Dual-functional lignin fuel cells: Coupling electricity generation with lignosulfonate valorization using dodecyl sulfate-intercalated NiS2 anode catalysts

[Display omitted] •NiS2-SDS/NF with multilayer structure are highly reactive towards lignin oxidation.•A dual functional and stable lignosulfonate fuel cell was developed.•The lignosulfonate fuel cell attains a peak power density of 113 mW/cm2 at 50 °C.•The fuel cell converts lignosulfonate into oxa...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 504; p. 158566
Main Authors Danlu, Zhang, Peng, Wang, Qiqi, Dai, Yan, Xu, Qingyou, Liang, Xu, Zeng, Chuanfu, Liu, Wu, Lan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •NiS2-SDS/NF with multilayer structure are highly reactive towards lignin oxidation.•A dual functional and stable lignosulfonate fuel cell was developed.•The lignosulfonate fuel cell attains a peak power density of 113 mW/cm2 at 50 °C.•The fuel cell converts lignosulfonate into oxalic acid during discharging. This study presents a nickel sulfide catalyst intercalated with sodium dodecyl sulfate (NiS2-SDS/NF) synthesized through hydrothermal and pyrolytic methods. The unique “cabbage-like” morphology of NiS2-SDS/NF enhances accessibility and charge transfer of active sites, confirmed by SEM, TEM, XRD, and XPS analyses. Electrochemical performance assessments reveal exceptional catalytic activity towards the oxygen evolution reaction and lignin oxidation, with NiS2-SDS/NF demonstrating the highest current density and lowest Tafel slope among the tested catalysts. The lignosulfonate direct fuel cell utilizing NiS2-SDS/NF as anode catalyst achieves a peak power density of 113 mW/cm2 at 50 °C, with stable long-term performance and energy utilization rate of 70 %. This setup also converts lignosulfonate into oxalic acid with over 23 wt% yield and high selectivity. In-situ Raman and infrared spectroscopy elucidate the oxidation mechanism, showing the formation of NiOOH active sites and the cleavage of lignin macromolecules into aromatic and aliphatic acids. This work highlights the potential of NiS2-SDS/NF for efficient lignin valorization and sustainable energy production, paving the way for future optimization and application of lignin-based fuel cells.
AbstractList [Display omitted] •NiS2-SDS/NF with multilayer structure are highly reactive towards lignin oxidation.•A dual functional and stable lignosulfonate fuel cell was developed.•The lignosulfonate fuel cell attains a peak power density of 113 mW/cm2 at 50 °C.•The fuel cell converts lignosulfonate into oxalic acid during discharging. This study presents a nickel sulfide catalyst intercalated with sodium dodecyl sulfate (NiS2-SDS/NF) synthesized through hydrothermal and pyrolytic methods. The unique “cabbage-like” morphology of NiS2-SDS/NF enhances accessibility and charge transfer of active sites, confirmed by SEM, TEM, XRD, and XPS analyses. Electrochemical performance assessments reveal exceptional catalytic activity towards the oxygen evolution reaction and lignin oxidation, with NiS2-SDS/NF demonstrating the highest current density and lowest Tafel slope among the tested catalysts. The lignosulfonate direct fuel cell utilizing NiS2-SDS/NF as anode catalyst achieves a peak power density of 113 mW/cm2 at 50 °C, with stable long-term performance and energy utilization rate of 70 %. This setup also converts lignosulfonate into oxalic acid with over 23 wt% yield and high selectivity. In-situ Raman and infrared spectroscopy elucidate the oxidation mechanism, showing the formation of NiOOH active sites and the cleavage of lignin macromolecules into aromatic and aliphatic acids. This work highlights the potential of NiS2-SDS/NF for efficient lignin valorization and sustainable energy production, paving the way for future optimization and application of lignin-based fuel cells.
ArticleNumber 158566
Author Peng, Wang
Qiqi, Dai
Yan, Xu
Xu, Zeng
Qingyou, Liang
Wu, Lan
Chuanfu, Liu
Danlu, Zhang
Author_xml – sequence: 1
  givenname: Zhang
  surname: Danlu
  fullname: Danlu, Zhang
  organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 2
  givenname: Wang
  surname: Peng
  fullname: Peng, Wang
  organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 3
  givenname: Dai
  surname: Qiqi
  fullname: Qiqi, Dai
  organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 4
  givenname: Xu
  surname: Yan
  fullname: Yan, Xu
  organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 5
  givenname: Liang
  surname: Qingyou
  fullname: Qingyou, Liang
  organization: Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China
– sequence: 6
  givenname: Zeng
  surname: Xu
  fullname: Xu, Zeng
  organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 7
  givenname: Liu
  surname: Chuanfu
  fullname: Chuanfu, Liu
  organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 8
  givenname: Lan
  surname: Wu
  fullname: Wu, Lan
  email: lanwu@scut.edu.cn
  organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
BookMark eNp9kMtOwzAQRb0oEi3wAez8AylxnCesUHlKFSyAteWMJ8WVcSrbKQq_ws_iUNasZjS652p0FmRme4uEnLN0yVJWXmyXgNtllmb5khV1UZYzMme8LpK6yatjsvB-m6Zp2bBmTr5vBmmSbrAQdG-loUZvrLa0G9BQQGP8JV31w85ou6FoEILToMNIN2jRyQminzq8_3K9H0wXWwLSvTS901-HwOAnWvUKYTR0CsVIom1AB9LEXdEn_ZJRaWOEggzSjD74U3LUSePx7G-ekLe729fVQ7J-vn9cXa8TyPImJI1CyRRkbdVxXqmsQK54BTXnrC3zEvMS4qnmSiqVcWy7QrU1wy6roamB5_yEsEMvuN57h53YOf0h3ShYKiajYiuiUTEZFQejkbk6MBgf22t0woNGC6i0i5KE6vU_9A9ZS4hD
Cites_doi 10.1016/j.apcatb.2023.122491
10.1002/anie.201408226
10.1016/j.cej.2022.139266
10.1002/ange.201408226
10.1016/j.rser.2021.111483
10.1039/D4GC00476K
10.1038/s41467-023-41588-w
10.1016/j.apcatb.2022.122149
10.1002/cssc.201601441
10.1021/acs.chemrev.9b00717
10.1016/j.cej.2021.129716
10.1016/j.jpowsour.2020.229023
10.1016/j.energy.2019.116171
10.1016/0022-4596(80)90543-5
10.1021/acssuschemeng.8b05775
10.1039/D4GC02156H
10.1039/D3GC04428A
10.1002/cssc.202001807
10.1016/j.apenergy.2021.117927
10.1002/ange.200501192
10.1016/j.cej.2020.125507
10.1002/anie.201004033
10.1002/adfm.201202786
10.1039/C9TA03825F
10.1002/adfm.201803690
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2024.158566
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2024_158566
S1385894724100575
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEUPX
AFFNX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SSH
ZY4
ID FETCH-LOGICAL-c249t-9dea1dc2b7f337d25e3d37c8331b646e46c5e383dadd23ebf5db81ef28c98c343
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 05:26:16 EDT 2025
Sat Mar 22 15:54:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Lignin
Dicarboxylic acid
Nickle sulfide
In-situ spectroscopy
Fuel cell
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-9dea1dc2b7f337d25e3d37c8331b646e46c5e383dadd23ebf5db81ef28c98c343
ParticipantIDs crossref_primary_10_1016_j_cej_2024_158566
elsevier_sciencedirect_doi_10_1016_j_cej_2024_158566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xie, Zu, Lin, Qiu, Liang, Chen (b0100) 2024; 26
Liu, Li (b0095) 2019; 189
Anson, Stahl (b0015) 2020; 120
Antolini (b0010) 2021; 14
Ouyang, Gao, Qiang, Zhao (b0035) 2023; 328
She, Zu, Yang, Chen, Xie, Yang, Yang, Yi, Qin, Lin, Zhang, Dong, Qiu (b0105) 2023; 452
Zhao, Zhang, Yang, Jiang, Zhang, Hong, Tian, Zhao, Hu, Zhou (b0080) 2018; 28
Torres, Woiciechowski, de Andrade Tanobe, Karp, Lorenci, Faulds, Soccol (b0040) 2020; 263
Ouyang, Wang, Hong, Gao, Zhao (b0110) 2021; 304
Ouyang, Wang, Yang, Zhao (b0115) 2021; 420
Liang, Zu, Liu, Qiu, Xie, Wang, Yang (b0030) 2024; 26
Liu, Mu, Deng (b0020) 2014; 53
Weibel, Boulatov, Lee, Ferrigno, Whitesides (b0120) 2005; 117
Fang, Li, Wang, Li, Wu, Fan, Tang, Sun, Zhang (b0135) 2023; 323
Ding, Li, Li, Wang, Huang, Sun, Xu, Li (b0065) 2023; 67
Liu, Xie, Zhu, Mao, Yu, Ju, Shen, Pang (b0085) 2019; 7
Siwal, Zhang, Devi, Saini, Saini, Pareek, Gaidukovs, Thakur (b0005) 2021; 150
Ye, Yuan, Ding, Long, Long, Sun, Jia (b0125) 2021; 482
Liu, Liu, Wang, Feng (b0075) 2020; 397
Gong, Liu, Du, Liu, Zhang, Sun, Yang, Xu, Guo, Deng (b0025) 2017; 10
Chowdhury, Khan, Kumari, Hussain (b0070) 2019; 7
Van der Heide, Hemmel, Van Bruggen, Haas (b0060) 1980; 33
Wang, Dong, Wang, Zhang, Jin (b0055) 2013; 23
Liu, Mu, Deng (b0090) 2014; 126
Gao, Bai, Wang, Jiao, Davey, Zheng, Qiao (b0130) 2023; 14
Danlu, Xu, Sinong, Yan, Qiqi, Fengxia, Peng, Chuanfu, Wu (b0045) 2024
Liu, Ma, Bando, Sasaki (b0050) 2010; 49
Antolini (10.1016/j.cej.2024.158566_b0010) 2021; 14
Gong (10.1016/j.cej.2024.158566_b0025) 2017; 10
Ouyang (10.1016/j.cej.2024.158566_b0035) 2023; 328
Ding (10.1016/j.cej.2024.158566_b0065) 2023; 67
Zhao (10.1016/j.cej.2024.158566_b0080) 2018; 28
Fang (10.1016/j.cej.2024.158566_b0135) 2023; 323
Liu (10.1016/j.cej.2024.158566_b0020) 2014; 53
Liang (10.1016/j.cej.2024.158566_b0030) 2024; 26
Torres (10.1016/j.cej.2024.158566_b0040) 2020; 263
Liu (10.1016/j.cej.2024.158566_b0095) 2019; 189
Liu (10.1016/j.cej.2024.158566_b0075) 2020; 397
Danlu (10.1016/j.cej.2024.158566_b0045) 2024
Weibel (10.1016/j.cej.2024.158566_b0120) 2005; 117
Wang (10.1016/j.cej.2024.158566_b0055) 2013; 23
Van der Heide (10.1016/j.cej.2024.158566_b0060) 1980; 33
Liu (10.1016/j.cej.2024.158566_b0050) 2010; 49
Xie (10.1016/j.cej.2024.158566_b0100) 2024; 26
Ouyang (10.1016/j.cej.2024.158566_b0110) 2021; 304
Gao (10.1016/j.cej.2024.158566_b0130) 2023; 14
Liu (10.1016/j.cej.2024.158566_b0085) 2019; 7
Siwal (10.1016/j.cej.2024.158566_b0005) 2021; 150
Ye (10.1016/j.cej.2024.158566_b0125) 2021; 482
Anson (10.1016/j.cej.2024.158566_b0015) 2020; 120
Ouyang (10.1016/j.cej.2024.158566_b0115) 2021; 420
Chowdhury (10.1016/j.cej.2024.158566_b0070) 2019; 7
She (10.1016/j.cej.2024.158566_b0105) 2023; 452
Liu (10.1016/j.cej.2024.158566_b0090) 2014; 126
References_xml – volume: 126
  start-page: 13776
  year: 2014
  end-page: 13780
  ident: b0090
  article-title: High‐performance liquid‐catalyst fuel cell for direct biomass‐into‐electricity conversion
  publication-title: Angew. Chem.
– volume: 263
  year: 2020
  ident: b0040
  article-title: Lignin as a potential source of high-added value compounds: A review
  publication-title: J. Clean. Prod.
– volume: 26
  start-page: 2021
  year: 2024
  end-page: 2030
  ident: b0100
  article-title: A high-performance lignin flow fuel cell based on self-generating electricity of lignin at low temperature via a privileged structure and redox chemistry
  publication-title: Green Chem.
– volume: 328
  year: 2023
  ident: b0035
  article-title: Highly-efficient conversion of lignin to electricity by nickel foam anode loaded with solid electrocatalysts
  publication-title: Appl Catal B
– volume: 49
  start-page: 8253
  year: 2010
  end-page: 8256
  ident: b0050
  article-title: Layered cobalt hydroxide nanocones: microwave-assisted synthesis, exfoliation, and structural modification
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  year: 2018
  ident: b0080
  article-title: Nickel chelate derived NiS2 decorated with bifunctional carbon: an efficient strategy to promote sodium storage performance
  publication-title: Adv. Funct. Mater.
– volume: 117
  start-page: 5828
  year: 2005
  end-page: 5832
  ident: b0120
  article-title: Modeling the anodic half‐cell of a low‐temperature coal fuel cell
  publication-title: Angew. Chem.
– volume: 304
  year: 2021
  ident: b0110
  article-title: Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200
  publication-title: Appl. Energy
– volume: 189
  year: 2019
  ident: b0095
  article-title: Enhancing conversion from glucose to electricity by ferric chloride in a redox flow fuel cell
  publication-title: Energy
– volume: 14
  start-page: 5842
  year: 2023
  ident: b0130
  article-title: Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation
  publication-title: Nat. Commun.
– volume: 452
  year: 2023
  ident: b0105
  article-title: Construction of anodic electron transfer chain based on CuCl2/TiOSO4 synergetic mediators for highly efficient conversion of biomass wastes into electricity at low temperature
  publication-title: Chem. Eng. J.
– volume: 33
  start-page: 17
  year: 1980
  end-page: 25
  ident: b0060
  article-title: X-ray photoelectron spectra of 3d transition metal pyrites
  publication-title: J. Solid State Chem.
– volume: 7
  start-page: 15851
  year: 2019
  end-page: 15861
  ident: b0085
  article-title: Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution
  publication-title: J. Mater. Chem. A
– year: 2024
  ident: b0045
  article-title: Electrochemical oxidation of lignin model compounds over metal oxyhydroxides on nickel foam
  publication-title: Green Chem.
– volume: 323
  year: 2023
  ident: b0135
  article-title: Selective electrocatalytic upgrading of lignin to aryl aldehydes and carboxylic acids over dodecyl sulfate-intercalated CoS nanocones
  publication-title: Appl Catal B
– volume: 482
  year: 2021
  ident: b0125
  article-title: A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery
  publication-title: J. Power Sources
– volume: 120
  start-page: 3749
  year: 2020
  end-page: 3786
  ident: b0015
  article-title: Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O2 and Oxidation of H2, Alcohols, Biomass, and Complex Fuels
  publication-title: Chem. Rev.
– volume: 420
  year: 2021
  ident: b0115
  article-title: Haze to electricity: Efficiently harvesting electric energy from air pollutants by construction of bioinspired electron transport chains in light- and heat-driven liquid flow fuel cells
  publication-title: Chem. Eng. J.
– volume: 67
  year: 2023
  ident: b0065
  article-title: Preparation of novel composites based on SDS intercalated CoNiFe–LDH and carbon materials for advanced asymmetric supercapacitors
  publication-title: J. Storage Mater.
– volume: 14
  start-page: 189
  year: 2021
  end-page: 207
  ident: b0010
  article-title: Lignocellulose, cellulose and lignin as renewable alternative fuels for direct biomass fuel cells
  publication-title: ChemSusChem
– volume: 10
  start-page: 506
  year: 2017
  end-page: 513
  ident: b0025
  article-title: Direct conversion of wheat straw into electricity with a biomass flow fuel cell mediated by two redox ion pairs
  publication-title: ChemSusChem
– volume: 7
  start-page: 4165
  year: 2019
  end-page: 4176
  ident: b0070
  article-title: Superadsorbent Ni–Co–S/SDS Nanocomposites for Ultrahigh Removal of Cationic, Anionic Organic Dyes and Toxic Metal Ions: Kinetics, Isotherm and Adsorption Mechanism
  publication-title: ACS Sustain. Chem. Eng.
– volume: 26
  start-page: 4811
  year: 2024
  end-page: 4819
  ident: b0030
  article-title: Low temperature and high-power density lignin flow fuel cell via efficient CoMn-LDH electrocatalyst with super-hydrophilic intercalation
  publication-title: Green Chem.
– volume: 150
  year: 2021
  ident: b0005
  article-title: Recovery processes of sustainable energy using different biomass and wastes
  publication-title: Renew. Sustain. Energy Rev.
– volume: 397
  year: 2020
  ident: b0075
  article-title: Efficient catalysis of N doped NiS/NiS
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 13558
  year: 2014
  end-page: 13562
  ident: b0020
  article-title: High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 2758
  year: 2013
  end-page: 2764
  ident: b0055
  article-title: Layered α-Co(OH)
  publication-title: Adv. Funct. Mater.
– volume: 328
  year: 2023
  ident: 10.1016/j.cej.2024.158566_b0035
  article-title: Highly-efficient conversion of lignin to electricity by nickel foam anode loaded with solid electrocatalysts
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2023.122491
– volume: 53
  start-page: 13558
  year: 2014
  ident: 10.1016/j.cej.2024.158566_b0020
  article-title: High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408226
– volume: 452
  year: 2023
  ident: 10.1016/j.cej.2024.158566_b0105
  article-title: Construction of anodic electron transfer chain based on CuCl2/TiOSO4 synergetic mediators for highly efficient conversion of biomass wastes into electricity at low temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139266
– volume: 126
  start-page: 13776
  year: 2014
  ident: 10.1016/j.cej.2024.158566_b0090
  article-title: High‐performance liquid‐catalyst fuel cell for direct biomass‐into‐electricity conversion
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201408226
– volume: 150
  year: 2021
  ident: 10.1016/j.cej.2024.158566_b0005
  article-title: Recovery processes of sustainable energy using different biomass and wastes
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111483
– volume: 26
  start-page: 4811
  year: 2024
  ident: 10.1016/j.cej.2024.158566_b0030
  article-title: Low temperature and high-power density lignin flow fuel cell via efficient CoMn-LDH electrocatalyst with super-hydrophilic intercalation
  publication-title: Green Chem.
  doi: 10.1039/D4GC00476K
– volume: 14
  start-page: 5842
  year: 2023
  ident: 10.1016/j.cej.2024.158566_b0130
  article-title: Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41588-w
– volume: 323
  year: 2023
  ident: 10.1016/j.cej.2024.158566_b0135
  article-title: Selective electrocatalytic upgrading of lignin to aryl aldehydes and carboxylic acids over dodecyl sulfate-intercalated CoS nanocones
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2022.122149
– volume: 10
  start-page: 506
  year: 2017
  ident: 10.1016/j.cej.2024.158566_b0025
  article-title: Direct conversion of wheat straw into electricity with a biomass flow fuel cell mediated by two redox ion pairs
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601441
– volume: 120
  start-page: 3749
  year: 2020
  ident: 10.1016/j.cej.2024.158566_b0015
  article-title: Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O2 and Oxidation of H2, Alcohols, Biomass, and Complex Fuels
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00717
– volume: 420
  year: 2021
  ident: 10.1016/j.cej.2024.158566_b0115
  article-title: Haze to electricity: Efficiently harvesting electric energy from air pollutants by construction of bioinspired electron transport chains in light- and heat-driven liquid flow fuel cells
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129716
– volume: 482
  year: 2021
  ident: 10.1016/j.cej.2024.158566_b0125
  article-title: A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229023
– volume: 189
  year: 2019
  ident: 10.1016/j.cej.2024.158566_b0095
  article-title: Enhancing conversion from glucose to electricity by ferric chloride in a redox flow fuel cell
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116171
– volume: 33
  start-page: 17
  year: 1980
  ident: 10.1016/j.cej.2024.158566_b0060
  article-title: X-ray photoelectron spectra of 3d transition metal pyrites
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(80)90543-5
– volume: 7
  start-page: 4165
  year: 2019
  ident: 10.1016/j.cej.2024.158566_b0070
  article-title: Superadsorbent Ni–Co–S/SDS Nanocomposites for Ultrahigh Removal of Cationic, Anionic Organic Dyes and Toxic Metal Ions: Kinetics, Isotherm and Adsorption Mechanism
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05775
– year: 2024
  ident: 10.1016/j.cej.2024.158566_b0045
  article-title: Electrochemical oxidation of lignin model compounds over metal oxyhydroxides on nickel foam
  publication-title: Green Chem.
  doi: 10.1039/D4GC02156H
– volume: 67
  year: 2023
  ident: 10.1016/j.cej.2024.158566_b0065
  article-title: Preparation of novel composites based on SDS intercalated CoNiFe–LDH and carbon materials for advanced asymmetric supercapacitors
  publication-title: J. Storage Mater.
– volume: 26
  start-page: 2021
  year: 2024
  ident: 10.1016/j.cej.2024.158566_b0100
  article-title: A high-performance lignin flow fuel cell based on self-generating electricity of lignin at low temperature via a privileged structure and redox chemistry
  publication-title: Green Chem.
  doi: 10.1039/D3GC04428A
– volume: 14
  start-page: 189
  year: 2021
  ident: 10.1016/j.cej.2024.158566_b0010
  article-title: Lignocellulose, cellulose and lignin as renewable alternative fuels for direct biomass fuel cells
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001807
– volume: 304
  year: 2021
  ident: 10.1016/j.cej.2024.158566_b0110
  article-title: Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200mW/cm2
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117927
– volume: 117
  start-page: 5828
  year: 2005
  ident: 10.1016/j.cej.2024.158566_b0120
  article-title: Modeling the anodic half‐cell of a low‐temperature coal fuel cell
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200501192
– volume: 397
  year: 2020
  ident: 10.1016/j.cej.2024.158566_b0075
  article-title: Efficient catalysis of N doped NiS/NiS2 heterogeneous structure
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125507
– volume: 49
  start-page: 8253
  year: 2010
  ident: 10.1016/j.cej.2024.158566_b0050
  article-title: Layered cobalt hydroxide nanocones: microwave-assisted synthesis, exfoliation, and structural modification
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201004033
– volume: 23
  start-page: 2758
  year: 2013
  ident: 10.1016/j.cej.2024.158566_b0055
  article-title: Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: Understanding the effect of Interlayer space on electrochemical activity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202786
– volume: 7
  start-page: 15851
  year: 2019
  ident: 10.1016/j.cej.2024.158566_b0085
  article-title: Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03825F
– volume: 263
  year: 2020
  ident: 10.1016/j.cej.2024.158566_b0040
  article-title: Lignin as a potential source of high-added value compounds: A review
  publication-title: J. Clean. Prod.
– volume: 28
  year: 2018
  ident: 10.1016/j.cej.2024.158566_b0080
  article-title: Nickel chelate derived NiS2 decorated with bifunctional carbon: an efficient strategy to promote sodium storage performance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803690
SSID ssj0006919
Score 2.4551814
Snippet [Display omitted] •NiS2-SDS/NF with multilayer structure are highly reactive towards lignin oxidation.•A dual functional and stable lignosulfonate fuel cell...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 158566
SubjectTerms Dicarboxylic acid
Fuel cell
In-situ spectroscopy
Lignin
Nickle sulfide
Title Dual-functional lignin fuel cells: Coupling electricity generation with lignosulfonate valorization using dodecyl sulfate-intercalated NiS2 anode catalysts
URI https://dx.doi.org/10.1016/j.cej.2024.158566
Volume 504
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvaSH0iYtTdoGHXoKKFs9bMm9hU3Cpkv2kAfNzei5OBg77K4PufSP9M9WI9skgfbSg7ERM2A0w8xoNPMNQl-V5M7kVhJtpCeCikCUyxihOgBeUWFCutG9XOSzW_HjLrvbQtOxFwbKKgfb39v0ZK2Hlcmwm5OHqppcU7jTKoSMPghaKqHRXAgJWn7866nMIy_ScA8gJkA93mymGi_r7-MRkYljGqPmBJT4F9_0zN-cv0VvhkARn_T_8g5t-WYXvX4GH7iHfp92uibgmfqEHq6rZVM1OHS-xpCRX3_H07aDntsl7ufdVDZG3XiZsKaBCUMeNvG1664OkEr3OCpfuxr6MzEUxi-xa523jzUGokhCAGViFcUbvx1eVNcM6yaS4JQNelxv1u_R7fnZzXRGhmELxMYT2IYUzmvqLDMycC4dyzx3XFrFOTW5yL3IbVxS3EWDyLg3IXNGUR-YsoWyXPAPaLtpG_8R4YJrn-tMCJceqr3MihjKMR0U18rso6Nxm8uHHlOjHIvN7ssokxJkUvYy2UdiFET5QjHKaPP_zXbwf2yf0A6DAb_fKKHZZ7S9WXX-S4w6NuYwqdUhenVyMZ8t4D2_-jn_A8me3Q0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABwqnmppAR_gguQufiRxkHpALdWWtntpK_UW_FylipJqs1G1l_4In8EPMnYSUSS4IPUQKbI8ke2ZzIznidB7mXGrU5MRpTNHBBWeSJswQpUP9Ypy7aNH93SWTi_Et8vkcg39HHNhQljlwPt7nh659TAyGU5zcl2WkzMafFq5yEAGhZTKMbLy2K1u4N7W7h0dAJI_MHb49Xx_SobWAsTAfWNJcusUtYbpzHOeWZY4bnlmJOdUpyJ1IjUwJLmF359xp31itaTOM2lyabjg8N0H6KEAdhHaJuze_o4rSfPYTSSsjoTlja7UGFRm3BXcSZnYpaCmx8qMfxGGdwTc4VO0MWim-Eu_-WdozdXP0ZM79QpfoB8HnapIEIW9BRFX5bwua-w7V-HgAmg_4_2mC0m-c9w32CkNqPl4HotbByAcDL8Rrmm7ygfbvcNA7c1iSAjFIRJ_jm1jnVlVOEyCKSSUtVgAPcG7xbPyjGFVwxQczU-rdtm-RBf3goJXaL1uareJcM6VS1UihI0PVS5LctAdmfKSK6m30MfxmIvrvohHMUa3XRWAkyLgpOhxsoXEiIjiD0osQMj8G-z1_4G9Q4-m56cnxcnR7HgbPWahu_AnSmiyg9aXi869AZVnqd9GEsPo-33T9C-gZxh3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-functional+lignin+fuel+cells%3A+Coupling+electricity+generation+with+lignosulfonate+valorization+using+dodecyl+sulfate-intercalated+NiS2+anode+catalysts&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Danlu%2C+Zhang&rft.au=Peng%2C+Wang&rft.au=Qiqi%2C+Dai&rft.au=Yan%2C+Xu&rft.date=2025-01-15&rft.issn=1385-8947&rft.volume=504&rft.spage=158566&rft_id=info:doi/10.1016%2Fj.cej.2024.158566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2024_158566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon