Hierarchical fusion convolutional neural networks for SAR image segmentation

•We propose a HIFCNN model for SAR images segmentation.•HIFCNN model sets several different-sized receptive fields.•HIFCNN model extracts hierarchical features.•HIFCNN model integrates hierarchical features based on the Dempster-Shafer theory.•HIFCNN model is robust against speckle and preserves ima...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 147; pp. 115 - 123
Main Authors Jiang, Yinyin, Li, Ming, Zhang, Peng, Tan, Xiaofeng, Song, Wanying
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2021.04.005

Cover

Abstract •We propose a HIFCNN model for SAR images segmentation.•HIFCNN model sets several different-sized receptive fields.•HIFCNN model extracts hierarchical features.•HIFCNN model integrates hierarchical features based on the Dempster-Shafer theory.•HIFCNN model is robust against speckle and preserves image structure well. Convolutional neural network (CNN) has achieved promising results in image segmentation recently. However, for the segmentation of synthetic aperture radar (SAR) images with complicated scene, the single receptive field in CNN has a limited ability to effectively capture structural and regional information at the same time. In this paper, we propose a hierarchical fusion CNN (HIFCNN) model for SAR image segmentation. At each convolutional layer, HIFCNN sets several different-sized receptive fields, and thus extracts hierarchical features. Concretely, the larger-sized receptive field captures regional information and is robust against speckle, while the smaller one preserves the structural information well. Then, based on the Dempster-Shafer evidential theory, the proposed hierarchical network, HIFCNN, implements a decision-level fusion to integrate these hierarchical features. In this way, the structural and regional information can be accurately captured by different receptive fields, which is beneficial for edge location, structure preservation and region homogeneity in SAR image segmentation. The effectiveness of HIFCNN model is demonstrated by the application to the segmentation of the simulated images and real SAR images.
AbstractList •We propose a HIFCNN model for SAR images segmentation.•HIFCNN model sets several different-sized receptive fields.•HIFCNN model extracts hierarchical features.•HIFCNN model integrates hierarchical features based on the Dempster-Shafer theory.•HIFCNN model is robust against speckle and preserves image structure well. Convolutional neural network (CNN) has achieved promising results in image segmentation recently. However, for the segmentation of synthetic aperture radar (SAR) images with complicated scene, the single receptive field in CNN has a limited ability to effectively capture structural and regional information at the same time. In this paper, we propose a hierarchical fusion CNN (HIFCNN) model for SAR image segmentation. At each convolutional layer, HIFCNN sets several different-sized receptive fields, and thus extracts hierarchical features. Concretely, the larger-sized receptive field captures regional information and is robust against speckle, while the smaller one preserves the structural information well. Then, based on the Dempster-Shafer evidential theory, the proposed hierarchical network, HIFCNN, implements a decision-level fusion to integrate these hierarchical features. In this way, the structural and regional information can be accurately captured by different receptive fields, which is beneficial for edge location, structure preservation and region homogeneity in SAR image segmentation. The effectiveness of HIFCNN model is demonstrated by the application to the segmentation of the simulated images and real SAR images.
Convolutional neural network (CNN) has achieved promising results in image segmentation recently. However, for the segmentation of synthetic aperture radar (SAR) images with complicated scene, the single receptive field in CNN has a limited ability to effectively capture structural and regional information at the same time. In this paper, we propose a hierarchical fusion CNN (HIFCNN) model for SAR image segmentation. At each convolutional layer, HIFCNN sets several different-sized receptive fields, and thus extracts hierarchical features. Concretely, the larger-sized receptive field captures regional information and is robust against speckle, while the smaller one preserves the structural information well. Then, based on the Dempster-Shafer evidential theory, the proposed hierarchical network, HIFCNN, implements a decision-level fusion to integrate these hierarchical features. In this way, the structural and regional information can be accurately captured by different receptive fields, which is beneficial for edge location, structure preservation and region homogeneity in SAR image segmentation. The effectiveness of HIFCNN model is demonstrated by the application to the segmentation of the simulated images and real SAR images.
Author Li, Ming
Zhang, Peng
Song, Wanying
Tan, Xiaofeng
Jiang, Yinyin
Author_xml – sequence: 1
  givenname: Yinyin
  surname: Jiang
  fullname: Jiang, Yinyin
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China
– sequence: 2
  givenname: Ming
  surname: Li
  fullname: Li, Ming
  email: liming@xidian.edu.cn
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China
– sequence: 3
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China
– sequence: 4
  givenname: Xiaofeng
  surname: Tan
  fullname: Tan, Xiaofeng
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China
– sequence: 5
  givenname: Wanying
  surname: Song
  fullname: Song, Wanying
  organization: Remote Sensing Image Processing and Fusion Group, School of Electronics Engineering, Xidian University, Xi'an 710071, China
BookMark eNqFkF1LwzAUhoNMcJv-Ay8KXreepOmXF8IY6oSB4Md1SNPTmdo1M2kn_nsz65UXenVCeN6Xc54ZmXSmQ0LOKUQUaHrZRDvZW1QRA0Yj4BFAckSmNM9YmMWcT8jUY1mYp0lyQmbONQCQxkU-JeuVRiutetVKtkE9OG26QJlub9qh92__2eFgv0f_YeybC2pjg6fFY6C3coOBw80Wu14e4FNyXMvW4dnPnJOX25vn5SpcP9zdLxfrUDFe9GGRshKyFFAmmEkoJE_KIlEFBayLSpYxj2vMocwrxVTBYsrzKgYJnJcZVWkaz8nF2Luz5n1A14vGDNbv6gRLEkYZ-C5PXY2UssY5i7VQetyzt1K3goI42BONGO2Jgz0BXHh7Psx_hXfWH2w__4tdjzH05--9WuGUxk5hpT3ai8rovwu-AAMyjfQ
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3298492
crossref_primary_10_1109_TGRS_2022_3202701
crossref_primary_10_1109_TGRS_2022_3141125
crossref_primary_10_1080_01431161_2024_2311794
crossref_primary_10_1109_TGRS_2022_3187064
Cites_doi 10.1016/j.patrec.2018.04.035
10.1109/TGRS.2015.2478379
10.1016/j.eswa.2012.01.030
10.1016/j.patrec.2018.05.024
10.1007/s11263-019-01223-y
10.1016/j.patcog.2019.107110
10.1016/j.isprsjprs.2020.03.001
10.1016/j.patrec.2016.03.032
10.1016/j.patrec.2019.11.040
10.1109/LGRS.2015.2457334
10.1109/TMI.2016.2548501
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 2021
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2021.04.005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 123
ExternalDocumentID 10_1016_j_patrec_2021_04_005
S0167865521001355
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TK
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c249t-962b0760ea5e7a09a45b95c910ef9dab343fe80b8dc2c923148d30a044b71c663
IEDL.DBID AIKHN
ISSN 0167-8655
IngestDate Fri Jul 25 01:31:30 EDT 2025
Tue Jul 01 02:40:43 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Fri Feb 23 02:41:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hierarchical fusion convolutional neural networks
Image segmentation
Dempster-Shafer evidential theory
Synthetic aperture radar
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-962b0760ea5e7a09a45b95c910ef9dab343fe80b8dc2c923148d30a044b71c663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2552120910
PQPubID 2047552
PageCount 9
ParticipantIDs proquest_journals_2552120910
crossref_citationtrail_10_1016_j_patrec_2021_04_005
crossref_primary_10_1016_j_patrec_2021_04_005
elsevier_sciencedirect_doi_10_1016_j_patrec_2021_04_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Malmgren-Hansen, Nobel-Jorgensen (bib0015) 2016
Ren, Song, Tian, Zhang (bib0025) 2015; 12
Krizhevsky, Sutskever, Hinton (bib0014) 2012
Ioffe, Szegedy (bib0026) 2015; 1
Guan, Huang, Zhong, Zheng, Zheng, Yang (bib0008) 2020; 131
Karen, Andrew (bib0024) 2015
Zhang, Yang, Fang, Ai (bib0021) 2020; 163
Khaire, Kumar, Imran (bib0013) 2018; 115
Zeng, Zhao, Ge, Shen (bib0010) 2019; 119
Moeskops, Viergever, Mendrik, De Vries, Benders, Isgum (bib0019) 2016; 35
Romero, Gatta, Camps-valls, Member (bib0023) 2016; 54
Zhang, Li, Wu, An, Jia (bib0006) 2016; 78
Innamorati, Ritschel, Weyrich, Mitra (bib0027) 2020; 128
Casanovas, Merigó (bib0020) 2012; 39
Li, Ma, Jiao, Liu, Sun, Zhao (bib0017) 2020; 100
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0018) 2015
Ronghua, Jianghai, Jiaming, Kaiming, Licheng, Rustam (bib0022) 2020; 194
Zhang (10.1016/j.patrec.2021.04.005_bib0006) 2016; 78
Li (10.1016/j.patrec.2021.04.005_bib0017) 2020; 100
Krizhevsky (10.1016/j.patrec.2021.04.005_bib0014) 2012
Ioffe (10.1016/j.patrec.2021.04.005_bib0026) 2015; 1
Szegedy (10.1016/j.patrec.2021.04.005_bib0018) 2015
Moeskops (10.1016/j.patrec.2021.04.005_bib0019) 2016; 35
Zhang (10.1016/j.patrec.2021.04.005_bib0021) 2020; 163
Ronghua (10.1016/j.patrec.2021.04.005_bib0022) 2020; 194
Karen (10.1016/j.patrec.2021.04.005_bib0024) 2015
Romero (10.1016/j.patrec.2021.04.005_bib0023) 2016; 54
Malmgren-Hansen (10.1016/j.patrec.2021.04.005_bib0015) 2016
Guan (10.1016/j.patrec.2021.04.005_bib0008) 2020; 131
Zeng (10.1016/j.patrec.2021.04.005_bib0010) 2019; 119
Ren (10.1016/j.patrec.2021.04.005_bib0025) 2015; 12
Innamorati (10.1016/j.patrec.2021.04.005_bib0027) 2020; 128
Casanovas (10.1016/j.patrec.2021.04.005_bib0020) 2012; 39
Khaire (10.1016/j.patrec.2021.04.005_bib0013) 2018; 115
References_xml – volume: 115
  start-page: 107
  year: 2018
  end-page: 116
  ident: bib0013
  article-title: Combining CNN streams of RGB-D and skeletal data for human activity recognition
  publication-title: Pattern Recognit. Lett.
– volume: 39
  start-page: 7138
  year: 2012
  end-page: 7149
  ident: bib0020
  article-title: Fuzzy aggregation operators in decision making with Dempster-Shafer belief structure
  publication-title: Expert Syst. Appl.
– volume: 194
  year: 2020
  ident: bib0022
  article-title: Dense connection and depthwise separable convolution based CNN for polarimetric SAR image classification
  publication-title: Knowledge-Based Syst
– volume: 128
  start-page: 773
  year: 2020
  end-page: 782
  ident: bib0027
  article-title: Learning on the Edge : Investigating Boundary Filters in CNNs
  publication-title: Int. J. Comput. Vis.
– volume: 78
  start-page: 48
  year: 2016
  end-page: 55
  ident: bib0006
  article-title: Unsupervised SAR image segmentation using high-order conditional random fields model based on product-of-experts
  publication-title: Pattern Recognit. Lett.
– volume: 35
  start-page: 1252
  year: 2016
  end-page: 1261
  ident: bib0019
  article-title: Automatic Segmentation of MR Brain Images with a Convolutional Neural Network
  publication-title: IEEE Trans. Med. Imaging.
– volume: 163
  start-page: 36
  year: 2020
  end-page: 48
  ident: bib0021
  article-title: Region level SAR image classification using deep features and spatial constraints
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1
  year: 2015
  end-page: 14
  ident: bib0024
  article-title: Very Deep Convolutional Networks For Large-Scale Image Recognition
  publication-title: 32nd Int. Conf. Mach. Learn. ICML 2015
– volume: 12
  start-page: 2208
  year: 2015
  end-page: 2212
  ident: bib0025
  article-title: Estimation of the Equivalent Number of Looks in SAR Images Based on Singular Value Decomposition
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 100
  year: 2020
  ident: bib0017
  article-title: Complex Contourlet-CNN for polarimetric SAR image classification
  publication-title: Pattern Recognit
– volume: 131
  start-page: 38
  year: 2020
  end-page: 45
  ident: bib0008
  article-title: Thorax disease classification with attention guided convolutional neural network
  publication-title: Pattern Recognit. Lett.
– volume: 1
  start-page: 448
  year: 2015
  end-page: 456
  ident: bib0026
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: 32nd Int. Conf. Mach. Learn. ICML 2015
– start-page: 231
  year: 2016
  end-page: 236
  ident: bib0015
  article-title: Convolutional neural networks for SAR image segmentation
  publication-title: 2015 IEEE Int. Symp. Signal Process. Inf. Technol. ISSPIT 2015
– volume: 54
  start-page: 1349
  year: 2016
  end-page: 1362
  ident: bib0023
  article-title: Unsupervised Deep Feature Extraction for Remote Sensing Image Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0014
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0018
  article-title: Going deeper with convolutions
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07-12-June
– volume: 119
  start-page: 180
  year: 2019
  end-page: 186
  ident: bib0010
  article-title: Fast cascade face detection with pyramid network
  publication-title: Pattern Recognit. Lett.
– start-page: 1
  year: 2015
  ident: 10.1016/j.patrec.2021.04.005_bib0018
  article-title: Going deeper with convolutions
– volume: 115
  start-page: 107
  year: 2018
  ident: 10.1016/j.patrec.2021.04.005_bib0013
  article-title: Combining CNN streams of RGB-D and skeletal data for human activity recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.04.035
– volume: 1
  start-page: 448
  year: 2015
  ident: 10.1016/j.patrec.2021.04.005_bib0026
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 54
  start-page: 1349
  year: 2016
  ident: 10.1016/j.patrec.2021.04.005_bib0023
  article-title: Unsupervised Deep Feature Extraction for Remote Sensing Image Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2478379
– volume: 194
  year: 2020
  ident: 10.1016/j.patrec.2021.04.005_bib0022
  article-title: Dense connection and depthwise separable convolution based CNN for polarimetric SAR image classification
  publication-title: Knowledge-Based Syst
– start-page: 1097
  year: 2012
  ident: 10.1016/j.patrec.2021.04.005_bib0014
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 39
  start-page: 7138
  year: 2012
  ident: 10.1016/j.patrec.2021.04.005_bib0020
  article-title: Fuzzy aggregation operators in decision making with Dempster-Shafer belief structure
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.030
– volume: 119
  start-page: 180
  year: 2019
  ident: 10.1016/j.patrec.2021.04.005_bib0010
  article-title: Fast cascade face detection with pyramid network
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.05.024
– volume: 128
  start-page: 773
  year: 2020
  ident: 10.1016/j.patrec.2021.04.005_bib0027
  article-title: Learning on the Edge : Investigating Boundary Filters in CNNs
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01223-y
– start-page: 1
  year: 2015
  ident: 10.1016/j.patrec.2021.04.005_bib0024
  article-title: Very Deep Convolutional Networks For Large-Scale Image Recognition
– volume: 100
  year: 2020
  ident: 10.1016/j.patrec.2021.04.005_bib0017
  article-title: Complex Contourlet-CNN for polarimetric SAR image classification
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.107110
– volume: 163
  start-page: 36
  year: 2020
  ident: 10.1016/j.patrec.2021.04.005_bib0021
  article-title: Region level SAR image classification using deep features and spatial constraints
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.03.001
– volume: 78
  start-page: 48
  year: 2016
  ident: 10.1016/j.patrec.2021.04.005_bib0006
  article-title: Unsupervised SAR image segmentation using high-order conditional random fields model based on product-of-experts
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.03.032
– volume: 131
  start-page: 38
  year: 2020
  ident: 10.1016/j.patrec.2021.04.005_bib0008
  article-title: Thorax disease classification with attention guided convolutional neural network
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.11.040
– volume: 12
  start-page: 2208
  year: 2015
  ident: 10.1016/j.patrec.2021.04.005_bib0025
  article-title: Estimation of the Equivalent Number of Looks in SAR Images Based on Singular Value Decomposition
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2457334
– volume: 35
  start-page: 1252
  year: 2016
  ident: 10.1016/j.patrec.2021.04.005_bib0019
  article-title: Automatic Segmentation of MR Brain Images with a Convolutional Neural Network
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2016.2548501
– start-page: 231
  year: 2016
  ident: 10.1016/j.patrec.2021.04.005_bib0015
  article-title: Convolutional neural networks for SAR image segmentation
SSID ssj0006398
Score 2.3373618
Snippet •We propose a HIFCNN model for SAR images segmentation.•HIFCNN model sets several different-sized receptive fields.•HIFCNN model extracts hierarchical...
Convolutional neural network (CNN) has achieved promising results in image segmentation recently. However, for the segmentation of synthetic aperture radar...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Artificial neural networks
Decision theory
Dempster-Shafer evidential theory
Feature extraction
Hierarchical fusion convolutional neural networks
Homogeneity
Image processing
Image segmentation
Neural networks
Radar imaging
Receptive field
Synthetic aperture radar
Title Hierarchical fusion convolutional neural networks for SAR image segmentation
URI https://dx.doi.org/10.1016/j.patrec.2021.04.005
https://www.proquest.com/docview/2552120910
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vejBx6r4Jgevdbt5dJvjIkp94EFd8BaSNJGVtYq7Xv3tZtpUVIQFT6UhU8pkMjNNv_kG4NgLLVJnsiTLOU-48VkipadJCC5W6Fwj9ySiLW6yYsQvH8TDApy2tTAIq4y-v_HptbeOI72ozd7reNy7QwA9llVSpBEKYXMRliiTmejA0vDiqrj5csghCOctxTcKtBV0NcwLj5wdchnSfs15in3s_o5Qv3x1HYDO12E1Zo5k2LzcBiy4qgtrbVcGEjdpF1a-UQxuwnUxxhLjuuPJhPh3PBwjCDWPJhcGkdKyvtSA8CkJaSy5G96S8XPwNWTqHp9jfVK1BaPzs_vTIokdFBIbPqtmicyowV9vTgs30KnUXBgpbEgRnJelNowz7_LU5KWlFlM9npcs1SnnZtC3IRnZhk71UrkdIDbMYCYtqdCW52ZgghxjsvSWsb73chdYqzVlI704drmYqBZH9qQaXSvUtUq5CrreheRL6rWh15gzf9AuiPphJipEgDmSB-36qbhNp4qi9VBMmfb-_eB9WMa7BsJ7AJ3Z27s7DInKzBzB4slH_yia4yeLi-gJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADb8R45sC1rGuSPo4TYhowODAm7RYlaYKKxkBsu_LbiduUl5CQOFVKnapyHNtNP38GOLVc8tCoOIhTxgKmbBxkmY0CF1w0l6lE7klEW9zGvSG7GvHRApzXtTAIq_S-v_Lppbf2Iy2vzdZLUbQGCKDHssoIaYRc2FyEJcZpgri-s7dPnIcLwWlN8I3idf1cCfLCA2eDTIZRu2Q8xS52v8enH566DD_dDVjzeSPpVK-2CQtmsgXrdU8G4rfoFqx-IRjchn6vwALjst_JmNg5Ho0RBJp7g3ODSGhZXko4-JS4JJYMOnekeHKehkzNw5OvTprswLB7cX_eC3z_hEC7j6pZkMWRwh9vRnKTyDCTjKuMa5cgGJvlUlFGrUlDleY60pjosTSnoQwZU0lbu1RkFxqT54nZA6KdBFVhHnGpWaoS5eZRmuVWU9q2NmsCrbUmtCcXxx4XY1GjyB5FpWuBuhYhE07XTQg-Zr1U5Bp_yCf1gohvRiKc__9j5mG9fsJv0qmI0HYiTJj2__3gE1ju3d_0Rf_y9voAVvBOBeY9hMbsdW6OXMoyU8elSb4Dgb3o1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+fusion+convolutional+neural+networks+for+SAR+image+segmentation&rft.jtitle=Pattern+recognition+letters&rft.au=Jiang%2C+Yinyin&rft.au=Li%2C+Ming&rft.au=Zhang%2C+Peng&rft.au=Tan%2C+Xiaofeng&rft.date=2021-07-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=147&rft.spage=115&rft_id=info:doi/10.1016%2Fj.patrec.2021.04.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon