; 67 Liu, Xie, Zhu, Mao, Yu, Ju, Shen, Pang (b0085) 2019; 7 Siwal, Zhang, Devi, Saini, Saini, Pareek, Gaidukovs, Thakur (b0005) 2021; 150 Ye, Yuan, Ding, Long, Long, Sun, Jia (b0125) 2021; 482 Liu, Liu, Wang, Feng (b0075) 2020; 397 Gong, Liu, Du, Liu, Zhang, Sun, Yang, Xu, Guo, Deng (b0025) 2017; 10 Chowdhury, Khan, Kumari, Hussain (b0070) 2019; 7 Van der Heide, Hemmel, Van Bruggen, Haas (b0060) 1980; 33 Wang, Dong, Wang, Zhang, Jin (b0055) 2013; 23 Liu, Mu, Deng (b0090) 2014; 126 Gao, Bai, Wang, Jiao, Davey, Zheng, Qiao (b0130) 2023; 14 Danlu, Xu, Sinong, Yan, Qiqi, Fengxia, Peng, Chuanfu, Wu (b0045) 2024 Liu, Ma, Bando, Sasaki (b0050) 2010; 49 Antolini (10.1016/j.cej.2024.158566_b0010) 2021; 14 Gong (10.1016/j.cej.2024.158566_b0025) 2017; 10 Ouyang (10.1016/j.cej.2024.158566_b0035) 2023; 328 Ding (10.1016/j.cej.2024.158566_b0065) 2023; 67 Zhao (10.1016/j.cej.2024.158566_b0080) 2018; 28 Fang (10.1016/j.cej.2024.158566_b0135) 2023; 323 Liu (10.1016/j.cej.2024.158566_b0020) 2014; 53 Liang (10.1016/j.cej.2024.158566_b0030) 2024; 26 Torres (10.1016/j.cej.2024.158566_b0040) 2020; 263 Liu (10.1016/j.cej.2024.158566_b0095) 2019; 189 Liu (10.1016/j.cej.2024.158566_b0075) 2020; 397 Danlu (10.1016/j.cej.2024.158566_b0045) 2024 Weibel (10.1016/j.cej.2024.158566_b0120) 2005; 117 Wang (10.1016/j.cej.2024.158566_b0055) 2013; 23 Van der Heide (10.1016/j.cej.2024.158566_b0060) 1980; 33 Liu (10.1016/j.cej.2024.158566_b0050) 2010; 49 Xie (10.1016/j.cej.2024.158566_b0100) 2024; 26 Ouyang (10.1016/j.cej.2024.158566_b0110) 2021; 304 Gao (10.1016/j.cej.2024.158566_b0130) 2023; 14 Liu (10.1016/j.cej.2024.158566_b0085) 2019; 7 Siwal (10.1016/j.cej.2024.158566_b0005) 2021; 150 Ye (10.1016/j.cej.2024.158566_b0125) 2021; 482 Anson (10.1016/j.cej.2024.158566_b0015) 2020; 120 Ouyang (10.1016/j.cej.2024.158566_b0115) 2021; 420 Chowdhury (10.1016/j.cej.2024.158566_b0070) 2019; 7 She (10.1016/j.cej.2024.158566_b0105) 2023; 452 Liu (10.1016/j.cej.2024.158566_b0090) 2014; 126 |
References_xml | – volume: 126 start-page: 13776 year: 2014 end-page: 13780 ident: b0090 article-title: High‐performance liquid‐catalyst fuel cell for direct biomass‐into‐electricity conversion publication-title: Angew. Chem. – volume: 263 year: 2020 ident: b0040 article-title: Lignin as a potential source of high-added value compounds: A review publication-title: J. Clean. Prod. – volume: 26 start-page: 2021 year: 2024 end-page: 2030 ident: b0100 article-title: A high-performance lignin flow fuel cell based on self-generating electricity of lignin at low temperature via a privileged structure and redox chemistry publication-title: Green Chem. – volume: 328 year: 2023 ident: b0035 article-title: Highly-efficient conversion of lignin to electricity by nickel foam anode loaded with solid electrocatalysts publication-title: Appl Catal B – volume: 49 start-page: 8253 year: 2010 end-page: 8256 ident: b0050 article-title: Layered cobalt hydroxide nanocones: microwave-assisted synthesis, exfoliation, and structural modification publication-title: Angew. Chem. Int. Ed. – volume: 28 year: 2018 ident: b0080 article-title: Nickel chelate derived NiS2 decorated with bifunctional carbon: an efficient strategy to promote sodium storage performance publication-title: Adv. Funct. Mater. – volume: 117 start-page: 5828 year: 2005 end-page: 5832 ident: b0120 article-title: Modeling the anodic half‐cell of a low‐temperature coal fuel cell publication-title: Angew. Chem. – volume: 304 year: 2021 ident: b0110 article-title: Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200 publication-title: Appl. Energy – volume: 189 year: 2019 ident: b0095 article-title: Enhancing conversion from glucose to electricity by ferric chloride in a redox flow fuel cell publication-title: Energy – volume: 14 start-page: 5842 year: 2023 ident: b0130 article-title: Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation publication-title: Nat. Commun. – volume: 452 year: 2023 ident: b0105 article-title: Construction of anodic electron transfer chain based on CuCl2/TiOSO4 synergetic mediators for highly efficient conversion of biomass wastes into electricity at low temperature publication-title: Chem. Eng. J. – volume: 33 start-page: 17 year: 1980 end-page: 25 ident: b0060 article-title: X-ray photoelectron spectra of 3d transition metal pyrites publication-title: J. Solid State Chem. – volume: 7 start-page: 15851 year: 2019 end-page: 15861 ident: b0085 article-title: Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution publication-title: J. Mater. Chem. A – year: 2024 ident: b0045 article-title: Electrochemical oxidation of lignin model compounds over metal oxyhydroxides on nickel foam publication-title: Green Chem. – volume: 323 year: 2023 ident: b0135 article-title: Selective electrocatalytic upgrading of lignin to aryl aldehydes and carboxylic acids over dodecyl sulfate-intercalated CoS nanocones publication-title: Appl Catal B – volume: 482 year: 2021 ident: b0125 article-title: A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery publication-title: J. Power Sources – volume: 120 start-page: 3749 year: 2020 end-page: 3786 ident: b0015 article-title: Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O2 and Oxidation of H2, Alcohols, Biomass, and Complex Fuels publication-title: Chem. Rev. – volume: 420 year: 2021 ident: b0115 article-title: Haze to electricity: Efficiently harvesting electric energy from air pollutants by construction of bioinspired electron transport chains in light- and heat-driven liquid flow fuel cells publication-title: Chem. Eng. J. – volume: 67 year: 2023 ident: b0065 article-title: Preparation of novel composites based on SDS intercalated CoNiFe–LDH and carbon materials for advanced asymmetric supercapacitors publication-title: J. Storage Mater. – volume: 14 start-page: 189 year: 2021 end-page: 207 ident: b0010 article-title: Lignocellulose, cellulose and lignin as renewable alternative fuels for direct biomass fuel cells publication-title: ChemSusChem – volume: 10 start-page: 506 year: 2017 end-page: 513 ident: b0025 article-title: Direct conversion of wheat straw into electricity with a biomass flow fuel cell mediated by two redox ion pairs publication-title: ChemSusChem – volume: 7 start-page: 4165 year: 2019 end-page: 4176 ident: b0070 article-title: Superadsorbent Ni–Co–S/SDS Nanocomposites for Ultrahigh Removal of Cationic, Anionic Organic Dyes and Toxic Metal Ions: Kinetics, Isotherm and Adsorption Mechanism publication-title: ACS Sustain. Chem. Eng. – volume: 26 start-page: 4811 year: 2024 end-page: 4819 ident: b0030 article-title: Low temperature and high-power density lignin flow fuel cell via efficient CoMn-LDH electrocatalyst with super-hydrophilic intercalation publication-title: Green Chem. – volume: 150 year: 2021 ident: b0005 article-title: Recovery processes of sustainable energy using different biomass and wastes publication-title: Renew. Sustain. Energy Rev. – volume: 397 year: 2020 ident: b0075 article-title: Efficient catalysis of N doped NiS/NiS publication-title: Chem. Eng. J. – volume: 53 start-page: 13558 year: 2014 end-page: 13562 ident: b0020 article-title: High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 2758 year: 2013 end-page: 2764 ident: b0055 article-title: Layered α-Co(OH) publication-title: Adv. Funct. Mater. – volume: 328 year: 2023 ident: 10.1016/j.cej.2024.158566_b0035 article-title: Highly-efficient conversion of lignin to electricity by nickel foam anode loaded with solid electrocatalysts publication-title: Appl Catal B doi: 10.1016/j.apcatb.2023.122491 – volume: 53 start-page: 13558 year: 2014 ident: 10.1016/j.cej.2024.158566_b0020 article-title: High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408226 – volume: 452 year: 2023 ident: 10.1016/j.cej.2024.158566_b0105 article-title: Construction of anodic electron transfer chain based on CuCl2/TiOSO4 synergetic mediators for highly efficient conversion of biomass wastes into electricity at low temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139266 – volume: 126 start-page: 13776 year: 2014 ident: 10.1016/j.cej.2024.158566_b0090 article-title: High‐performance liquid‐catalyst fuel cell for direct biomass‐into‐electricity conversion publication-title: Angew. Chem. doi: 10.1002/ange.201408226 – volume: 150 year: 2021 ident: 10.1016/j.cej.2024.158566_b0005 article-title: Recovery processes of sustainable energy using different biomass and wastes publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111483 – volume: 26 start-page: 4811 year: 2024 ident: 10.1016/j.cej.2024.158566_b0030 article-title: Low temperature and high-power density lignin flow fuel cell via efficient CoMn-LDH electrocatalyst with super-hydrophilic intercalation publication-title: Green Chem. doi: 10.1039/D4GC00476K – volume: 14 start-page: 5842 year: 2023 ident: 10.1016/j.cej.2024.158566_b0130 article-title: Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-023-41588-w – volume: 323 year: 2023 ident: 10.1016/j.cej.2024.158566_b0135 article-title: Selective electrocatalytic upgrading of lignin to aryl aldehydes and carboxylic acids over dodecyl sulfate-intercalated CoS nanocones publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.122149 – volume: 10 start-page: 506 year: 2017 ident: 10.1016/j.cej.2024.158566_b0025 article-title: Direct conversion of wheat straw into electricity with a biomass flow fuel cell mediated by two redox ion pairs publication-title: ChemSusChem doi: 10.1002/cssc.201601441 – volume: 120 start-page: 3749 year: 2020 ident: 10.1016/j.cej.2024.158566_b0015 article-title: Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O2 and Oxidation of H2, Alcohols, Biomass, and Complex Fuels publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00717 – volume: 420 year: 2021 ident: 10.1016/j.cej.2024.158566_b0115 article-title: Haze to electricity: Efficiently harvesting electric energy from air pollutants by construction of bioinspired electron transport chains in light- and heat-driven liquid flow fuel cells publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129716 – volume: 482 year: 2021 ident: 10.1016/j.cej.2024.158566_b0125 article-title: A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229023 – volume: 189 year: 2019 ident: 10.1016/j.cej.2024.158566_b0095 article-title: Enhancing conversion from glucose to electricity by ferric chloride in a redox flow fuel cell publication-title: Energy doi: 10.1016/j.energy.2019.116171 – volume: 33 start-page: 17 year: 1980 ident: 10.1016/j.cej.2024.158566_b0060 article-title: X-ray photoelectron spectra of 3d transition metal pyrites publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(80)90543-5 – volume: 7 start-page: 4165 year: 2019 ident: 10.1016/j.cej.2024.158566_b0070 article-title: Superadsorbent Ni–Co–S/SDS Nanocomposites for Ultrahigh Removal of Cationic, Anionic Organic Dyes and Toxic Metal Ions: Kinetics, Isotherm and Adsorption Mechanism publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b05775 – year: 2024 ident: 10.1016/j.cej.2024.158566_b0045 article-title: Electrochemical oxidation of lignin model compounds over metal oxyhydroxides on nickel foam publication-title: Green Chem. doi: 10.1039/D4GC02156H – volume: 67 year: 2023 ident: 10.1016/j.cej.2024.158566_b0065 article-title: Preparation of novel composites based on SDS intercalated CoNiFe–LDH and carbon materials for advanced asymmetric supercapacitors publication-title: J. Storage Mater. – volume: 26 start-page: 2021 year: 2024 ident: 10.1016/j.cej.2024.158566_b0100 article-title: A high-performance lignin flow fuel cell based on self-generating electricity of lignin at low temperature via a privileged structure and redox chemistry publication-title: Green Chem. doi: 10.1039/D3GC04428A – volume: 14 start-page: 189 year: 2021 ident: 10.1016/j.cej.2024.158566_b0010 article-title: Lignocellulose, cellulose and lignin as renewable alternative fuels for direct biomass fuel cells publication-title: ChemSusChem doi: 10.1002/cssc.202001807 – volume: 304 year: 2021 ident: 10.1016/j.cej.2024.158566_b0110 article-title: Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200mW/cm2 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117927 – volume: 117 start-page: 5828 year: 2005 ident: 10.1016/j.cej.2024.158566_b0120 article-title: Modeling the anodic half‐cell of a low‐temperature coal fuel cell publication-title: Angew. Chem. doi: 10.1002/ange.200501192 – volume: 397 year: 2020 ident: 10.1016/j.cej.2024.158566_b0075 article-title: Efficient catalysis of N doped NiS/NiS2 heterogeneous structure publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125507 – volume: 49 start-page: 8253 year: 2010 ident: 10.1016/j.cej.2024.158566_b0050 article-title: Layered cobalt hydroxide nanocones: microwave-assisted synthesis, exfoliation, and structural modification publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201004033 – volume: 23 start-page: 2758 year: 2013 ident: 10.1016/j.cej.2024.158566_b0055 article-title: Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: Understanding the effect of Interlayer space on electrochemical activity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202786 – volume: 7 start-page: 15851 year: 2019 ident: 10.1016/j.cej.2024.158566_b0085 article-title: Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03825F – volume: 263 year: 2020 ident: 10.1016/j.cej.2024.158566_b0040 article-title: Lignin as a potential source of high-added value compounds: A review publication-title: J. Clean. Prod. – volume: 28 year: 2018 ident: 10.1016/j.cej.2024.158566_b0080 article-title: Nickel chelate derived NiS2 decorated with bifunctional carbon: an efficient strategy to promote sodium storage performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803690 |
SSID | ssj0006919 |
Score | 2.4551814 |
Snippet | [Display omitted]
•NiS2-SDS/NF with multilayer structure are highly reactive towards lignin oxidation.•A dual functional and stable lignosulfonate fuel cell... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 158566 |
SubjectTerms | Dicarboxylic acid Fuel cell In-situ spectroscopy Lignin Nickle sulfide |
Title | Dual-functional lignin fuel cells: Coupling electricity generation with lignosulfonate valorization using dodecyl sulfate-intercalated NiS2 anode catalysts |
URI | https://dx.doi.org/10.1016/j.cej.2024.158566 |
Volume | 504 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvaSH0iYtTdoGHXoKKFs9bMm9hU3Cpkv2kAfNzei5OBg77K4PufSP9M9WI9skgfbSg7ERM2A0w8xoNPMNQl-V5M7kVhJtpCeCikCUyxihOgBeUWFCutG9XOSzW_HjLrvbQtOxFwbKKgfb39v0ZK2Hlcmwm5OHqppcU7jTKoSMPghaKqHRXAgJWn7866nMIy_ScA8gJkA93mymGi_r7-MRkYljGqPmBJT4F9_0zN-cv0VvhkARn_T_8g5t-WYXvX4GH7iHfp92uibgmfqEHq6rZVM1OHS-xpCRX3_H07aDntsl7ufdVDZG3XiZsKaBCUMeNvG1664OkEr3OCpfuxr6MzEUxi-xa523jzUGokhCAGViFcUbvx1eVNcM6yaS4JQNelxv1u_R7fnZzXRGhmELxMYT2IYUzmvqLDMycC4dyzx3XFrFOTW5yL3IbVxS3EWDyLg3IXNGUR-YsoWyXPAPaLtpG_8R4YJrn-tMCJceqr3MihjKMR0U18rso6Nxm8uHHlOjHIvN7ssokxJkUvYy2UdiFET5QjHKaPP_zXbwf2yf0A6DAb_fKKHZZ7S9WXX-S4w6NuYwqdUhenVyMZ8t4D2_-jn_A8me3Q0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABwqnmppAR_gguQufiRxkHpALdWWtntpK_UW_FylipJqs1G1l_4In8EPMnYSUSS4IPUQKbI8ke2ZzIznidB7mXGrU5MRpTNHBBWeSJswQpUP9Ypy7aNH93SWTi_Et8vkcg39HHNhQljlwPt7nh659TAyGU5zcl2WkzMafFq5yEAGhZTKMbLy2K1u4N7W7h0dAJI_MHb49Xx_SobWAsTAfWNJcusUtYbpzHOeWZY4bnlmJOdUpyJ1IjUwJLmF359xp31itaTOM2lyabjg8N0H6KEAdhHaJuze_o4rSfPYTSSsjoTlja7UGFRm3BXcSZnYpaCmx8qMfxGGdwTc4VO0MWim-Eu_-WdozdXP0ZM79QpfoB8HnapIEIW9BRFX5bwua-w7V-HgAmg_4_2mC0m-c9w32CkNqPl4HotbByAcDL8Rrmm7ygfbvcNA7c1iSAjFIRJ_jm1jnVlVOEyCKSSUtVgAPcG7xbPyjGFVwxQczU-rdtm-RBf3goJXaL1uareJcM6VS1UihI0PVS5LctAdmfKSK6m30MfxmIvrvohHMUa3XRWAkyLgpOhxsoXEiIjiD0osQMj8G-z1_4G9Q4-m56cnxcnR7HgbPWahu_AnSmiyg9aXi869AZVnqd9GEsPo-33T9C-gZxh3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-functional+lignin+fuel+cells%3A+Coupling+electricity+generation+with+lignosulfonate+valorization+using+dodecyl+sulfate-intercalated+NiS2+anode+catalysts&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Danlu%2C+Zhang&rft.au=Peng%2C+Wang&rft.au=Qiqi%2C+Dai&rft.au=Yan%2C+Xu&rft.date=2025-01-15&rft.issn=1385-8947&rft.volume=504&rft.spage=158566&rft_id=info:doi/10.1016%2Fj.cej.2024.158566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2024_158566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |