Automatic detection of vehicle occupancy and driver's seat belt status using deep learning

Increasing the number of personal cars on the transportation routes causes a heavy traffic load. In many countries, special lines for high occupancy vehicles have been developed to reduce the traffic load. Another issue in monitoring the transportation is the control of driving rules such as driver’...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 17; no. 2; pp. 491 - 499
Main Authors Hosseini, Sara, Fathi, Abdolhossein
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increasing the number of personal cars on the transportation routes causes a heavy traffic load. In many countries, special lines for high occupancy vehicles have been developed to reduce the traffic load. Another issue in monitoring the transportation is the control of driving rules such as driver’s seat belts violation. In this paper, a new system based on deep learning models for detection of the occupants and the status of driver's seat belt is proposed. In this method, first, the windshield is detected using the YOLOv5s network. Then, the presence of passenger and driver’s seat belt rule violation is detected using deep learning-based models. To this end, the combinations of pre-trained the residual neural network with 34 layers (ResNet34) and power mean transformation layer along with spatial pyramid pooling or temporal pyramid pooling layers are employed. The proposed models were trained and evaluated on over 3500 images obtained from the Traffic Transport Organization. From the obtained results, the proposed model can detect the windshield with 99.7% accuracy. Also, the accuracy of the proposed models using independent random test set for occupant detection and drivers’ seat belt rule violations detection is 99.7% and 98.9%, respectively. The performance of the proposed method is better or comparable with state-of-the-art methods.
AbstractList Increasing the number of personal cars on the transportation routes causes a heavy traffic load. In many countries, special lines for high occupancy vehicles have been developed to reduce the traffic load. Another issue in monitoring the transportation is the control of driving rules such as driver’s seat belts violation. In this paper, a new system based on deep learning models for detection of the occupants and the status of driver's seat belt is proposed. In this method, first, the windshield is detected using the YOLOv5s network. Then, the presence of passenger and driver’s seat belt rule violation is detected using deep learning-based models. To this end, the combinations of pre-trained the residual neural network with 34 layers (ResNet34) and power mean transformation layer along with spatial pyramid pooling or temporal pyramid pooling layers are employed. The proposed models were trained and evaluated on over 3500 images obtained from the Traffic Transport Organization. From the obtained results, the proposed model can detect the windshield with 99.7% accuracy. Also, the accuracy of the proposed models using independent random test set for occupant detection and drivers’ seat belt rule violations detection is 99.7% and 98.9%, respectively. The performance of the proposed method is better or comparable with state-of-the-art methods.
Author Fathi, Abdolhossein
Hosseini, Sara
Author_xml – sequence: 1
  givenname: Sara
  surname: Hosseini
  fullname: Hosseini, Sara
  organization: Department of Computer Engineering and Information Technology, Razi University
– sequence: 2
  givenname: Abdolhossein
  orcidid: 0000-0003-0387-5518
  surname: Fathi
  fullname: Fathi, Abdolhossein
  email: a.fathi@razi.ac.ir
  organization: Department of Computer Engineering and Information Technology, Razi University
BookMark eNp9kE1LAzEQhoNUsNb-AU8BD55W87HdbI6l-AUFL3rxErLZ2bplm6xJtsV_b-qK3hwYZgbe9x14ztHEOgsIXVJyQwkRt4FSUZCMMHbsPM8OJ2hKy4JnVFA6-d0JP0PzELYkFWeiLMopelsO0e10bA2uIYKJrbPYNXgP763pADtjhl5b84m1rXHt2z3464AD6Igr6CIOUcch4CG0dpMioMcdaG_TdYFOG90FmP_MGXq9v3tZPWbr54en1XKdGZbLmElDqKYViJrVsqFACIAGLRkwUnJeC1pwyqUo8gXwSsiq5A3AQuaLmnMOks_Q1Zjbe_cxQIhq6wZv00vFhBBlLongScVGlfEuBA-N6n270_5TUaKOGNWIUSWE6hujOiQTH00hie0G_F_0P64vrJ53qg
CitedBy_id crossref_primary_10_3390_a16090400
crossref_primary_10_1109_ACCESS_2023_3312190
crossref_primary_10_3390_app14083346
Cites_doi 10.1109/CCDC49329.2020.9164214
10.1016/j.neucom.2016.06.098
10.1007/s11760-020-01828-8
10.1016/j.robot.2018.12.002
10.1109/ACCESS.2021.3057723
10.1109/TNSE.2021.3065019
10.1109/IIPHDW.2018.8388338
10.1609/aaai.v33i01.33019498
10.1109/ICCVW.2019.00295
10.1007/s11760-020-01680-w
10.1177/0361198121998698
10.1109/IEMENTech51367.2020.9270058
10.17762/turcomat.v12i5.1483
10.1007/s12596-021-00770-3
10.1177/1729881420944343
10.1016/j.ijleo.2020.165818
10.1109/CVPRW53098.2021.00020
10.1109/ICCECE51280.2021.9342340
10.1109/CVPRW.2019.00124
10.1117/1.JEI.30.3.033036
10.1016/j.bdr.2020.100182
10.1007/s11760-020-01636-0
10.1007/978-3-030-66077-2_28
10.1109/AVSS.2018.8639447
10.3390/electronics10060724
10.1117/12.2600353
10.23919/FRUCT48808.2020.9087474
10.14419/ijet.v9i1.30050
10.3390/a14040114
10.1109/WACV.2016.7477599
10.1109/TPAMI.2015.2389824
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s11760-022-02244-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 499
ExternalDocumentID 10_1007_s11760_022_02244_w
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z83
Z88
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
SJYHP
ID FETCH-LOGICAL-c249t-9c01a1be7d2d9f1e00eeaea92e20833d71631397645e3b79b83fee5945d333e93
IEDL.DBID AGYKE
ISSN 1863-1703
IngestDate Mon Dec 09 02:30:19 EST 2024
Thu Nov 21 21:13:15 EST 2024
Sat Dec 16 12:04:57 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Car occupant detection
Deep learning
Seat belt status detection
Automated transport images analysis
Car windshield detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-9c01a1be7d2d9f1e00eeaea92e20833d71631397645e3b79b83fee5945d333e93
ORCID 0000-0003-0387-5518
PQID 2777849073
PQPubID 2044169
PageCount 9
ParticipantIDs proquest_journals_2777849073
crossref_primary_10_1007_s11760_022_02244_w
springer_journals_10_1007_s11760_022_02244_w
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – sequence: 0
  name: Springer Nature B.V
– name: Springer London
References YavariabdiAKusetogullariHCelikTCicekHFastUAV-NET: a multi-UAV detection algorithm for embedded platformsElectronics202110672410.3390/electronics10060724
Yi, Q., Yi, Q.: Safety belt wearing detection algorithm based on human joint points. In: 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). IEEE (2021)
SriJSEstherRPLittle YOLO-SPP: a delicate real-time vehicle detection algorithmOpt. Int. J. Light Electron Opt.202122516581810.1016/j.ijleo.2020.165818
MlikiHDammakSFendriEAn improved multi-scale face detection using convolutional neural networkSIViP20201471345135310.1007/s11760-020-01680-w
Saad-Bin, K., Hazela, B.: Employing real-time object detection for traffic monitoring. Available at SSRN 3834176 (2021)
Kashevnik, A., Ali, A., Lashkov, I., Shilov, N.: Seat Belt fastness detection based on image analysis from vehicle in-abin camera. In: 2020 26th Conference of Open Innovations Association (FRUCT). IEEE (2020)
Wshah, S., Xu, B., Bulan, O., Kumar, J., Paul P.: Deep learning architectures for domain adaptation in HOV/HOT lane enforcement. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Placid, NY, USA (2016)
Chun, S., Hamidi Ghalehjegh, N., Choi, J.B., Schwarz, C.W., Gaspar, J.G., McGehee, D.V., Baek, S.S.: NADS-Net: a nimble architecture for driver and seat belt detection via convolutional neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
Li, Y., Liang, R., Wei, W., Wang, W., Zhou, J., Li, X.: Temporal pyramid network with spatial-temporal attention for pedestrian trajectory prediction. IEEE Transactions on Network Science and Engineering (2021)
ChenJChenSBianLMulti-attribute self-attention guided vehicle local region detection based on convolutional neural network architectureInt. J. Adv. Rob. Syst.20201741729881420944343
Jaworek-Korjakowska, J., Kostuch, A., Skruch, P.: SafeSO: interpretable and explainable deep learning approach for seat occupancy classification in vehicle interior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Workshops, pp. 103–112 (2021)
Kumar, A., Gupta, A., Santra, B., Lalitha, K.S., Kolla, M., Gupta, M., Singh, R.: VPDS: an AI-based automated vehicle occupancy and violation detection system. In: The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence, 33(01), 9498–9503 (2019)
Erlik Nowruzi, F., El Ahmar, W.A., Laganiere, R., Ghods, A.H.: In-vehicle occupancy detection with convolutional networks on thermal images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
LeeLByunJLimJLeeJYA framework for detecting vehicle occupancy based on the occupant labeling methodJ. Adv. Transp.2020202018
Kuznetsova, A., Maleva, T., Soloviev, V.: YOLOv5 versus YOLOv3 for apple detection. Cyber-Physical Systems: Modelling and Intelligent Control, pp. 349–358 (2021)
KusetogullariHYavariabdiAHallJLavessonNDIGITNET: a deep handwritten digit detection and recognition method using a new historical handwritten digit datasetBig Data Res.20212310018210.1016/j.bdr.2020.100182
YavariabdiAKusetogullariHCelikTCicekHUAV detection in airborne optic videos using dilated convolutionsJ. Opt.202150456958210.1007/s12596-021-00770-3
Kannadaguli, P.: FCOS based seatbelt detection system using thermal imaging for monitoring traffic rule violations. In: 2020 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech). IEEE (2020)
NaikDSBLakshmiGSSajjaVRVenkatesuluDRaoJNDriver’s seat belt detection using CNNTurk. J. Comput. Math. Educ. (TURCOMAT)202112577678510.17762/turcomat.v12i5.1483
DuSZhangPZhangBXuHWeak and occluded vehicle detection in complex infrared environment based on improved YOLOv4IEEE Access20219256712568010.1109/ACCESS.2021.3057723
Kasper-EulaersMHahnNBergerSSebulonsenTMyrlandØEgil KummervoldPDetecting heavy goods vehicles in rest areas in winter conditions using YOLOv5Algorithms202114411410.3390/a14040114
AmanatiadisAKarakasisEBampisLPloumpisSGasteratosAViPED: on-road vehicle passenger detection for autonomous vehiclesRobot. Auton. Syst.201911228229010.1016/j.robot.2018.12.002
HuangYXuHFully convolutional network with attention modules for semantic segmentationSignal Image Video Process.20211551031103910.1007/s11760-020-01828-8
Zuraimi, M.A.B., Hafizhelmi Kamaru Zaman, F.:Vehicle detection and tracking using YOLO and DeepSORT. In: 2021 IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). IEEE (2021)
Huo, P., Lv. F., Chen. S.: Flame detection method based on improved YOLO-v3. In: International Conference on Signal Image Processing and Communication (ICSIPC 2021). Vol. 11848. International Society for Optics and Photonics (2021)
HosamODeep learning-based car seatbelt classifier resilient to weather conditionsInt. J. Eng. Technol.20209122923710.14419/ijet.v9i1.30050
PapakisISarkarASvetovidovAHickmanJSAbbottALConvolutional neural network-based in-vehicle occupant detection and classification method using second strategic highway research program cabin imagesTransp. Res. Rec.20212675844345710.1177/0361198121998698
YOLOv5 official release note: https://github.com/ultralytics/yolov5/releases/tag/v4.0, Accessed from Mar 2021
Mikolajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: International Interdisciplinary PhD Workshop (IIPhDW), pp. 117–122 (2018)
Yang, D., Zang, Y., Liu, Q.: Study of detection method on real-time and high precision driver seatbelt. In: 2020 Chinese Control and Decision Conference. IEEE (2020)
HeKZhangXRenSSunJSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Trans. Pattern Anal. Mach. Intell.20153791904191610.1109/TPAMI.2015.2389824
AhmedBGulliverTAImage splicing detection using mask-RCNNSignal Image Video Process.20201451035104210.1007/s11760-020-01636-0
ChenYTaoGRenHLinXZhangLAccurate seat belt detection in road surveillance images based on CNN and SVMNeurocomputing2018274808710.1016/j.neucom.2016.06.098
LuoJLuJYueGSeatbelt detection in road surveillance images based on improved dense residual network with two-level attention mechanismJ. Electron. Imaging202130303303610.1117/1.JEI.30.3.033036
Elihos, A., Alkan, B., Balci, B., Artan, Y.: Comparison of image classification and object detection for passenger seat belt violation detection using NIR & RGB surveillance camera images. In: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) pp. 1–6 (2018)
A Amanatiadis (2244_CR3) 2019; 112
K He (2244_CR32) 2015; 37
2244_CR35
2244_CR14
2244_CR17
DSB Naik (2244_CR15) 2021; 12
J Luo (2244_CR26) 2021; 30
Y Chen (2244_CR8) 2018; 274
2244_CR4
2244_CR2
I Papakis (2244_CR5) 2021; 2675
2244_CR1
L Lee (2244_CR6) 2020; 2020
2244_CR9
2244_CR11
2244_CR12
2244_CR7
2244_CR10
2244_CR27
2244_CR28
2244_CR29
Y Huang (2244_CR31) 2021; 15
S Du (2244_CR34) 2021; 9
M Kasper-Eulaers (2244_CR20) 2021; 14
H Kusetogullari (2244_CR16) 2021; 23
O Hosam (2244_CR13) 2020; 9
A Yavariabdi (2244_CR18) 2021; 50
A Yavariabdi (2244_CR24) 2021; 10
J Chen (2244_CR25) 2020; 17
JS Sri (2244_CR19) 2021; 225
2244_CR22
2244_CR23
B Ahmed (2244_CR33) 2020; 14
2244_CR21
H Mliki (2244_CR30) 2020; 14
References_xml – ident: 2244_CR10
  doi: 10.1109/CCDC49329.2020.9164214
– volume: 274
  start-page: 80
  year: 2018
  ident: 2244_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.098
  contributor:
    fullname: Y Chen
– volume: 15
  start-page: 1031
  issue: 5
  year: 2021
  ident: 2244_CR31
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-020-01828-8
  contributor:
    fullname: Y Huang
– volume: 112
  start-page: 282
  year: 2019
  ident: 2244_CR3
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2018.12.002
  contributor:
    fullname: A Amanatiadis
– volume: 9
  start-page: 25671
  year: 2021
  ident: 2244_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3057723
  contributor:
    fullname: S Du
– volume: 2020
  start-page: 1
  year: 2020
  ident: 2244_CR6
  publication-title: J. Adv. Transp.
  contributor:
    fullname: L Lee
– ident: 2244_CR35
  doi: 10.1109/TNSE.2021.3065019
– ident: 2244_CR23
– ident: 2244_CR29
  doi: 10.1109/IIPHDW.2018.8388338
– ident: 2244_CR27
– ident: 2244_CR2
  doi: 10.1609/aaai.v33i01.33019498
– ident: 2244_CR11
  doi: 10.1109/ICCVW.2019.00295
– volume: 14
  start-page: 1345
  issue: 7
  year: 2020
  ident: 2244_CR30
  publication-title: SIViP
  doi: 10.1007/s11760-020-01680-w
  contributor:
    fullname: H Mliki
– volume: 2675
  start-page: 443
  issue: 8
  year: 2021
  ident: 2244_CR5
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198121998698
  contributor:
    fullname: I Papakis
– ident: 2244_CR12
  doi: 10.1109/IEMENTech51367.2020.9270058
– volume: 12
  start-page: 776
  issue: 5
  year: 2021
  ident: 2244_CR15
  publication-title: Turk. J. Comput. Math. Educ. (TURCOMAT)
  doi: 10.17762/turcomat.v12i5.1483
  contributor:
    fullname: DSB Naik
– volume: 50
  start-page: 569
  issue: 4
  year: 2021
  ident: 2244_CR18
  publication-title: J. Opt.
  doi: 10.1007/s12596-021-00770-3
  contributor:
    fullname: A Yavariabdi
– volume: 17
  start-page: 172988142094434
  issue: 4
  year: 2020
  ident: 2244_CR25
  publication-title: Int. J. Adv. Rob. Syst.
  doi: 10.1177/1729881420944343
  contributor:
    fullname: J Chen
– volume: 225
  start-page: 165818
  year: 2021
  ident: 2244_CR19
  publication-title: Opt. Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2020.165818
  contributor:
    fullname: JS Sri
– ident: 2244_CR7
  doi: 10.1109/CVPRW53098.2021.00020
– ident: 2244_CR14
  doi: 10.1109/ICCECE51280.2021.9342340
– ident: 2244_CR22
– ident: 2244_CR4
  doi: 10.1109/CVPRW.2019.00124
– volume: 30
  start-page: 033036
  issue: 3
  year: 2021
  ident: 2244_CR26
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.30.3.033036
  contributor:
    fullname: J Luo
– volume: 23
  start-page: 100182
  year: 2021
  ident: 2244_CR16
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2020.100182
  contributor:
    fullname: H Kusetogullari
– volume: 14
  start-page: 1035
  issue: 5
  year: 2020
  ident: 2244_CR33
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-020-01636-0
  contributor:
    fullname: B Ahmed
– ident: 2244_CR28
  doi: 10.1007/978-3-030-66077-2_28
– ident: 2244_CR9
  doi: 10.1109/AVSS.2018.8639447
– volume: 10
  start-page: 724
  issue: 6
  year: 2021
  ident: 2244_CR24
  publication-title: Electronics
  doi: 10.3390/electronics10060724
  contributor:
    fullname: A Yavariabdi
– ident: 2244_CR17
  doi: 10.1117/12.2600353
– ident: 2244_CR21
  doi: 10.23919/FRUCT48808.2020.9087474
– volume: 9
  start-page: 229
  issue: 1
  year: 2020
  ident: 2244_CR13
  publication-title: Int. J. Eng. Technol.
  doi: 10.14419/ijet.v9i1.30050
  contributor:
    fullname: O Hosam
– volume: 14
  start-page: 114
  issue: 4
  year: 2021
  ident: 2244_CR20
  publication-title: Algorithms
  doi: 10.3390/a14040114
  contributor:
    fullname: M Kasper-Eulaers
– ident: 2244_CR1
  doi: 10.1109/WACV.2016.7477599
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 2244_CR32
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
  contributor:
    fullname: K He
SSID ssj0000327868
ssib029852030
Score 2.3535895
Snippet Increasing the number of personal cars on the transportation routes causes a heavy traffic load. In many countries, special lines for high occupancy vehicles...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 491
SubjectTerms Accuracy
Artificial neural networks
Automobiles
Computer Imaging
Computer Science
Deep learning
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Seat belts
Signal,Image and Speech Processing
Transportation networks
Vision
Windshields
Title Automatic detection of vehicle occupancy and driver's seat belt status using deep learning
URI https://link.springer.com/article/10.1007/s11760-022-02244-w
https://www.proquest.com/docview/2777849073
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvTgoypWa9mD4EFTkt0kmz2mYi2KPbVQvYRNMqmgpKVNFfz17uZBfB48JwzszuzMl-w33wCcMWolUk8NwEiiYQsaGcKM0YhCqeofTSwW6_8d90N3MLZvJ86k7uPOye7VjWSeqOteN4u7pqHJ57rs2MbbOmyo2qNP44Z_83B3XYURFZ5DzRIV5wmZUe4VTXGeqwU5TVa2z_xu-GuJqnHnt6vSvAL1d2BU9fEUxJPn7ioLu9H7T1nH_yxuF7ZLREr8IoT2YA3TJuxU0x5IefibsPVJunAfHv1VNsvlXkmMWc7nSsksIa_4pM2QWa5erDI3kWlM4oWmf5wviR5XQUJ8yYjuZFotiebdT5UJnJNygMX0AMb969HVwCjnNBiR-njLDBGZlrRC5DGNRWKhaSJKlIIiVQBPOVthPg00XdtBFnIReixBdITtxIwxFOwQGuksxSMgCtygozXcLGbZGEohOY0UxJQOl6qM0hZcVK4J5oUcR1ALL-tNDNQGBvkmBm8taFfeC8qjuQwo59yzhUptLbisvFE__tva8f9eP4FNPZq-4Ku1oZEtVniqAEwWdlTA9nu9YacM3A6sj6n_Aaj65nk
link.rule.ids 314,780,784,27924,27925,41081,41523,42150,42592,52111,52234
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADEgNESuwkjscKURVoO7VSxRI58QUGlFRNSv8-dj5UQDAwx7rhfL57ju_eA7hm1EmkUQ3AWKLlChpbwlZoxZHU9Y8mDlPmf8do7A-m7tPMm9VDYXnT7d48SZaZej3s5nDftkz3uak7rrXahC0dccLoFkxpr4kiKgKP2jUoLvMxozyoZuIC3_Bx2qyenvnd7PcKtYadP15KywLUP4C9GjmSXrXVh7CBaRv2G1UGUh_SNux-oRg8gpfesshKWlaisCj7rlKSJeQD34wZkpUswzrDEpkqohamTeMmJ0ZWgkT4XhAzcbTMiemPf9UmcE5qoYnXY5j2Hyb3A6vWU7BifckqLBHbjnQi5IoqkTho24gSpaBINRDTm6KxmQGEvushi7iIApYgesL1FGMMBTuBVpqleApEgxD0DNeawxwXIykkp7GGgtLjUpc72oHbxofhvKLNCNcEycbjofZ2WHo8XHWg27g5rI9QHlLOeeDquzvrwF3j-vXnv62d_W_5FWwPJqNhOHwcP5_DjpGTr3rMutAqFku80KCjiC7LGPsEqw3Kww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAc2BFl9QGJA0RN7KSOjxVQla3iQKWKS-TEEzigtKIp_X08WVRAcOAcaw7jZZ7j994AnArupZq6BmCi0fEVTxzlGnSSWNv6x1NPGPrf8dBv9wb-7TAYflHxF2z3-kmy1DSQS1OWt8Ymbc2Fb55suw4x0akG-c5sEZaoFNFKH_BOvaK4CgPuVgC5OJsFl2Gpjwvb5M3pikpJ83vY79VqDkF_vJoWxai7AWsVimSdcto3YQGzLVivOzSwasNuweoXu8FteO5M81Fh0coM5gUHK2OjlH3gK4Vho8Jx2J62TGeGmXeibJxNGLWYYDG-5YzUR9MJI678iw2BY1Y1nXjZgUH3-umy51S9FZzEXrhyRyWup70YpeFGpR66LqJGrThyC8rsBFmcRuCw7QcoYqniUKSIgfIDI4RAJXahkY0y3ANmAQkG5LvmCc_HWCsteWJhoQ6ktqWPN-G8zmE0Li00orlZMmU8stmOioxHsyYc1mmOqu00ibiUMvTtPV404aJO_fzz39H2_zf8BJYfr7rR_U3_7gBWqLN8STc7hEb-PsUjiz_y-LhYYp-73M7_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+of+vehicle+occupancy+and+driver%27s+seat+belt+status+using+deep+learning&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Hosseini%2C+Sara&rft.au=Fathi%2C+Abdolhossein&rft.date=2023-03-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=17&rft.issue=2&rft.spage=491&rft.epage=499&rft_id=info:doi/10.1007%2Fs11760-022-02244-w&rft.externalDocID=10_1007_s11760_022_02244_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon