Hierarchical fusion convolutional neural networks for SAR image segmentation
•We propose a HIFCNN model for SAR images segmentation.•HIFCNN model sets several different-sized receptive fields.•HIFCNN model extracts hierarchical features.•HIFCNN model integrates hierarchical features based on the Dempster-Shafer theory.•HIFCNN model is robust against speckle and preserves ima...
Saved in:
Published in | Pattern recognition letters Vol. 147; pp. 115 - 123 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0167-8655 1872-7344 |
DOI | 10.1016/j.patrec.2021.04.005 |
Cover
Abstract | •We propose a HIFCNN model for SAR images segmentation.•HIFCNN model sets several different-sized receptive fields.•HIFCNN model extracts hierarchical features.•HIFCNN model integrates hierarchical features based on the Dempster-Shafer theory.•HIFCNN model is robust against speckle and preserves image structure well.
Convolutional neural network (CNN) has achieved promising results in image segmentation recently. However, for the segmentation of synthetic aperture radar (SAR) images with complicated scene, the single receptive field in CNN has a limited ability to effectively capture structural and regional information at the same time. In this paper, we propose a hierarchical fusion CNN (HIFCNN) model for SAR image segmentation. At each convolutional layer, HIFCNN sets several different-sized receptive fields, and thus extracts hierarchical features. Concretely, the larger-sized receptive field captures regional information and is robust against speckle, while the smaller one preserves the structural information well. Then, based on the Dempster-Shafer evidential theory, the proposed hierarchical network, HIFCNN, implements a decision-level fusion to integrate these hierarchical features. In this way, the structural and regional information can be accurately captured by different receptive fields, which is beneficial for edge location, structure preservation and region homogeneity in SAR image segmentation. The effectiveness of HIFCNN model is demonstrated by the application to the segmentation of the simulated images and real SAR images. |
---|---|
AbstractList | •We propose a HIFCNN model for SAR images segmentation.•HIFCNN model sets several different-sized receptive fields.•HIFCNN model extracts hierarchical features.•HIFCNN model integrates hierarchical features based on the Dempster-Shafer theory.•HIFCNN model is robust against speckle and preserves image structure well.
Convolutional neural network (CNN) has achieved promising results in image segmentation recently. However, for the segmentation of synthetic aperture radar (SAR) images with complicated scene, the single receptive field in CNN has a limited ability to effectively capture structural and regional information at the same time. In this paper, we propose a hierarchical fusion CNN (HIFCNN) model for SAR image segmentation. At each convolutional layer, HIFCNN sets several different-sized receptive fields, and thus extracts hierarchical features. Concretely, the larger-sized receptive field captures regional information and is robust against speckle, while the smaller one preserves the structural information well. Then, based on the Dempster-Shafer evidential theory, the proposed hierarchical network, HIFCNN, implements a decision-level fusion to integrate these hierarchical features. In this way, the structural and regional information can be accurately captured by different receptive fields, which is beneficial for edge location, structure preservation and region homogeneity in SAR image segmentation. The effectiveness of HIFCNN model is demonstrated by the application to the segmentation of the simulated images and real SAR images. Convolutional neural network (CNN) has achieved promising results in image segmentation recently. However, for the segmentation of synthetic aperture radar (SAR) images with complicated scene, the single receptive field in CNN has a limited ability to effectively capture structural and regional information at the same time. In this paper, we propose a hierarchical fusion CNN (HIFCNN) model for SAR image segmentation. At each convolutional layer, HIFCNN sets several different-sized receptive fields, and thus extracts hierarchical features. Concretely, the larger-sized receptive field captures regional information and is robust against speckle, while the smaller one preserves the structural information well. Then, based on the Dempster-Shafer evidential theory, the proposed hierarchical network, HIFCNN, implements a decision-level fusion to integrate these hierarchical features. In this way, the structural and regional information can be accurately captured by different receptive fields, which is beneficial for edge location, structure preservation and region homogeneity in SAR image segmentation. The effectiveness of HIFCNN model is demonstrated by the application to the segmentation of the simulated images and real SAR images. |
Author | Li, Ming Zhang, Peng Song, Wanying Tan, Xiaofeng Jiang, Yinyin |
Author_xml | – sequence: 1 givenname: Yinyin surname: Jiang fullname: Jiang, Yinyin organization: National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China – sequence: 2 givenname: Ming surname: Li fullname: Li, Ming email: liming@xidian.edu.cn organization: National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China – sequence: 3 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China – sequence: 4 givenname: Xiaofeng surname: Tan fullname: Tan, Xiaofeng organization: National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China – sequence: 5 givenname: Wanying surname: Song fullname: Song, Wanying organization: Remote Sensing Image Processing and Fusion Group, School of Electronics Engineering, Xidian University, Xi'an 710071, China |
BookMark | eNqFkF1LwzAUhoNMcJv-Ay8KXreepOmXF8IY6oSB4Md1SNPTmdo1M2kn_nsz65UXenVCeN6Xc54ZmXSmQ0LOKUQUaHrZRDvZW1QRA0Yj4BFAckSmNM9YmMWcT8jUY1mYp0lyQmbONQCQxkU-JeuVRiutetVKtkE9OG26QJlub9qh92__2eFgv0f_YeybC2pjg6fFY6C3coOBw80Wu14e4FNyXMvW4dnPnJOX25vn5SpcP9zdLxfrUDFe9GGRshKyFFAmmEkoJE_KIlEFBayLSpYxj2vMocwrxVTBYsrzKgYJnJcZVWkaz8nF2Luz5n1A14vGDNbv6gRLEkYZ-C5PXY2UssY5i7VQetyzt1K3goI42BONGO2Jgz0BXHh7Psx_hXfWH2w__4tdjzH05--9WuGUxk5hpT3ai8rovwu-AAMyjfQ |
CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3298492 crossref_primary_10_1109_TGRS_2022_3202701 crossref_primary_10_1109_TGRS_2022_3141125 crossref_primary_10_1080_01431161_2024_2311794 crossref_primary_10_1109_TGRS_2022_3187064 |
Cites_doi | 10.1016/j.patrec.2018.04.035 10.1109/TGRS.2015.2478379 10.1016/j.eswa.2012.01.030 10.1016/j.patrec.2018.05.024 10.1007/s11263-019-01223-y 10.1016/j.patcog.2019.107110 10.1016/j.isprsjprs.2020.03.001 10.1016/j.patrec.2016.03.032 10.1016/j.patrec.2019.11.040 10.1109/LGRS.2015.2457334 10.1109/TMI.2016.2548501 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Jul 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jul 2021 |
DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.patrec.2021.04.005 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 123 |
ExternalDocumentID | 10_1016_j_patrec_2021_04_005 S0167865521001355 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TK 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c249t-962b0760ea5e7a09a45b95c910ef9dab343fe80b8dc2c923148d30a044b71c663 |
IEDL.DBID | AIKHN |
ISSN | 0167-8655 |
IngestDate | Fri Jul 25 01:31:30 EDT 2025 Tue Jul 01 02:40:43 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Fri Feb 23 02:41:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hierarchical fusion convolutional neural networks Image segmentation Dempster-Shafer evidential theory Synthetic aperture radar |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-962b0760ea5e7a09a45b95c910ef9dab343fe80b8dc2c923148d30a044b71c663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2552120910 |
PQPubID | 2047552 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2552120910 crossref_citationtrail_10_1016_j_patrec_2021_04_005 crossref_primary_10_1016_j_patrec_2021_04_005 elsevier_sciencedirect_doi_10_1016_j_patrec_2021_04_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Malmgren-Hansen, Nobel-Jorgensen (bib0015) 2016 Ren, Song, Tian, Zhang (bib0025) 2015; 12 Krizhevsky, Sutskever, Hinton (bib0014) 2012 Ioffe, Szegedy (bib0026) 2015; 1 Guan, Huang, Zhong, Zheng, Zheng, Yang (bib0008) 2020; 131 Karen, Andrew (bib0024) 2015 Zhang, Yang, Fang, Ai (bib0021) 2020; 163 Khaire, Kumar, Imran (bib0013) 2018; 115 Zeng, Zhao, Ge, Shen (bib0010) 2019; 119 Moeskops, Viergever, Mendrik, De Vries, Benders, Isgum (bib0019) 2016; 35 Romero, Gatta, Camps-valls, Member (bib0023) 2016; 54 Zhang, Li, Wu, An, Jia (bib0006) 2016; 78 Innamorati, Ritschel, Weyrich, Mitra (bib0027) 2020; 128 Casanovas, Merigó (bib0020) 2012; 39 Li, Ma, Jiao, Liu, Sun, Zhao (bib0017) 2020; 100 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0018) 2015 Ronghua, Jianghai, Jiaming, Kaiming, Licheng, Rustam (bib0022) 2020; 194 Zhang (10.1016/j.patrec.2021.04.005_bib0006) 2016; 78 Li (10.1016/j.patrec.2021.04.005_bib0017) 2020; 100 Krizhevsky (10.1016/j.patrec.2021.04.005_bib0014) 2012 Ioffe (10.1016/j.patrec.2021.04.005_bib0026) 2015; 1 Szegedy (10.1016/j.patrec.2021.04.005_bib0018) 2015 Moeskops (10.1016/j.patrec.2021.04.005_bib0019) 2016; 35 Zhang (10.1016/j.patrec.2021.04.005_bib0021) 2020; 163 Ronghua (10.1016/j.patrec.2021.04.005_bib0022) 2020; 194 Karen (10.1016/j.patrec.2021.04.005_bib0024) 2015 Romero (10.1016/j.patrec.2021.04.005_bib0023) 2016; 54 Malmgren-Hansen (10.1016/j.patrec.2021.04.005_bib0015) 2016 Guan (10.1016/j.patrec.2021.04.005_bib0008) 2020; 131 Zeng (10.1016/j.patrec.2021.04.005_bib0010) 2019; 119 Ren (10.1016/j.patrec.2021.04.005_bib0025) 2015; 12 Innamorati (10.1016/j.patrec.2021.04.005_bib0027) 2020; 128 Casanovas (10.1016/j.patrec.2021.04.005_bib0020) 2012; 39 Khaire (10.1016/j.patrec.2021.04.005_bib0013) 2018; 115 |
References_xml | – volume: 115 start-page: 107 year: 2018 end-page: 116 ident: bib0013 article-title: Combining CNN streams of RGB-D and skeletal data for human activity recognition publication-title: Pattern Recognit. Lett. – volume: 39 start-page: 7138 year: 2012 end-page: 7149 ident: bib0020 article-title: Fuzzy aggregation operators in decision making with Dempster-Shafer belief structure publication-title: Expert Syst. Appl. – volume: 194 year: 2020 ident: bib0022 article-title: Dense connection and depthwise separable convolution based CNN for polarimetric SAR image classification publication-title: Knowledge-Based Syst – volume: 128 start-page: 773 year: 2020 end-page: 782 ident: bib0027 article-title: Learning on the Edge : Investigating Boundary Filters in CNNs publication-title: Int. J. Comput. Vis. – volume: 78 start-page: 48 year: 2016 end-page: 55 ident: bib0006 article-title: Unsupervised SAR image segmentation using high-order conditional random fields model based on product-of-experts publication-title: Pattern Recognit. Lett. – volume: 35 start-page: 1252 year: 2016 end-page: 1261 ident: bib0019 article-title: Automatic Segmentation of MR Brain Images with a Convolutional Neural Network publication-title: IEEE Trans. Med. Imaging. – volume: 163 start-page: 36 year: 2020 end-page: 48 ident: bib0021 article-title: Region level SAR image classification using deep features and spatial constraints publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 1 year: 2015 end-page: 14 ident: bib0024 article-title: Very Deep Convolutional Networks For Large-Scale Image Recognition publication-title: 32nd Int. Conf. Mach. Learn. ICML 2015 – volume: 12 start-page: 2208 year: 2015 end-page: 2212 ident: bib0025 article-title: Estimation of the Equivalent Number of Looks in SAR Images Based on Singular Value Decomposition publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 100 year: 2020 ident: bib0017 article-title: Complex Contourlet-CNN for polarimetric SAR image classification publication-title: Pattern Recognit – volume: 131 start-page: 38 year: 2020 end-page: 45 ident: bib0008 article-title: Thorax disease classification with attention guided convolutional neural network publication-title: Pattern Recognit. Lett. – volume: 1 start-page: 448 year: 2015 end-page: 456 ident: bib0026 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: 32nd Int. Conf. Mach. Learn. ICML 2015 – start-page: 231 year: 2016 end-page: 236 ident: bib0015 article-title: Convolutional neural networks for SAR image segmentation publication-title: 2015 IEEE Int. Symp. Signal Process. Inf. Technol. ISSPIT 2015 – volume: 54 start-page: 1349 year: 2016 end-page: 1362 ident: bib0023 article-title: Unsupervised Deep Feature Extraction for Remote Sensing Image Classification publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 1097 year: 2012 end-page: 1105 ident: bib0014 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2015 end-page: 9 ident: bib0018 article-title: Going deeper with convolutions publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07-12-June – volume: 119 start-page: 180 year: 2019 end-page: 186 ident: bib0010 article-title: Fast cascade face detection with pyramid network publication-title: Pattern Recognit. Lett. – start-page: 1 year: 2015 ident: 10.1016/j.patrec.2021.04.005_bib0018 article-title: Going deeper with convolutions – volume: 115 start-page: 107 year: 2018 ident: 10.1016/j.patrec.2021.04.005_bib0013 article-title: Combining CNN streams of RGB-D and skeletal data for human activity recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.04.035 – volume: 1 start-page: 448 year: 2015 ident: 10.1016/j.patrec.2021.04.005_bib0026 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – volume: 54 start-page: 1349 year: 2016 ident: 10.1016/j.patrec.2021.04.005_bib0023 article-title: Unsupervised Deep Feature Extraction for Remote Sensing Image Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2478379 – volume: 194 year: 2020 ident: 10.1016/j.patrec.2021.04.005_bib0022 article-title: Dense connection and depthwise separable convolution based CNN for polarimetric SAR image classification publication-title: Knowledge-Based Syst – start-page: 1097 year: 2012 ident: 10.1016/j.patrec.2021.04.005_bib0014 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 39 start-page: 7138 year: 2012 ident: 10.1016/j.patrec.2021.04.005_bib0020 article-title: Fuzzy aggregation operators in decision making with Dempster-Shafer belief structure publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.030 – volume: 119 start-page: 180 year: 2019 ident: 10.1016/j.patrec.2021.04.005_bib0010 article-title: Fast cascade face detection with pyramid network publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.05.024 – volume: 128 start-page: 773 year: 2020 ident: 10.1016/j.patrec.2021.04.005_bib0027 article-title: Learning on the Edge : Investigating Boundary Filters in CNNs publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01223-y – start-page: 1 year: 2015 ident: 10.1016/j.patrec.2021.04.005_bib0024 article-title: Very Deep Convolutional Networks For Large-Scale Image Recognition – volume: 100 year: 2020 ident: 10.1016/j.patrec.2021.04.005_bib0017 article-title: Complex Contourlet-CNN for polarimetric SAR image classification publication-title: Pattern Recognit doi: 10.1016/j.patcog.2019.107110 – volume: 163 start-page: 36 year: 2020 ident: 10.1016/j.patrec.2021.04.005_bib0021 article-title: Region level SAR image classification using deep features and spatial constraints publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.03.001 – volume: 78 start-page: 48 year: 2016 ident: 10.1016/j.patrec.2021.04.005_bib0006 article-title: Unsupervised SAR image segmentation using high-order conditional random fields model based on product-of-experts publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.03.032 – volume: 131 start-page: 38 year: 2020 ident: 10.1016/j.patrec.2021.04.005_bib0008 article-title: Thorax disease classification with attention guided convolutional neural network publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.11.040 – volume: 12 start-page: 2208 year: 2015 ident: 10.1016/j.patrec.2021.04.005_bib0025 article-title: Estimation of the Equivalent Number of Looks in SAR Images Based on Singular Value Decomposition publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2457334 – volume: 35 start-page: 1252 year: 2016 ident: 10.1016/j.patrec.2021.04.005_bib0019 article-title: Automatic Segmentation of MR Brain Images with a Convolutional Neural Network publication-title: IEEE Trans. Med. Imaging. doi: 10.1109/TMI.2016.2548501 – start-page: 231 year: 2016 ident: 10.1016/j.patrec.2021.04.005_bib0015 article-title: Convolutional neural networks for SAR image segmentation |
SSID | ssj0006398 |
Score | 2.3373618 |
Snippet | •We propose a HIFCNN model for SAR images segmentation.•HIFCNN model sets several different-sized receptive fields.•HIFCNN model extracts hierarchical... Convolutional neural network (CNN) has achieved promising results in image segmentation recently. However, for the segmentation of synthetic aperture radar... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115 |
SubjectTerms | Artificial neural networks Decision theory Dempster-Shafer evidential theory Feature extraction Hierarchical fusion convolutional neural networks Homogeneity Image processing Image segmentation Neural networks Radar imaging Receptive field Synthetic aperture radar |
Title | Hierarchical fusion convolutional neural networks for SAR image segmentation |
URI | https://dx.doi.org/10.1016/j.patrec.2021.04.005 https://www.proquest.com/docview/2552120910 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vejBx6r4Jgevdbt5dJvjIkp94EFd8BaSNJGVtYq7Xv3tZtpUVIQFT6UhU8pkMjNNv_kG4NgLLVJnsiTLOU-48VkipadJCC5W6Fwj9ySiLW6yYsQvH8TDApy2tTAIq4y-v_HptbeOI72ozd7reNy7QwA9llVSpBEKYXMRliiTmejA0vDiqrj5csghCOctxTcKtBV0NcwLj5wdchnSfs15in3s_o5Qv3x1HYDO12E1Zo5k2LzcBiy4qgtrbVcGEjdpF1a-UQxuwnUxxhLjuuPJhPh3PBwjCDWPJhcGkdKyvtSA8CkJaSy5G96S8XPwNWTqHp9jfVK1BaPzs_vTIokdFBIbPqtmicyowV9vTgs30KnUXBgpbEgRnJelNowz7_LU5KWlFlM9npcs1SnnZtC3IRnZhk71UrkdIDbMYCYtqdCW52ZgghxjsvSWsb73chdYqzVlI704drmYqBZH9qQaXSvUtUq5CrreheRL6rWh15gzf9AuiPphJipEgDmSB-36qbhNp4qi9VBMmfb-_eB9WMa7BsJ7AJ3Z27s7DInKzBzB4slH_yia4yeLi-gJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADb8R45sC1rGuSPo4TYhowODAm7RYlaYKKxkBsu_LbiduUl5CQOFVKnapyHNtNP38GOLVc8tCoOIhTxgKmbBxkmY0CF1w0l6lE7klEW9zGvSG7GvHRApzXtTAIq_S-v_Lppbf2Iy2vzdZLUbQGCKDHssoIaYRc2FyEJcZpgri-s7dPnIcLwWlN8I3idf1cCfLCA2eDTIZRu2Q8xS52v8enH566DD_dDVjzeSPpVK-2CQtmsgXrdU8G4rfoFqx-IRjchn6vwALjst_JmNg5Ho0RBJp7g3ODSGhZXko4-JS4JJYMOnekeHKehkzNw5OvTprswLB7cX_eC3z_hEC7j6pZkMWRwh9vRnKTyDCTjKuMa5cgGJvlUlFGrUlDleY60pjosTSnoQwZU0lbu1RkFxqT54nZA6KdBFVhHnGpWaoS5eZRmuVWU9q2NmsCrbUmtCcXxx4XY1GjyB5FpWuBuhYhE07XTQg-Zr1U5Bp_yCf1gohvRiKc__9j5mG9fsJv0qmI0HYiTJj2__3gE1ju3d_0Rf_y9voAVvBOBeY9hMbsdW6OXMoyU8elSb4Dgb3o1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+fusion+convolutional+neural+networks+for+SAR+image+segmentation&rft.jtitle=Pattern+recognition+letters&rft.au=Jiang%2C+Yinyin&rft.au=Li%2C+Ming&rft.au=Zhang%2C+Peng&rft.au=Tan%2C+Xiaofeng&rft.date=2021-07-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=147&rft.spage=115&rft_id=info:doi/10.1016%2Fj.patrec.2021.04.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |