Lorentz covariant physical Brownian motion: Classical and quantum

In this work, we re-examine the Goldstein-Kaç (also called Poisson-Kaç) velocity switching model from two points of view. On the one hand, we prove that the forward and backward Chapman–Kolmogorov equations of the stochastic process are Lorentz covariant when the trajectories are parameterized by th...

Full description

Saved in:
Bibliographic Details
Published inAnnals of physics Vol. 472; p. 169857
Main Author Gzyl, Henryk
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2025
Subjects
Online AccessGet full text
ISSN0003-4916
DOI10.1016/j.aop.2024.169857

Cover

Abstract In this work, we re-examine the Goldstein-Kaç (also called Poisson-Kaç) velocity switching model from two points of view. On the one hand, we prove that the forward and backward Chapman–Kolmogorov equations of the stochastic process are Lorentz covariant when the trajectories are parameterized by their proper time. On the other hand, to recast the model as a quantum random evolution, we restate the Goldstein-Kaç model as a Hamiltonian system, which can then be quantized using the standard correspondence rules. It turns out that the density matrix for the random quantum evolution satisfies a Chapman–Kolmogorov equation similar to that of the classical case, and therefore, it is also Lorentz covariant. To finish, we verify that the quantum model is also consistent with special relativity and that transitions outside the light cone, that is, transitions between states with disjoint supports in space–time, cannot occur.
AbstractList In this work, we re-examine the Goldstein-Kaç (also called Poisson-Kaç) velocity switching model from two points of view. On the one hand, we prove that the forward and backward Chapman–Kolmogorov equations of the stochastic process are Lorentz covariant when the trajectories are parameterized by their proper time. On the other hand, to recast the model as a quantum random evolution, we restate the Goldstein-Kaç model as a Hamiltonian system, which can then be quantized using the standard correspondence rules. It turns out that the density matrix for the random quantum evolution satisfies a Chapman–Kolmogorov equation similar to that of the classical case, and therefore, it is also Lorentz covariant. To finish, we verify that the quantum model is also consistent with special relativity and that transitions outside the light cone, that is, transitions between states with disjoint supports in space–time, cannot occur.
ArticleNumber 169857
Author Gzyl, Henryk
Author_xml – sequence: 1
  givenname: Henryk
  orcidid: 0000-0002-3781-8848
  surname: Gzyl
  fullname: Gzyl, Henryk
  email: henryk.gzyl@iesa.edu.ve
  organization: Centro de Finanzas IESA, Caracas, Venezuela
BookMark eNp9j8tOwzAQRb0oEm3hA9jlBxLGjp0HrErES4rEBtbWxLGFo9YudlpUvp5UYc1qpDv3jOasyMJ5pwm5oZBRoMXtkKHfZwwYz2hRV6JckCUA5CmvaXFJVjEOAJRyUS3JpvVBu_EnUf6IwaIbk_3nKVqF2-Qh-G83RcnOj9a7u6TZYpxX6Prk6zC1D7srcmFwG_X131yTj6fH9-Ylbd-eX5tNmyrG6zGtTCmgpDXLOygo5iVwwToDpUGdU8amAKqeVyUKLFgnuDGi1gWaTrFeAM_XhM53VfAxBm3kPtgdhpOkIM_ecpCTtzx7y9l7Yu5nRk-PHa0OMiqrndK9DVqNsvf2H_oXMy1j8A
Cites_doi 10.3934/mbe.2019171
10.1103/PhysRevE.71.016124
10.1073/pnas.1717292115
10.1016/S0378-4371(02)00805-1
10.1088/1751-8121/acf1e0
10.1007/s10955-024-03284-x
10.1007/BF02083813
10.1093/qjmam/4.2.129
10.1007/s11128-013-0603-z
10.3390/e24020201
10.1016/0003-4916(91)90045-A
10.1103/PhysRevE.96.042133
10.1216/RMJ-1974-4-3-497
10.1140/epjb/e2017-80123-7
10.1209/0295-5075/126/50001
10.1007/BF02190048
10.1017/S0021900200047707
10.1016/0378-4371(89)90071-X
10.1103/PhysRevLett.92.120601
10.1216/RMJ-1974-4-3-407
10.1023/A:1010313423230
10.1088/0305-4470/17/2/023
10.1016/j.physa.2003.09.048
10.1103/PhysRevLett.53.419
10.1016/j.physrep.2008.12.001
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.aop.2024.169857
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_aop_2024_169857
S0003491624002641
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABPPZ
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LZ4
M37
M41
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
TWZ
UNMZH
UPT
UQL
VH1
VQA
WH7
WUQ
XOL
XPP
XSW
YYP
ZCG
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c249t-8f75071923b061a370452bf07fae312237008d487a5a62b54ff59e6afbc2d5043
IEDL.DBID AIKHN
ISSN 0003-4916
IngestDate Tue Jul 01 00:58:04 EDT 2025
Sat Dec 21 15:59:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Random evolutions
Brownian motion
Quantum systems subject to random pulses
Lorentz covariance of transport equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-8f75071923b061a370452bf07fae312237008d487a5a62b54ff59e6afbc2d5043
ORCID 0000-0002-3781-8848
ParticipantIDs crossref_primary_10_1016_j_aop_2024_169857
elsevier_sciencedirect_doi_10_1016_j_aop_2024_169857
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Annals of physics
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hirsch, Smale (b39) 1974
Cane (b14) 1975; 12
Ratanov, Kolesnikov (b31) 2022
John (b40) 1978
Giona (b26) 2019; 126
Cairoli, Klages, Baule (b43) 2018; 115
Fleming (b10) 1974; 4
Kolesnik (b15) 2023
Gaveau, Jacobson, Kaç (b20) 1984; 53
Taylor (b3) 1921; 20
Masoliver, Lindenberg, Weiss (b33) 1988; 157
Kaç (b5) 1974; 4
Giona (b28) 2022; 12
Mörters, Peres (b1) 2020
Swishchuk (b8) 1997
Çinlar (b12) 1975
Gzyl (b13) 2024
Dunkel, Hänggi (b17) 2005; 71
Giona (b25) 2017; 96
Jaroszewicz, Kurzepa (b23) 1991; 210
Beghin, Nieddu, Orsinger (b29) 2001; 14
Hersch (b6) 1974; 4
McKeon, Ord (b21) 1996; 9
Blanchard, Hongler (b36) 2004; 92
Müller-Kirsten (b42) 2024
Jacobson, Schulman (b22) 1984; 17
Giona (b27) 2022; 24
Kolesnik (b9) 2021
Turbin, Samoilenko (b16) 2000; 52
Dunkel, Hänggi (b18) 2006; 74
Weiss (b34) 2002; 311
Dunkel, Hänggi (b19) 2009; 471
Pinsky (b7) 1991
Masoliver, Lindenberg (b32) 2017; 90
Goldstein (b4) 1951; 6
Ord (b24) 1996; 35
Cattaneo (b2) 1958; 247
Ratanov (b30) 2019; 16
Ziegler (b38) 2023; 56
Davis (b11) 1993
Filliger, Hongler (b35) 2004; 332
Goldstein (b41) 1962
Luo, Deng, Ma, Xiu-Bo Chen, Qu (b37) 2013; 12
John (10.1016/j.aop.2024.169857_b40) 1978
Mörters (10.1016/j.aop.2024.169857_b1) 2020
Ord (10.1016/j.aop.2024.169857_b24) 1996; 35
Dunkel (10.1016/j.aop.2024.169857_b19) 2009; 471
McKeon (10.1016/j.aop.2024.169857_b21) 1996; 9
Masoliver (10.1016/j.aop.2024.169857_b32) 2017; 90
Luo (10.1016/j.aop.2024.169857_b37) 2013; 12
Blanchard (10.1016/j.aop.2024.169857_b36) 2004; 92
Taylor (10.1016/j.aop.2024.169857_b3) 1921; 20
Hersch (10.1016/j.aop.2024.169857_b6) 1974; 4
Gaveau (10.1016/j.aop.2024.169857_b20) 1984; 53
Ziegler (10.1016/j.aop.2024.169857_b38) 2023; 56
Cane (10.1016/j.aop.2024.169857_b14) 1975; 12
Masoliver (10.1016/j.aop.2024.169857_b33) 1988; 157
Müller-Kirsten (10.1016/j.aop.2024.169857_b42) 2024
Goldstein (10.1016/j.aop.2024.169857_b4) 1951; 6
Ratanov (10.1016/j.aop.2024.169857_b30) 2019; 16
Gzyl (10.1016/j.aop.2024.169857_b13) 2024
Hirsch (10.1016/j.aop.2024.169857_b39) 1974
Dunkel (10.1016/j.aop.2024.169857_b18) 2006; 74
Giona (10.1016/j.aop.2024.169857_b28) 2022; 12
Goldstein (10.1016/j.aop.2024.169857_b41) 1962
Kolesnik (10.1016/j.aop.2024.169857_b15) 2023
Giona (10.1016/j.aop.2024.169857_b27) 2022; 24
Beghin (10.1016/j.aop.2024.169857_b29) 2001; 14
Ratanov (10.1016/j.aop.2024.169857_b31) 2022
Fleming (10.1016/j.aop.2024.169857_b10) 1974; 4
Jaroszewicz (10.1016/j.aop.2024.169857_b23) 1991; 210
Giona (10.1016/j.aop.2024.169857_b25) 2017; 96
Cattaneo (10.1016/j.aop.2024.169857_b2) 1958; 247
Pinsky (10.1016/j.aop.2024.169857_b7) 1991
Swishchuk (10.1016/j.aop.2024.169857_b8) 1997
Cairoli (10.1016/j.aop.2024.169857_b43) 2018; 115
Dunkel (10.1016/j.aop.2024.169857_b17) 2005; 71
Turbin (10.1016/j.aop.2024.169857_b16) 2000; 52
Kolesnik (10.1016/j.aop.2024.169857_b9) 2021
Jacobson (10.1016/j.aop.2024.169857_b22) 1984; 17
Filliger (10.1016/j.aop.2024.169857_b35) 2004; 332
Davis (10.1016/j.aop.2024.169857_b11) 1993
Kaç (10.1016/j.aop.2024.169857_b5) 1974; 4
Çinlar (10.1016/j.aop.2024.169857_b12) 1975
Giona (10.1016/j.aop.2024.169857_b26) 2019; 126
Weiss (10.1016/j.aop.2024.169857_b34) 2002; 311
References_xml – year: 2020
  ident: b1
  article-title: Brownian Motion
– year: 1997
  ident: b8
  article-title: RandOm Evolutions and their Applications
– volume: 157
  start-page: 891
  year: 1988
  end-page: 898
  ident: b33
  article-title: A continuous-time generalization of the persistent random walk
  publication-title: Phys. A
– year: 1974
  ident: b39
  article-title: Differential Equations, Dynamical Systems and Linear Algebra
– volume: 52
  year: 2000
  ident: b16
  article-title: A probability method for the solution of the telegraph equation with real analytic solutions
  publication-title: Ukrainian Math. J.
– volume: 20
  start-page: 196
  year: 1921
  end-page: 212
  ident: b3
  article-title: Diffusion by continuous movements
  publication-title: Proc. Lond. Math. Soc.
– volume: 92
  year: 2004
  ident: b36
  article-title: Quantum random walks and piecewise deterministic evolutions
  publication-title: Phys. Rev. Lett.
– volume: 35
  start-page: 263
  year: 1996
  end-page: 266
  ident: b24
  article-title: A stochastic model of Maxwell’s equations in 1 + 1-dimensions
  publication-title: Internat. J. Theoret. Phys.
– volume: 12
  start-page: 3353
  year: 2013
  end-page: 3367
  ident: b37
  article-title: Random quantum evolution
  publication-title: Quantum Inf. Process.
– volume: 16
  start-page: 3411
  year: 2019
  end-page: 3434
  ident: b30
  article-title: A two-state neuronal model with alternating exponential excitation
  publication-title: Math. Biosci. Eng.
– year: 1962
  ident: b41
  article-title: Classical Mechanics
– year: 2024
  ident: b13
  article-title: Quantum random evolutions
  publication-title: J. Stat. Phys.
– volume: 210
  start-page: 255
  year: 1991
  end-page: 322
  ident: b23
  article-title: Spin, statistics, and geometry of random walks
  publication-title: Ann. Physics
– volume: 4
  start-page: 443
  year: 1974
  end-page: 477
  ident: b6
  article-title: Random evolutions: A survey of results and problems
  publication-title: Rocky Mountain J. Math.
– volume: 12
  start-page: 263
  year: 1975
  end-page: 273
  ident: b14
  article-title: Diffusion models with relativity effects
  publication-title: J. Appl. Probab.
– volume: 71
  year: 2005
  ident: b17
  article-title: Theory of the relativistic Brownian motion: The (1+1)-dimensional case
  publication-title: Phys. Rev. E
– volume: 9
  start-page: 447
  year: 1996
  end-page: 456
  ident: b21
  article-title: On how the (1+1)-dimensional Dirac equation arises in classical physics
  publication-title: Found. Phys. Lett.
– volume: 56
  year: 2023
  ident: b38
  article-title: Quantum evolution with random phase scattering
  publication-title: J. Phys. A
– volume: 311
  start-page: 381
  year: 2002
  end-page: 410
  ident: b34
  article-title: Some applications of persistent random walks and the telegrapher’s equation
  publication-title: Phys. A
– volume: 90
  start-page: 107
  year: 2017
  end-page: 120
  ident: b32
  article-title: Continuous time persistent random walk: a review and some generalizations
  publication-title: Eur. Phys. J. B
– volume: 4
  start-page: 407
  year: 1974
  end-page: 433
  ident: b10
  article-title: Stochastically perturbed dynamical systems
  publication-title: Rocky Mountain J. Math.
– year: 2022
  ident: b31
  article-title: Telegraph Processes and Option Pricing
– volume: 247
  start-page: 431
  year: 1958
  end-page: 433
  ident: b2
  article-title: Sur une forme de l’equation de la chaleur éliminant le paradoxe d’une propagation instantanée
  publication-title: Comptes Rendus de l, Académie des Sciences
– volume: 53
  start-page: 419
  year: 1984
  end-page: 422
  ident: b20
  article-title: Relativistic extension of the analogy between quantum mechanics and Brownian motion
  publication-title: Phys. Rev. Lett.
– year: 2024
  ident: b42
  article-title: Classical Mechanics and Relativity
– volume: 332
  start-page: 141
  year: 2004
  end-page: 150
  ident: b35
  article-title: Supersymmetry in random two velocity processes
  publication-title: Phys. A
– volume: 17
  start-page: 375
  year: 1984
  end-page: 383
  ident: b22
  article-title: Quantum stochastics: the passage from a relativistic to a non-relativistic path integral
  publication-title: J. Phys. A: Math. Gen.
– volume: 6
  start-page: 129
  year: 1951
  end-page: 156
  ident: b4
  article-title: On diffusion by discontinuous movements, and on the telegraph, equation
  publication-title: J. Mech. Appl. Math.
– volume: 14
  start-page: 11
  year: 2001
  end-page: 25
  ident: b29
  article-title: Probabilistic aspects of the telegrapher’s process with drift by means of relativistic transformations
  publication-title: J. Appl. Math. Stoch. Anal.
– volume: 115
  start-page: 5714
  year: 2018
  end-page: 5719
  ident: b43
  article-title: Weak galilean invariance as a selection principle for coarse-grained diffusive models
  publication-title: Proc. Natl. Acad. Sci.
– volume: 471
  start-page: 1
  year: 2009
  end-page: 73
  ident: b19
  article-title: Relativistic Brownian motion
  publication-title: Phys. Rep.
– year: 2023
  ident: b15
  article-title: Series representations for the characteristic function of the multidimensional Markov random flight
– year: 1978
  ident: b40
  article-title: Partial Differential Equations
– volume: 126
  year: 2019
  ident: b26
  article-title: Relativistic Poisson-kaç and equilibrium jüttner distribution
  publication-title: Europhys. Lett.
– volume: 74
  year: 2006
  ident: b18
  article-title: Relativistic Brownian motion: From a microscopic binary collision model to the langevin equation
  publication-title: Phys. Rev. E
– year: 1991
  ident: b7
  article-title: Lectures on RandOm Evolution
– year: 2021
  ident: b9
  article-title: Markov RandOm Flights
– year: 1975
  ident: b12
  article-title: Introduction to Stochastic Processes
– volume: 96
  year: 2017
  ident: b25
  article-title: Relativistic analysis of stochastic kinematics
  publication-title: Phys. Rev. E
– volume: 4
  start-page: 497
  year: 1974
  end-page: 510
  ident: b5
  article-title: A stochastic model related to the telegrapher’s equation
  publication-title: Rocky Mountain J. Math.
– year: 1993
  ident: b11
  article-title: Markov Models and Optimization
– volume: 24
  start-page: 201
  year: 2022
  end-page: 224
  ident: b27
  article-title: Spectral properties of stochastic processes possessing finite propagation velocity
  publication-title: Entropy
– volume: 12
  year: 2022
  ident: b28
  article-title: Extended Poisson-kac Theory: A Unifying Framework for Stochastic Processes with Finite Propagation Velocity̧
  publication-title: Phys. Rev. X
– volume: 16
  start-page: 3411
  year: 2019
  ident: 10.1016/j.aop.2024.169857_b30
  article-title: A two-state neuronal model with alternating exponential excitation
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2019171
– volume: 71
  year: 2005
  ident: 10.1016/j.aop.2024.169857_b17
  article-title: Theory of the relativistic Brownian motion: The (1+1)-dimensional case
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.016124
– volume: 115
  start-page: 5714
  year: 2018
  ident: 10.1016/j.aop.2024.169857_b43
  article-title: Weak galilean invariance as a selection principle for coarse-grained diffusive models
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1717292115
– volume: 311
  start-page: 381
  year: 2002
  ident: 10.1016/j.aop.2024.169857_b34
  article-title: Some applications of persistent random walks and the telegrapher’s equation
  publication-title: Phys. A
  doi: 10.1016/S0378-4371(02)00805-1
– volume: 56
  year: 2023
  ident: 10.1016/j.aop.2024.169857_b38
  article-title: Quantum evolution with random phase scattering
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/acf1e0
– year: 2024
  ident: 10.1016/j.aop.2024.169857_b13
  article-title: Quantum random evolutions
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-024-03284-x
– year: 2022
  ident: 10.1016/j.aop.2024.169857_b31
– volume: 35
  start-page: 263
  year: 1996
  ident: 10.1016/j.aop.2024.169857_b24
  article-title: A stochastic model of Maxwell’s equations in 1 + 1-dimensions
  publication-title: Internat. J. Theoret. Phys.
  doi: 10.1007/BF02083813
– year: 1974
  ident: 10.1016/j.aop.2024.169857_b39
– volume: 6
  start-page: 129
  year: 1951
  ident: 10.1016/j.aop.2024.169857_b4
  article-title: On diffusion by discontinuous movements, and on the telegraph, equation
  publication-title: J. Mech. Appl. Math.
  doi: 10.1093/qjmam/4.2.129
– volume: 12
  start-page: 3353
  year: 2013
  ident: 10.1016/j.aop.2024.169857_b37
  article-title: Random quantum evolution
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-013-0603-z
– volume: 24
  start-page: 201
  year: 2022
  ident: 10.1016/j.aop.2024.169857_b27
  article-title: Spectral properties of stochastic processes possessing finite propagation velocity
  publication-title: Entropy
  doi: 10.3390/e24020201
– volume: 210
  start-page: 255
  year: 1991
  ident: 10.1016/j.aop.2024.169857_b23
  article-title: Spin, statistics, and geometry of random walks
  publication-title: Ann. Physics
  doi: 10.1016/0003-4916(91)90045-A
– volume: 12
  year: 2022
  ident: 10.1016/j.aop.2024.169857_b28
  article-title: Extended Poisson-kac Theory: A Unifying Framework for Stochastic Processes with Finite Propagation Velocity̧
  publication-title: Phys. Rev. X
– year: 1975
  ident: 10.1016/j.aop.2024.169857_b12
– volume: 96
  year: 2017
  ident: 10.1016/j.aop.2024.169857_b25
  article-title: Relativistic analysis of stochastic kinematics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.042133
– volume: 247
  start-page: 431
  year: 1958
  ident: 10.1016/j.aop.2024.169857_b2
  article-title: Sur une forme de l’equation de la chaleur éliminant le paradoxe d’une propagation instantanée
  publication-title: Comptes Rendus de l, Académie des Sciences
– volume: 4
  start-page: 497
  year: 1974
  ident: 10.1016/j.aop.2024.169857_b5
  article-title: A stochastic model related to the telegrapher’s equation
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/RMJ-1974-4-3-497
– volume: 74
  year: 2006
  ident: 10.1016/j.aop.2024.169857_b18
  article-title: Relativistic Brownian motion: From a microscopic binary collision model to the langevin equation
  publication-title: Phys. Rev. E
– volume: 90
  start-page: 107
  year: 2017
  ident: 10.1016/j.aop.2024.169857_b32
  article-title: Continuous time persistent random walk: a review and some generalizations
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2017-80123-7
– volume: 126
  year: 2019
  ident: 10.1016/j.aop.2024.169857_b26
  article-title: Relativistic Poisson-kaç and equilibrium jüttner distribution
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/126/50001
– year: 2021
  ident: 10.1016/j.aop.2024.169857_b9
– year: 1993
  ident: 10.1016/j.aop.2024.169857_b11
– volume: 9
  start-page: 447
  year: 1996
  ident: 10.1016/j.aop.2024.169857_b21
  article-title: On how the (1+1)-dimensional Dirac equation arises in classical physics
  publication-title: Found. Phys. Lett.
  doi: 10.1007/BF02190048
– volume: 12
  start-page: 263
  year: 1975
  ident: 10.1016/j.aop.2024.169857_b14
  article-title: Diffusion models with relativity effects
  publication-title: J. Appl. Probab.
  doi: 10.1017/S0021900200047707
– year: 1997
  ident: 10.1016/j.aop.2024.169857_b8
– year: 2023
  ident: 10.1016/j.aop.2024.169857_b15
– year: 2024
  ident: 10.1016/j.aop.2024.169857_b42
– year: 2020
  ident: 10.1016/j.aop.2024.169857_b1
– volume: 157
  start-page: 891
  year: 1988
  ident: 10.1016/j.aop.2024.169857_b33
  article-title: A continuous-time generalization of the persistent random walk
  publication-title: Phys. A
  doi: 10.1016/0378-4371(89)90071-X
– volume: 92
  year: 2004
  ident: 10.1016/j.aop.2024.169857_b36
  article-title: Quantum random walks and piecewise deterministic evolutions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.120601
– volume: 4
  start-page: 407
  year: 1974
  ident: 10.1016/j.aop.2024.169857_b10
  article-title: Stochastically perturbed dynamical systems
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/RMJ-1974-4-3-407
– year: 1991
  ident: 10.1016/j.aop.2024.169857_b7
– volume: 52
  year: 2000
  ident: 10.1016/j.aop.2024.169857_b16
  article-title: A probability method for the solution of the telegraph equation with real analytic solutions
  publication-title: Ukrainian Math. J.
  doi: 10.1023/A:1010313423230
– volume: 17
  start-page: 375
  year: 1984
  ident: 10.1016/j.aop.2024.169857_b22
  article-title: Quantum stochastics: the passage from a relativistic to a non-relativistic path integral
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/17/2/023
– volume: 14
  start-page: 11
  year: 2001
  ident: 10.1016/j.aop.2024.169857_b29
  article-title: Probabilistic aspects of the telegrapher’s process with drift by means of relativistic transformations
  publication-title: J. Appl. Math. Stoch. Anal.
– volume: 20
  start-page: 196
  year: 1921
  ident: 10.1016/j.aop.2024.169857_b3
  article-title: Diffusion by continuous movements
  publication-title: Proc. Lond. Math. Soc.
– volume: 332
  start-page: 141
  year: 2004
  ident: 10.1016/j.aop.2024.169857_b35
  article-title: Supersymmetry in random two velocity processes
  publication-title: Phys. A
  doi: 10.1016/j.physa.2003.09.048
– year: 1978
  ident: 10.1016/j.aop.2024.169857_b40
– volume: 53
  start-page: 419
  year: 1984
  ident: 10.1016/j.aop.2024.169857_b20
  article-title: Relativistic extension of the analogy between quantum mechanics and Brownian motion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.419
– volume: 4
  start-page: 443
  year: 1974
  ident: 10.1016/j.aop.2024.169857_b6
  article-title: Random evolutions: A survey of results and problems
  publication-title: Rocky Mountain J. Math.
– year: 1962
  ident: 10.1016/j.aop.2024.169857_b41
– volume: 471
  start-page: 1
  issue: 2009
  year: 2009
  ident: 10.1016/j.aop.2024.169857_b19
  article-title: Relativistic Brownian motion
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2008.12.001
SSID ssj0011458
Score 2.4193072
Snippet In this work, we re-examine the Goldstein-Kaç (also called Poisson-Kaç) velocity switching model from two points of view. On the one hand, we prove that the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 169857
SubjectTerms Brownian motion
Lorentz covariance of transport equations
Quantum systems subject to random pulses
Random evolutions
Title Lorentz covariant physical Brownian motion: Classical and quantum
URI https://dx.doi.org/10.1016/j.aop.2024.169857
Volume 472
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGJiQuiKcYjykHTkjdlixNW27TxDQe2olJu1VJmkhDot1g48CB346TtggkuHBN66r6nPqza8cGuKR9oxJ0lAMtsyTgJu4HSuLn7rKCjNpIZ5mv8p2KyYzfzcN5A0b1WRhXVlnZ_tKme2tdrfQqNHvLxcKd8XW9VahwVZBI6xgCtdggEWETWsPb-8n0K5lAeRjXg_OcQJ3c9GVesnBdKxnvUpHEjqR-o6dvlDPeg93KVyTD8nX2oWHyA9j2NZv69RCGD4VrrfROdPGGES9CRJYV6sRH17hEyik918QPv_SXZJ6R1Qbv3jwfwWx88ziaBNVEhEBjmLQOYhs5_w2dMoU8LAeRa4iubD-y0gwoMn2ElJ5hDCJDKZgKubVhYoS0SrPM9So7hmZe5OYEiKLaCIMPMZZxw2kSWaFRo5xHLEMlteGqBiJdlo0v0roi7ClF1FKHWlqi1gZeQ5X-0F6KhvlvsdP_iZ3BDnNTeP2PkHNorl825gJdg7XqwFb3g3aqDfAJGYS26w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamTQguiKcYzxw4IZUtXfriNk1MHRs7bdJuUZIm0pBoB2wc-PU4aYtAggvXtK6qz6k_u3ZsgGva1TJBR9lTIks8puOuJwV-7jYr6FMTqSxzVb7TMJ2zh0WwaMCgPgtjyyor21_adGetq5VOhWZntVzaM762twoNbRUk0jqGQC0WYLTXhFZ_NE6nX8kEyoK4HpxnBerkpivzEoXtWumzWxomsSWp3-jpG-UM92C38hVJv3ydfWjo_AC2XM2mejuE_qSwrZU-iCreMeJFiMiqQp246BqXSDml54644Zfuksgz8rLBuzfPRzAf3s8GqVdNRPAUhklrLzaR9d_QKZPIw6IX2Ybo0nQjI3SPItNHSOkZxiAiEKEvA2ZMkOhQGKn8zPYqO4ZmXuT6BIikSocaH6KNzzSjSWRChRplLPIzVFIbbmog-KpsfMHrirAnjqhxixovUWsDq6HiP7TH0TD_LXb6P7Er2E5njxM-GU3HZ7Dj24m87qfIOTTXrxt9gW7CWl5W2-ATgoW42g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lorentz+covariant+physical+Brownian+motion%3A+Classical+and+quantum&rft.jtitle=Annals+of+physics&rft.au=Gzyl%2C+Henryk&rft.date=2025-01-01&rft.issn=0003-4916&rft.volume=472&rft.spage=169857&rft_id=info:doi/10.1016%2Fj.aop.2024.169857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aop_2024_169857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4916&client=summon