Automatic detection of vehicle occupancy and driver's seat belt status using deep learning
Increasing the number of personal cars on the transportation routes causes a heavy traffic load. In many countries, special lines for high occupancy vehicles have been developed to reduce the traffic load. Another issue in monitoring the transportation is the control of driving rules such as driver’...
Saved in:
Published in | Signal, image and video processing Vol. 17; no. 2; pp. 491 - 499 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increasing the number of personal cars on the transportation routes causes a heavy traffic load. In many countries, special lines for high occupancy vehicles have been developed to reduce the traffic load. Another issue in monitoring the transportation is the control of driving rules such as driver’s seat belts violation. In this paper, a new system based on deep learning models for detection of the occupants and the status of driver's seat belt is proposed. In this method, first, the windshield is detected using the YOLOv5s network. Then, the presence of passenger and driver’s seat belt rule violation is detected using deep learning-based models. To this end, the combinations of pre-trained the residual neural network with 34 layers (ResNet34) and power mean transformation layer along with spatial pyramid pooling or temporal pyramid pooling layers are employed. The proposed models were trained and evaluated on over 3500 images obtained from the Traffic Transport Organization. From the obtained results, the proposed model can detect the windshield with 99.7% accuracy. Also, the accuracy of the proposed models using independent random test set for occupant detection and drivers’ seat belt rule violations detection is 99.7% and 98.9%, respectively. The performance of the proposed method is better or comparable with state-of-the-art methods. |
---|---|
AbstractList | Increasing the number of personal cars on the transportation routes causes a heavy traffic load. In many countries, special lines for high occupancy vehicles have been developed to reduce the traffic load. Another issue in monitoring the transportation is the control of driving rules such as driver’s seat belts violation. In this paper, a new system based on deep learning models for detection of the occupants and the status of driver's seat belt is proposed. In this method, first, the windshield is detected using the YOLOv5s network. Then, the presence of passenger and driver’s seat belt rule violation is detected using deep learning-based models. To this end, the combinations of pre-trained the residual neural network with 34 layers (ResNet34) and power mean transformation layer along with spatial pyramid pooling or temporal pyramid pooling layers are employed. The proposed models were trained and evaluated on over 3500 images obtained from the Traffic Transport Organization. From the obtained results, the proposed model can detect the windshield with 99.7% accuracy. Also, the accuracy of the proposed models using independent random test set for occupant detection and drivers’ seat belt rule violations detection is 99.7% and 98.9%, respectively. The performance of the proposed method is better or comparable with state-of-the-art methods. |
Author | Fathi, Abdolhossein Hosseini, Sara |
Author_xml | – sequence: 1 givenname: Sara surname: Hosseini fullname: Hosseini, Sara organization: Department of Computer Engineering and Information Technology, Razi University – sequence: 2 givenname: Abdolhossein orcidid: 0000-0003-0387-5518 surname: Fathi fullname: Fathi, Abdolhossein email: a.fathi@razi.ac.ir organization: Department of Computer Engineering and Information Technology, Razi University |
BookMark | eNp9kE1LAzEQhoNUsNb-AU8BD55W87HdbI6l-AUFL3rxErLZ2bplm6xJtsV_b-qK3hwYZgbe9x14ztHEOgsIXVJyQwkRt4FSUZCMMHbsPM8OJ2hKy4JnVFA6-d0JP0PzELYkFWeiLMopelsO0e10bA2uIYKJrbPYNXgP763pADtjhl5b84m1rXHt2z3464AD6Igr6CIOUcch4CG0dpMioMcdaG_TdYFOG90FmP_MGXq9v3tZPWbr54en1XKdGZbLmElDqKYViJrVsqFACIAGLRkwUnJeC1pwyqUo8gXwSsiq5A3AQuaLmnMOks_Q1Zjbe_cxQIhq6wZv00vFhBBlLongScVGlfEuBA-N6n270_5TUaKOGNWIUSWE6hujOiQTH00hie0G_F_0P64vrJ53qg |
CitedBy_id | crossref_primary_10_3390_a16090400 crossref_primary_10_1109_ACCESS_2023_3312190 crossref_primary_10_3390_app14083346 |
Cites_doi | 10.1109/CCDC49329.2020.9164214 10.1016/j.neucom.2016.06.098 10.1007/s11760-020-01828-8 10.1016/j.robot.2018.12.002 10.1109/ACCESS.2021.3057723 10.1109/TNSE.2021.3065019 10.1109/IIPHDW.2018.8388338 10.1609/aaai.v33i01.33019498 10.1109/ICCVW.2019.00295 10.1007/s11760-020-01680-w 10.1177/0361198121998698 10.1109/IEMENTech51367.2020.9270058 10.17762/turcomat.v12i5.1483 10.1007/s12596-021-00770-3 10.1177/1729881420944343 10.1016/j.ijleo.2020.165818 10.1109/CVPRW53098.2021.00020 10.1109/ICCECE51280.2021.9342340 10.1109/CVPRW.2019.00124 10.1117/1.JEI.30.3.033036 10.1016/j.bdr.2020.100182 10.1007/s11760-020-01636-0 10.1007/978-3-030-66077-2_28 10.1109/AVSS.2018.8639447 10.3390/electronics10060724 10.1117/12.2600353 10.23919/FRUCT48808.2020.9087474 10.14419/ijet.v9i1.30050 10.3390/a14040114 10.1109/WACV.2016.7477599 10.1109/TPAMI.2015.2389824 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11760-022-02244-w |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1863-1711 |
EndPage | 499 |
ExternalDocumentID | 10_1007_s11760_022_02244_w |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBXA ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7S Z7X Z83 Z88 ZMTXR ~A9 AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 SJYHP |
ID | FETCH-LOGICAL-c249t-9c01a1be7d2d9f1e00eeaea92e20833d71631397645e3b79b83fee5945d333e93 |
IEDL.DBID | AGYKE |
ISSN | 1863-1703 |
IngestDate | Mon Dec 09 02:30:19 EST 2024 Thu Nov 21 21:13:15 EST 2024 Sat Dec 16 12:04:57 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Car occupant detection Deep learning Seat belt status detection Automated transport images analysis Car windshield detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-9c01a1be7d2d9f1e00eeaea92e20833d71631397645e3b79b83fee5945d333e93 |
ORCID | 0000-0003-0387-5518 |
PQID | 2777849073 |
PQPubID | 2044169 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2777849073 crossref_primary_10_1007_s11760_022_02244_w springer_journals_10_1007_s11760_022_02244_w |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Signal, image and video processing |
PublicationTitleAbbrev | SIViP |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – sequence: 0 name: Springer Nature B.V – name: Springer London |
References | YavariabdiAKusetogullariHCelikTCicekHFastUAV-NET: a multi-UAV detection algorithm for embedded platformsElectronics202110672410.3390/electronics10060724 Yi, Q., Yi, Q.: Safety belt wearing detection algorithm based on human joint points. In: 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). IEEE (2021) SriJSEstherRPLittle YOLO-SPP: a delicate real-time vehicle detection algorithmOpt. Int. J. Light Electron Opt.202122516581810.1016/j.ijleo.2020.165818 MlikiHDammakSFendriEAn improved multi-scale face detection using convolutional neural networkSIViP20201471345135310.1007/s11760-020-01680-w Saad-Bin, K., Hazela, B.: Employing real-time object detection for traffic monitoring. Available at SSRN 3834176 (2021) Kashevnik, A., Ali, A., Lashkov, I., Shilov, N.: Seat Belt fastness detection based on image analysis from vehicle in-abin camera. In: 2020 26th Conference of Open Innovations Association (FRUCT). IEEE (2020) Wshah, S., Xu, B., Bulan, O., Kumar, J., Paul P.: Deep learning architectures for domain adaptation in HOV/HOT lane enforcement. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Placid, NY, USA (2016) Chun, S., Hamidi Ghalehjegh, N., Choi, J.B., Schwarz, C.W., Gaspar, J.G., McGehee, D.V., Baek, S.S.: NADS-Net: a nimble architecture for driver and seat belt detection via convolutional neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019) Li, Y., Liang, R., Wei, W., Wang, W., Zhou, J., Li, X.: Temporal pyramid network with spatial-temporal attention for pedestrian trajectory prediction. IEEE Transactions on Network Science and Engineering (2021) ChenJChenSBianLMulti-attribute self-attention guided vehicle local region detection based on convolutional neural network architectureInt. J. Adv. Rob. Syst.20201741729881420944343 Jaworek-Korjakowska, J., Kostuch, A., Skruch, P.: SafeSO: interpretable and explainable deep learning approach for seat occupancy classification in vehicle interior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Workshops, pp. 103–112 (2021) Kumar, A., Gupta, A., Santra, B., Lalitha, K.S., Kolla, M., Gupta, M., Singh, R.: VPDS: an AI-based automated vehicle occupancy and violation detection system. In: The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence, 33(01), 9498–9503 (2019) Erlik Nowruzi, F., El Ahmar, W.A., Laganiere, R., Ghods, A.H.: In-vehicle occupancy detection with convolutional networks on thermal images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019) LeeLByunJLimJLeeJYA framework for detecting vehicle occupancy based on the occupant labeling methodJ. Adv. Transp.2020202018 Kuznetsova, A., Maleva, T., Soloviev, V.: YOLOv5 versus YOLOv3 for apple detection. Cyber-Physical Systems: Modelling and Intelligent Control, pp. 349–358 (2021) KusetogullariHYavariabdiAHallJLavessonNDIGITNET: a deep handwritten digit detection and recognition method using a new historical handwritten digit datasetBig Data Res.20212310018210.1016/j.bdr.2020.100182 YavariabdiAKusetogullariHCelikTCicekHUAV detection in airborne optic videos using dilated convolutionsJ. Opt.202150456958210.1007/s12596-021-00770-3 Kannadaguli, P.: FCOS based seatbelt detection system using thermal imaging for monitoring traffic rule violations. In: 2020 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech). IEEE (2020) NaikDSBLakshmiGSSajjaVRVenkatesuluDRaoJNDriver’s seat belt detection using CNNTurk. J. Comput. Math. Educ. (TURCOMAT)202112577678510.17762/turcomat.v12i5.1483 DuSZhangPZhangBXuHWeak and occluded vehicle detection in complex infrared environment based on improved YOLOv4IEEE Access20219256712568010.1109/ACCESS.2021.3057723 Kasper-EulaersMHahnNBergerSSebulonsenTMyrlandØEgil KummervoldPDetecting heavy goods vehicles in rest areas in winter conditions using YOLOv5Algorithms202114411410.3390/a14040114 AmanatiadisAKarakasisEBampisLPloumpisSGasteratosAViPED: on-road vehicle passenger detection for autonomous vehiclesRobot. Auton. Syst.201911228229010.1016/j.robot.2018.12.002 HuangYXuHFully convolutional network with attention modules for semantic segmentationSignal Image Video Process.20211551031103910.1007/s11760-020-01828-8 Zuraimi, M.A.B., Hafizhelmi Kamaru Zaman, F.:Vehicle detection and tracking using YOLO and DeepSORT. In: 2021 IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). IEEE (2021) Huo, P., Lv. F., Chen. S.: Flame detection method based on improved YOLO-v3. In: International Conference on Signal Image Processing and Communication (ICSIPC 2021). Vol. 11848. International Society for Optics and Photonics (2021) HosamODeep learning-based car seatbelt classifier resilient to weather conditionsInt. J. Eng. Technol.20209122923710.14419/ijet.v9i1.30050 PapakisISarkarASvetovidovAHickmanJSAbbottALConvolutional neural network-based in-vehicle occupant detection and classification method using second strategic highway research program cabin imagesTransp. Res. Rec.20212675844345710.1177/0361198121998698 YOLOv5 official release note: https://github.com/ultralytics/yolov5/releases/tag/v4.0, Accessed from Mar 2021 Mikolajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: International Interdisciplinary PhD Workshop (IIPhDW), pp. 117–122 (2018) Yang, D., Zang, Y., Liu, Q.: Study of detection method on real-time and high precision driver seatbelt. In: 2020 Chinese Control and Decision Conference. IEEE (2020) HeKZhangXRenSSunJSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Trans. Pattern Anal. Mach. Intell.20153791904191610.1109/TPAMI.2015.2389824 AhmedBGulliverTAImage splicing detection using mask-RCNNSignal Image Video Process.20201451035104210.1007/s11760-020-01636-0 ChenYTaoGRenHLinXZhangLAccurate seat belt detection in road surveillance images based on CNN and SVMNeurocomputing2018274808710.1016/j.neucom.2016.06.098 LuoJLuJYueGSeatbelt detection in road surveillance images based on improved dense residual network with two-level attention mechanismJ. Electron. Imaging202130303303610.1117/1.JEI.30.3.033036 Elihos, A., Alkan, B., Balci, B., Artan, Y.: Comparison of image classification and object detection for passenger seat belt violation detection using NIR & RGB surveillance camera images. In: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) pp. 1–6 (2018) A Amanatiadis (2244_CR3) 2019; 112 K He (2244_CR32) 2015; 37 2244_CR35 2244_CR14 2244_CR17 DSB Naik (2244_CR15) 2021; 12 J Luo (2244_CR26) 2021; 30 Y Chen (2244_CR8) 2018; 274 2244_CR4 2244_CR2 I Papakis (2244_CR5) 2021; 2675 2244_CR1 L Lee (2244_CR6) 2020; 2020 2244_CR9 2244_CR11 2244_CR12 2244_CR7 2244_CR10 2244_CR27 2244_CR28 2244_CR29 Y Huang (2244_CR31) 2021; 15 S Du (2244_CR34) 2021; 9 M Kasper-Eulaers (2244_CR20) 2021; 14 H Kusetogullari (2244_CR16) 2021; 23 O Hosam (2244_CR13) 2020; 9 A Yavariabdi (2244_CR18) 2021; 50 A Yavariabdi (2244_CR24) 2021; 10 J Chen (2244_CR25) 2020; 17 JS Sri (2244_CR19) 2021; 225 2244_CR22 2244_CR23 B Ahmed (2244_CR33) 2020; 14 2244_CR21 H Mliki (2244_CR30) 2020; 14 |
References_xml | – ident: 2244_CR10 doi: 10.1109/CCDC49329.2020.9164214 – volume: 274 start-page: 80 year: 2018 ident: 2244_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.098 contributor: fullname: Y Chen – volume: 15 start-page: 1031 issue: 5 year: 2021 ident: 2244_CR31 publication-title: Signal Image Video Process. doi: 10.1007/s11760-020-01828-8 contributor: fullname: Y Huang – volume: 112 start-page: 282 year: 2019 ident: 2244_CR3 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2018.12.002 contributor: fullname: A Amanatiadis – volume: 9 start-page: 25671 year: 2021 ident: 2244_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3057723 contributor: fullname: S Du – volume: 2020 start-page: 1 year: 2020 ident: 2244_CR6 publication-title: J. Adv. Transp. contributor: fullname: L Lee – ident: 2244_CR35 doi: 10.1109/TNSE.2021.3065019 – ident: 2244_CR23 – ident: 2244_CR29 doi: 10.1109/IIPHDW.2018.8388338 – ident: 2244_CR27 – ident: 2244_CR2 doi: 10.1609/aaai.v33i01.33019498 – ident: 2244_CR11 doi: 10.1109/ICCVW.2019.00295 – volume: 14 start-page: 1345 issue: 7 year: 2020 ident: 2244_CR30 publication-title: SIViP doi: 10.1007/s11760-020-01680-w contributor: fullname: H Mliki – volume: 2675 start-page: 443 issue: 8 year: 2021 ident: 2244_CR5 publication-title: Transp. Res. Rec. doi: 10.1177/0361198121998698 contributor: fullname: I Papakis – ident: 2244_CR12 doi: 10.1109/IEMENTech51367.2020.9270058 – volume: 12 start-page: 776 issue: 5 year: 2021 ident: 2244_CR15 publication-title: Turk. J. Comput. Math. Educ. (TURCOMAT) doi: 10.17762/turcomat.v12i5.1483 contributor: fullname: DSB Naik – volume: 50 start-page: 569 issue: 4 year: 2021 ident: 2244_CR18 publication-title: J. Opt. doi: 10.1007/s12596-021-00770-3 contributor: fullname: A Yavariabdi – volume: 17 start-page: 172988142094434 issue: 4 year: 2020 ident: 2244_CR25 publication-title: Int. J. Adv. Rob. Syst. doi: 10.1177/1729881420944343 contributor: fullname: J Chen – volume: 225 start-page: 165818 year: 2021 ident: 2244_CR19 publication-title: Opt. Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2020.165818 contributor: fullname: JS Sri – ident: 2244_CR7 doi: 10.1109/CVPRW53098.2021.00020 – ident: 2244_CR14 doi: 10.1109/ICCECE51280.2021.9342340 – ident: 2244_CR22 – ident: 2244_CR4 doi: 10.1109/CVPRW.2019.00124 – volume: 30 start-page: 033036 issue: 3 year: 2021 ident: 2244_CR26 publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.30.3.033036 contributor: fullname: J Luo – volume: 23 start-page: 100182 year: 2021 ident: 2244_CR16 publication-title: Big Data Res. doi: 10.1016/j.bdr.2020.100182 contributor: fullname: H Kusetogullari – volume: 14 start-page: 1035 issue: 5 year: 2020 ident: 2244_CR33 publication-title: Signal Image Video Process. doi: 10.1007/s11760-020-01636-0 contributor: fullname: B Ahmed – ident: 2244_CR28 doi: 10.1007/978-3-030-66077-2_28 – ident: 2244_CR9 doi: 10.1109/AVSS.2018.8639447 – volume: 10 start-page: 724 issue: 6 year: 2021 ident: 2244_CR24 publication-title: Electronics doi: 10.3390/electronics10060724 contributor: fullname: A Yavariabdi – ident: 2244_CR17 doi: 10.1117/12.2600353 – ident: 2244_CR21 doi: 10.23919/FRUCT48808.2020.9087474 – volume: 9 start-page: 229 issue: 1 year: 2020 ident: 2244_CR13 publication-title: Int. J. Eng. Technol. doi: 10.14419/ijet.v9i1.30050 contributor: fullname: O Hosam – volume: 14 start-page: 114 issue: 4 year: 2021 ident: 2244_CR20 publication-title: Algorithms doi: 10.3390/a14040114 contributor: fullname: M Kasper-Eulaers – ident: 2244_CR1 doi: 10.1109/WACV.2016.7477599 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 2244_CR32 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 contributor: fullname: K He |
SSID | ssj0000327868 ssib029852030 |
Score | 2.3535895 |
Snippet | Increasing the number of personal cars on the transportation routes causes a heavy traffic load. In many countries, special lines for high occupancy vehicles... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 491 |
SubjectTerms | Accuracy Artificial neural networks Automobiles Computer Imaging Computer Science Deep learning Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Seat belts Signal,Image and Speech Processing Transportation networks Vision Windshields |
Title | Automatic detection of vehicle occupancy and driver's seat belt status using deep learning |
URI | https://link.springer.com/article/10.1007/s11760-022-02244-w https://www.proquest.com/docview/2777849073 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvTgoypWa9mD4EFTkt0kmz2mYi2KPbVQvYRNMqmgpKVNFfz17uZBfB48JwzszuzMl-w33wCcMWolUk8NwEiiYQsaGcKM0YhCqeofTSwW6_8d90N3MLZvJ86k7uPOye7VjWSeqOteN4u7pqHJ57rs2MbbOmyo2qNP44Z_83B3XYURFZ5DzRIV5wmZUe4VTXGeqwU5TVa2z_xu-GuJqnHnt6vSvAL1d2BU9fEUxJPn7ioLu9H7T1nH_yxuF7ZLREr8IoT2YA3TJuxU0x5IefibsPVJunAfHv1VNsvlXkmMWc7nSsksIa_4pM2QWa5erDI3kWlM4oWmf5wviR5XQUJ8yYjuZFotiebdT5UJnJNygMX0AMb969HVwCjnNBiR-njLDBGZlrRC5DGNRWKhaSJKlIIiVQBPOVthPg00XdtBFnIReixBdITtxIwxFOwQGuksxSMgCtygozXcLGbZGEohOY0UxJQOl6qM0hZcVK4J5oUcR1ALL-tNDNQGBvkmBm8taFfeC8qjuQwo59yzhUptLbisvFE__tva8f9eP4FNPZq-4Ku1oZEtVniqAEwWdlTA9nu9YacM3A6sj6n_Aaj65nk |
link.rule.ids | 314,780,784,27924,27925,41081,41523,42150,42592,52111,52234 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADEgNESuwkjscKURVoO7VSxRI58QUGlFRNSv8-dj5UQDAwx7rhfL57ju_eA7hm1EmkUQ3AWKLlChpbwlZoxZHU9Y8mDlPmf8do7A-m7tPMm9VDYXnT7d48SZaZej3s5nDftkz3uak7rrXahC0dccLoFkxpr4kiKgKP2jUoLvMxozyoZuIC3_Bx2qyenvnd7PcKtYadP15KywLUP4C9GjmSXrXVh7CBaRv2G1UGUh_SNux-oRg8gpfesshKWlaisCj7rlKSJeQD34wZkpUswzrDEpkqohamTeMmJ0ZWgkT4XhAzcbTMiemPf9UmcE5qoYnXY5j2Hyb3A6vWU7BifckqLBHbjnQi5IoqkTho24gSpaBINRDTm6KxmQGEvushi7iIApYgesL1FGMMBTuBVpqleApEgxD0DNeawxwXIykkp7GGgtLjUpc72oHbxofhvKLNCNcEycbjofZ2WHo8XHWg27g5rI9QHlLOeeDquzvrwF3j-vXnv62d_W_5FWwPJqNhOHwcP5_DjpGTr3rMutAqFku80KCjiC7LGPsEqw3Kww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAc2BFl9QGJA0RN7KSOjxVQla3iQKWKS-TEEzigtKIp_X08WVRAcOAcaw7jZZ7j994AnArupZq6BmCi0fEVTxzlGnSSWNv6x1NPGPrf8dBv9wb-7TAYflHxF2z3-kmy1DSQS1OWt8Ymbc2Fb55suw4x0akG-c5sEZaoFNFKH_BOvaK4CgPuVgC5OJsFl2Gpjwvb5M3pikpJ83vY79VqDkF_vJoWxai7AWsVimSdcto3YQGzLVivOzSwasNuweoXu8FteO5M81Fh0coM5gUHK2OjlH3gK4Vho8Jx2J62TGeGmXeibJxNGLWYYDG-5YzUR9MJI678iw2BY1Y1nXjZgUH3-umy51S9FZzEXrhyRyWup70YpeFGpR66LqJGrThyC8rsBFmcRuCw7QcoYqniUKSIgfIDI4RAJXahkY0y3ANmAQkG5LvmCc_HWCsteWJhoQ6ktqWPN-G8zmE0Li00orlZMmU8stmOioxHsyYc1mmOqu00ibiUMvTtPV404aJO_fzz39H2_zf8BJYfr7rR_U3_7gBWqLN8STc7hEb-PsUjiz_y-LhYYp-73M7_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+of+vehicle+occupancy+and+driver%27s+seat+belt+status+using+deep+learning&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Hosseini%2C+Sara&rft.au=Fathi%2C+Abdolhossein&rft.date=2023-03-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=17&rft.issue=2&rft.spage=491&rft.epage=499&rft_id=info:doi/10.1007%2Fs11760-022-02244-w&rft.externalDocID=10_1007_s11760_022_02244_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |