Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells
Saved in:
Published in | eTransportation (Amsterdam) Vol. 18; p. 100279 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2023
|
Online Access | Get full text |
Cover
Loading…
ArticleNumber | 100279 |
---|---|
Author | Zhao, Chen-Zi Ren, Dongsheng Zhang, Qiang Yang, Shi-Jie Sun, Shuo Jiang, Feng-Ni Ouyang, Minggao Hu, Jiang-Kui Yuan, Hong Hsu, Hung-Jen Huang, Jia-Qi Fan, Li-Zhen Cheng, Xin-Bing |
Author_xml | – sequence: 1 givenname: Shi-Jie surname: Yang fullname: Yang, Shi-Jie – sequence: 2 givenname: Jiang-Kui surname: Hu fullname: Hu, Jiang-Kui – sequence: 3 givenname: Feng-Ni surname: Jiang fullname: Jiang, Feng-Ni – sequence: 4 givenname: Xin-Bing surname: Cheng fullname: Cheng, Xin-Bing – sequence: 5 givenname: Shuo surname: Sun fullname: Sun, Shuo – sequence: 6 givenname: Hung-Jen surname: Hsu fullname: Hsu, Hung-Jen – sequence: 7 givenname: Dongsheng surname: Ren fullname: Ren, Dongsheng – sequence: 8 givenname: Chen-Zi surname: Zhao fullname: Zhao, Chen-Zi – sequence: 9 givenname: Hong surname: Yuan fullname: Yuan, Hong – sequence: 10 givenname: Minggao surname: Ouyang fullname: Ouyang, Minggao – sequence: 11 givenname: Li-Zhen surname: Fan fullname: Fan, Li-Zhen – sequence: 12 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi – sequence: 13 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang |
BookMark | eNp9kMtOwzAQRS1UJErpF7DxD6T40Tj2sqp4VKrUDaxYRI4zJq4cp4oToH-PS1kgFqzmanTPSHOu0SR0ARC6pWRBCRV3-wUMvQ4LRhhPG8IKdYGmLFcko1TIya98heYx7knqKMGlzKfodfd5fIOQuVCPBmo8NNC32uN-DPpDH3ELptHBxTbizuJVk3l4B49j512dxUEPgL0bGje2qTok8NCNpsEGvI836NJqH2H-M2fo5eH-ef2UbXePm_Vqmxm2VEMmjRJMyloUVpLcVBaMZswUHLgomBCKiCIvqKmWuhJ1RbllnNSCikKJSoDlM8TPd03fxdiDLQ-9a3V_LCkpT4rKffmtqDwpKs-KEqX-UMalf1wXUtX5f9kvFtZxgQ |
CitedBy_id | crossref_primary_10_1002_aenm_202405183 crossref_primary_10_1016_j_jechem_2024_01_036 crossref_primary_10_1002_smll_202401675 crossref_primary_10_1016_j_jechem_2024_12_006 crossref_primary_10_1002_inf2_12613 crossref_primary_10_1002_adma_202419782 crossref_primary_10_1021_acsenergylett_4c00621 crossref_primary_10_1039_D4CS00797B crossref_primary_10_1016_j_jechem_2024_01_073 crossref_primary_10_1016_j_energy_2025_134900 crossref_primary_10_1016_j_ensm_2024_103366 crossref_primary_10_1002_eem2_12892 crossref_primary_10_1039_D4EE02358G crossref_primary_10_1002_anie_202421101 crossref_primary_10_23919_CHAIN_2024_000011 crossref_primary_10_1016_j_ensm_2024_103481 crossref_primary_10_1002_adfm_202411171 crossref_primary_10_1021_acsaem_4c00248 crossref_primary_10_1016_j_cclet_2024_110007 crossref_primary_10_1002_adfm_202311633 crossref_primary_10_1016_j_jechem_2024_03_015 crossref_primary_10_1016_j_jechem_2024_11_031 crossref_primary_10_1007_s12598_024_02931_2 crossref_primary_10_1002_aenm_202303850 crossref_primary_10_1002_adma_202405086 crossref_primary_10_1016_j_jechem_2024_03_060 crossref_primary_10_1016_j_energy_2025_135168 crossref_primary_10_1016_j_xcrp_2024_102056 crossref_primary_10_1002_adma_202401482 crossref_primary_10_1002_adfm_202400348 crossref_primary_10_1002_ange_202421101 crossref_primary_10_1016_j_ensm_2023_103034 crossref_primary_10_1021_acs_energyfuels_4c02174 crossref_primary_10_1002_inf2_12512 crossref_primary_10_1016_j_cclet_2025_110851 crossref_primary_10_1002_sus2_70004 crossref_primary_10_1016_j_jechem_2024_07_003 crossref_primary_10_1016_j_jechem_2024_07_043 crossref_primary_10_1016_j_ensm_2024_103422 crossref_primary_10_1002_advs_202400953 crossref_primary_10_1016_j_applthermaleng_2024_122941 crossref_primary_10_1016_j_joule_2024_07_007 crossref_primary_10_1007_s41918_024_00221_0 crossref_primary_10_1016_j_partic_2024_04_007 crossref_primary_10_1021_acsenergylett_4c01583 crossref_primary_10_1016_j_jechem_2024_11_014 crossref_primary_10_1002_adfm_202406080 crossref_primary_10_1002_smll_202406110 crossref_primary_10_1016_j_etran_2024_100354 crossref_primary_10_1016_j_enrev_2024_100117 crossref_primary_10_1016_j_partic_2023_12_017 crossref_primary_10_1016_j_jechem_2024_12_050 |
Cites_doi | 10.1016/j.etran.2022.100211 10.1016/j.joule.2020.02.010 10.1016/j.etran.2022.100203 10.1016/j.ensm.2022.01.007 10.1016/j.ensm.2021.10.030 10.1002/sus2.37 10.1021/acs.chemmater.5b04082 10.1038/s41467-020-18868-w 10.1021/acsami.1c17209 10.1002/sstr.202000042 10.1021/acsomega.3c00261 10.1002/adma.202209114 10.1007/s40242-020-0103-5 10.1016/j.jpowsour.2021.229503 10.1016/j.partic.2020.12.003 10.1021/acs.chemmater.7b00931 10.1002/advs.202003694 10.1039/C5TA08574H 10.1038/s41578-019-0165-5 10.1002/inf2.12401 10.1002/aenm.202102299 10.1016/j.jechem.2021.03.025 10.1002/inf2.12224 10.1016/j.joule.2019.02.006 10.1016/j.etran.2021.100140 10.1002/smm2.1007 10.1039/D1TA02615A 10.1002/adma.202000751 10.1016/j.electacta.2016.08.081 10.1016/j.jechem.2022.01.019 10.1038/s41586-021-03486-3 10.1002/sus2.74 10.1021/acsami.5b07517 10.1039/D3EE00084B 10.1002/smll.202101326 10.1016/j.electacta.2021.139249 10.1149/1945-7111/ababd2 10.1021/acsenergylett.2c00255 10.1039/D1CS00450F 10.1002/aenm.202003456 10.1021/acs.chemrev.0c00275 10.1016/j.jechem.2022.05.005 10.1038/s41467-018-04862-w 10.1002/anie.202214545 10.1016/j.etran.2021.100152 10.1016/j.ensm.2019.03.005 10.1126/sciadv.aas9820 10.1016/j.ensm.2021.04.035 10.1002/anie.202103909 10.1016/j.cclet.2020.03.015 10.1016/j.joule.2020.03.012 10.1016/j.jechem.2020.10.017 10.1016/j.jechem.2020.11.034 10.1002/smm2.1015 10.1002/eom2.12066 10.1021/acsami.6b13224 10.1021/acs.chemmater.2c02106 10.1038/s41563-021-01172-3 10.1002/aenm.202000648 10.1021/acsami.1c01246 10.1002/aenm.202002360 10.1016/j.jechem.2020.03.029 10.1016/j.jechem.2021.03.031 10.1002/adfm.202108790 10.1039/D1EE00551K 10.1038/s41578-019-0157-5 10.1016/j.joule.2022.02.007 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.etran.2023.100279 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1168 |
ExternalDocumentID | 10_1016_j_etran_2023_100279 |
GroupedDBID | 0R~ AABXZ AAEDW AAHCO AAKOC AALRI AAQFI AATTM AAXKI AAXUO AAYWO AAYXX ABJNI ACDAQ ACRLP ACVFH ADCNI AEBSH AEIPS AEUPX AEZYN AFJKZ AFPUW AFRZQ AFXIZ AGCQF AGRNS AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BNPGV CITATION EBS EFJIC EJD FDB FYGXN KOM M41 M~E ROL SPC SPCBC SSH SSM SSR SST T5K ~G- |
ID | FETCH-LOGICAL-c249t-8c96288d67f805cbfeca22c73e3672669067571cb4ab6db13f230d616796b6ef3 |
ISSN | 2590-1168 |
IngestDate | Tue Jul 01 03:42:26 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c249t-8c96288d67f805cbfeca22c73e3672669067571cb4ab6db13f230d616796b6ef3 |
ORCID | 0000-0002-3929-1541 |
ParticipantIDs | crossref_primary_10_1016_j_etran_2023_100279 crossref_citationtrail_10_1016_j_etran_2023_100279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-00 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
PublicationDecade | 2020 |
PublicationTitle | eTransportation (Amsterdam) |
PublicationYear | 2023 |
References | Thieu (10.1016/j.etran.2023.100279_bib39) 2021; 397 Zhao (10.1016/j.etran.2023.100279_bib27) 2020; 3 Zhu (10.1016/j.etran.2023.100279_bib58) 2016; 4 Wu (10.1016/j.etran.2023.100279_bib22) 2021; 3 Wu (10.1016/j.etran.2023.100279_bib44) 2021; 33 Chen (10.1016/j.etran.2023.100279_bib41) 2021; 13 Rui (10.1016/j.etran.2023.100279_bib60) 2023; 16 Jiang (10.1016/j.etran.2023.100279_bib2) 2021; 1 Yang (10.1016/j.etran.2023.100279_bib6) 2022; 61 Kim (10.1016/j.etran.2023.100279_bib10) 2022; 21 Chen (10.1016/j.etran.2023.100279_bib14) 2021; 8 Xu (10.1016/j.etran.2023.100279_bib26) 2022; 69 Zhang (10.1016/j.etran.2023.100279_bib25) 2021; 60 Wang (10.1016/j.etran.2023.100279_bib43) 2021; 14 Kim (10.1016/j.etran.2023.100279_bib56) 2022; 34 Yang (10.1016/j.etran.2023.100279_bib9) 2021; 9 Feng (10.1016/j.etran.2023.100279_bib13) 2020; 4 Ho (10.1016/j.etran.2023.100279_bib5) 2022; 7 Zhang (10.1016/j.etran.2023.100279_bib12) 2020; 120 Liu (10.1016/j.etran.2023.100279_bib3) 2021; 57 Jiang (10.1016/j.etran.2023.100279_bib20) 2023; 35 Li (10.1016/j.etran.2023.100279_bib54) 2022; 46 Geng (10.1016/j.etran.2023.100279_bib65) 2019; 23 Xiao (10.1016/j.etran.2023.100279_bib61) 2019; 3 Yang (10.1016/j.etran.2023.100279_bib32) 2020; 37 Sun (10.1016/j.etran.2023.100279_bib35) 2022; 14 Jiang (10.1016/j.etran.2023.100279_bib34) 2022; 72 Hou (10.1016/j.etran.2023.100279_bib68) 2020; 11 Puthusseri (10.1016/j.etran.2023.100279_bib21) 2020; 167 Chen (10.1016/j.etran.2023.100279_bib40) 2020; 4 Xu (10.1016/j.etran.2023.100279_bib46) 2020; 11 Xu (10.1016/j.etran.2023.100279_bib33) 2020; 11 Chen (10.1016/j.etran.2023.100279_bib16) 2021; 59 Yuan (10.1016/j.etran.2023.100279_bib18) 2021; 62 Yan (10.1016/j.etran.2023.100279_bib55) 2018; 9 Zhang (10.1016/j.etran.2023.100279_bib63) 2020; 1 Richards (10.1016/j.etran.2023.100279_bib50) 2015; 28 Li (10.1016/j.etran.2023.100279_bib67) 2021; 13 Zhou (10.1016/j.etran.2023.100279_bib19) 2022; 44 Yu (10.1016/j.etran.2023.100279_bib49) 2016; 215 Liu (10.1016/j.etran.2023.100279_bib17) 2021; 52 Xiao (10.1016/j.etran.2023.100279_bib59) 2019; 5 Ding (10.1016/j.etran.2023.100279_bib29) 2020; 31 Jung (10.1016/j.etran.2023.100279_bib53) 2021; 32 Hou (10.1016/j.etran.2023.100279_bib52) 2021; 39 Koerver (10.1016/j.etran.2023.100279_bib62) 2017; 29 Gao (10.1016/j.etran.2023.100279_bib28) 2021; 59 Yang (10.1016/j.etran.2023.100279_bib36) 2022; 11 Zheng (10.1016/j.etran.2023.100279_bib47) 2021; 17 Zhu (10.1016/j.etran.2023.100279_bib57) 2015; 7 Xu (10.1016/j.etran.2023.100279_bib48) 2022; 2 Huang (10.1016/j.etran.2023.100279_bib66) 2021; 489 Liu (10.1016/j.etran.2023.100279_bib15) 2021; 61 Ye (10.1016/j.etran.2023.100279_bib51) 2021; 593 Wang (10.1016/j.etran.2023.100279_bib38) 2023; 5 Yuan (10.1016/j.etran.2023.100279_bib45) 2020; 36 Zhao (10.1016/j.etran.2023.100279_bib31) 2020; 5 Hu (10.1016/j.etran.2023.100279_bib23) 2021; 10 Wu (10.1016/j.etran.2023.100279_bib64) 2021; 11 Liu (10.1016/j.etran.2023.100279_bib24) 2018; 4 Bates (10.1016/j.etran.2023.100279_bib1) 2022; 6 Liu (10.1016/j.etran.2023.100279_bib37) 2023; 8 Fan (10.1016/j.etran.2023.100279_bib8) 2021; 50 Inoue (10.1016/j.etran.2023.100279_bib42) 2017; 9 Piątek (10.1016/j.etran.2023.100279_bib4) 2020; 11 Kong (10.1016/j.etran.2023.100279_bib7) 2020; 1 Jiang (10.1016/j.etran.2023.100279_bib30) 2023; 15 Wu (10.1016/j.etran.2023.100279_bib11) 2020; 2 |
References_xml | – volume: 15 year: 2023 ident: 10.1016/j.etran.2023.100279_bib30 article-title: An interface-contact regulation renders thermally safe lithium metal batteries publication-title: eTransportation doi: 10.1016/j.etran.2022.100211 – volume: 4 start-page: 743 issue: 4 year: 2020 ident: 10.1016/j.etran.2023.100279_bib13 article-title: Mitigating thermal runaway of lithium-ion batteries publication-title: Joule doi: 10.1016/j.joule.2020.02.010 – volume: 14 year: 2022 ident: 10.1016/j.etran.2023.100279_bib35 article-title: In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries publication-title: eTransportation doi: 10.1016/j.etran.2022.100203 – volume: 46 start-page: 90 year: 2022 ident: 10.1016/j.etran.2023.100279_bib54 article-title: In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2022.01.007 – volume: 44 start-page: 326 year: 2022 ident: 10.1016/j.etran.2023.100279_bib19 article-title: Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2021.10.030 – volume: 1 start-page: 506 issue: 4 year: 2021 ident: 10.1016/j.etran.2023.100279_bib2 article-title: Mechanism understanding for stripping electrochemistry of Li metal anode publication-title: SusMat doi: 10.1002/sus2.37 – volume: 28 start-page: 266 issue: 1 year: 2015 ident: 10.1016/j.etran.2023.100279_bib50 article-title: Interface stability in solid-state batteries publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b04082 – volume: 11 start-page: 5100 issue: 1 year: 2020 ident: 10.1016/j.etran.2023.100279_bib68 article-title: Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes publication-title: Nat Commun doi: 10.1038/s41467-020-18868-w – volume: 13 start-page: 57142 issue: 48 year: 2021 ident: 10.1016/j.etran.2023.100279_bib67 article-title: Achieving a stable solid electrolyte interphase and enhanced thermal stability by a dual-functional electrolyte additive toward a high-loading LiNi0.8Mn0.1Co0.1O2/lithium pouch battery publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c17209 – volume: 1 issue: 3 year: 2020 ident: 10.1016/j.etran.2023.100279_bib63 article-title: Structure design of cathode electrodes for solid‐state batteries: challenges and progress publication-title: Small Struct doi: 10.1002/sstr.202000042 – volume: 8 start-page: 12411 issue: 13 year: 2023 ident: 10.1016/j.etran.2023.100279_bib37 article-title: Thermal, electrical, and environmental safeties of sulfide electrolyte-based all-solid-state Li-ion batteries publication-title: ACS Omega doi: 10.1021/acsomega.3c00261 – volume: 35 issue: 12 year: 2023 ident: 10.1016/j.etran.2023.100279_bib20 article-title: Thermoresponsive electrolytes for safe lithium metal batteries publication-title: Adv Mater doi: 10.1002/adma.202209114 – volume: 36 start-page: 377 issue: 3 year: 2020 ident: 10.1016/j.etran.2023.100279_bib45 article-title: Toward practical all-solid-state batteries with sulfide electrolyte: a review publication-title: Chem Res Chin Univ doi: 10.1007/s40242-020-0103-5 – volume: 489 year: 2021 ident: 10.1016/j.etran.2023.100279_bib66 article-title: Thermal runaway features of lithium sulfur pouch cells at various states of charge evaluated by extended volume-accelerating rate calorimetry publication-title: J Power Sources doi: 10.1016/j.jpowsour.2021.229503 – volume: 57 start-page: 56 year: 2021 ident: 10.1016/j.etran.2023.100279_bib3 article-title: Advanced electrode processing of lithium ion batteries: a review of powder technology in battery fabrication publication-title: Particuology doi: 10.1016/j.partic.2020.12.003 – volume: 29 start-page: 5574 issue: 13 year: 2017 ident: 10.1016/j.etran.2023.100279_bib62 article-title: Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b00931 – volume: 8 issue: 11 year: 2021 ident: 10.1016/j.etran.2023.100279_bib14 article-title: Abuse‐tolerant electrolytes for lithium‐ion batteries publication-title: Adv Sci doi: 10.1002/advs.202003694 – volume: 4 start-page: 3253 issue: 9 year: 2016 ident: 10.1016/j.etran.2023.100279_bib58 article-title: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries publication-title: J Mater Chem A doi: 10.1039/C5TA08574H – volume: 5 start-page: 229 issue: 3 year: 2020 ident: 10.1016/j.etran.2023.100279_bib31 article-title: Designing solid-state electrolytes for safe, energy-dense batteries publication-title: Nat Rev Mater doi: 10.1038/s41578-019-0165-5 – volume: 5 issue: 4 year: 2023 ident: 10.1016/j.etran.2023.100279_bib38 article-title: Advances in thermal‐related analysis techniques for solid‐state lithium batteries publication-title: InfoMat doi: 10.1002/inf2.12401 – volume: 11 issue: 47 year: 2021 ident: 10.1016/j.etran.2023.100279_bib64 article-title: High‐voltage and high‐safety practical lithium batteries with ethylene carbonate‐free electrolyte publication-title: Adv Energy Mater doi: 10.1002/aenm.202102299 – volume: 61 start-page: 269 year: 2021 ident: 10.1016/j.etran.2023.100279_bib15 article-title: Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.03.025 – volume: 3 start-page: 827 issue: 8 year: 2021 ident: 10.1016/j.etran.2023.100279_bib22 article-title: Progress in thermal stability of all‐solid‐state‐Li‐ion‐batteries publication-title: InfoMat doi: 10.1002/inf2.12224 – volume: 3 start-page: 1252 issue: 5 year: 2019 ident: 10.1016/j.etran.2023.100279_bib61 article-title: Computational screening of cathode coatings for solid-state batteries publication-title: Joule doi: 10.1016/j.joule.2019.02.006 – volume: 10 year: 2021 ident: 10.1016/j.etran.2023.100279_bib23 article-title: Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery publication-title: eTransportation doi: 10.1016/j.etran.2021.100140 – volume: 1 issue: 1 year: 2020 ident: 10.1016/j.etran.2023.100279_bib7 article-title: Advanced energy materials for flexible batteries in energy storage: a review publication-title: SmartMat doi: 10.1002/smm2.1007 – volume: 9 start-page: 19664 issue: 35 year: 2021 ident: 10.1016/j.etran.2023.100279_bib9 article-title: Formation mechanism of the solid electrolyte interphase in different ester electrolytes publication-title: J Mater Chem A doi: 10.1039/D1TA02615A – volume: 33 issue: 6 year: 2021 ident: 10.1016/j.etran.2023.100279_bib44 article-title: Lithium/sulfide all-solid-state batteries using sulfide electrolytes publication-title: Adv Mater doi: 10.1002/adma.202000751 – volume: 215 start-page: 93 year: 2016 ident: 10.1016/j.etran.2023.100279_bib49 article-title: Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for li-ion solid state batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.08.081 – volume: 69 start-page: 205 year: 2022 ident: 10.1016/j.etran.2023.100279_bib26 article-title: Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2022.01.019 – volume: 593 start-page: 218 issue: 7858 year: 2021 ident: 10.1016/j.etran.2023.100279_bib51 article-title: A dynamic stability design strategy for lithium metal solid state batteries publication-title: Nature doi: 10.1038/s41586-021-03486-3 – volume: 2 start-page: 435 issue: 4 year: 2022 ident: 10.1016/j.etran.2023.100279_bib48 article-title: Dendrite‐accelerated thermal runaway mechanisms of lithium metal pouch batteries publication-title: SusMat doi: 10.1002/sus2.74 – volume: 7 start-page: 23685 issue: 42 year: 2015 ident: 10.1016/j.etran.2023.100279_bib57 article-title: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b07517 – volume: 16 start-page: 3552 issue: 8 year: 2023 ident: 10.1016/j.etran.2023.100279_bib60 article-title: Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries publication-title: Energy Environ Sci doi: 10.1039/D3EE00084B – volume: 17 issue: 37 year: 2021 ident: 10.1016/j.etran.2023.100279_bib47 article-title: Unprecedented self-healing effect of Li6PS5Cl-based all-solid-state lithium battery publication-title: Small doi: 10.1002/smll.202101326 – volume: 397 year: 2021 ident: 10.1016/j.etran.2023.100279_bib39 article-title: Long cycle-life prototype lithium-metal all-solid-state pouch cells employing garnet-rich composite electrolyte publication-title: Electrochim Acta doi: 10.1016/j.electacta.2021.139249 – volume: 167 issue: 12 year: 2020 ident: 10.1016/j.etran.2023.100279_bib21 article-title: Probing the thermal safety of Li metal batteries publication-title: J Electrochem Soc doi: 10.1149/1945-7111/ababd2 – volume: 7 start-page: 1120 issue: 3 year: 2022 ident: 10.1016/j.etran.2023.100279_bib5 article-title: Comparing the purity of rolled versus evaporated lithium metal films using X-ray microtomography publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.2c00255 – volume: 50 start-page: 10486 issue: 18 year: 2021 ident: 10.1016/j.etran.2023.100279_bib8 article-title: High-voltage liquid electrolytes for li batteries: progress and perspectives publication-title: Chem Soc Rev doi: 10.1039/D1CS00450F – volume: 11 issue: 43 year: 2020 ident: 10.1016/j.etran.2023.100279_bib4 article-title: Sustainable Li‐ion batteries: chemistry and recycling publication-title: Adv Energy Mater doi: 10.1002/aenm.202003456 – volume: 120 start-page: 13312 issue: 24 year: 2020 ident: 10.1016/j.etran.2023.100279_bib12 article-title: Lithium metal anodes with nonaqueous electrolytes publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c00275 – volume: 72 start-page: 158 year: 2022 ident: 10.1016/j.etran.2023.100279_bib34 article-title: Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2022.05.005 – volume: 9 start-page: 2437 issue: 1 year: 2018 ident: 10.1016/j.etran.2023.100279_bib55 article-title: Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode publication-title: Nat Commun doi: 10.1038/s41467-018-04862-w – volume: 61 issue: 51 year: 2022 ident: 10.1016/j.etran.2023.100279_bib6 article-title: Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells publication-title: Angew Chem Int Ed doi: 10.1002/anie.202214545 – volume: 11 year: 2022 ident: 10.1016/j.etran.2023.100279_bib36 article-title: Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries publication-title: eTransportation doi: 10.1016/j.etran.2021.100152 – volume: 23 start-page: 646 year: 2019 ident: 10.1016/j.etran.2023.100279_bib65 article-title: Lithium metal batteries capable of stable operation at elevated temperature publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2019.03.005 – volume: 4 issue: 6 year: 2018 ident: 10.1016/j.etran.2023.100279_bib24 article-title: Materials for lithium-ion battery safety publication-title: Sci Adv doi: 10.1126/sciadv.aas9820 – volume: 39 start-page: 395 year: 2021 ident: 10.1016/j.etran.2023.100279_bib52 article-title: Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2021.04.035 – volume: 60 start-page: 19183 issue: 35 year: 2021 ident: 10.1016/j.etran.2023.100279_bib25 article-title: Enabling lithium metal anode in nonflammable phosphate electrolyte with electrochemically induced chemical reactions publication-title: Angew Chem Int Ed doi: 10.1002/anie.202103909 – volume: 31 start-page: 2339 issue: 9 year: 2020 ident: 10.1016/j.etran.2023.100279_bib29 article-title: Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2020.03.015 – volume: 4 start-page: 812 issue: 4 year: 2020 ident: 10.1016/j.etran.2023.100279_bib40 article-title: The thermal stability of lithium solid electrolytes with metallic lithium publication-title: Joule doi: 10.1016/j.joule.2020.03.012 – volume: 59 start-page: 83 year: 2021 ident: 10.1016/j.etran.2023.100279_bib16 article-title: A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards publication-title: J Energy Chem doi: 10.1016/j.jechem.2020.10.017 – volume: 59 start-page: 666 year: 2021 ident: 10.1016/j.etran.2023.100279_bib28 article-title: Lithium metal batteries for high energy density: fundamental electrochemistry and challenges publication-title: J Energy Chem doi: 10.1016/j.jechem.2020.11.034 – volume: 2 start-page: 5 issue: 1 year: 2020 ident: 10.1016/j.etran.2023.100279_bib11 article-title: Perspective on solid‐electrolyte interphase regulation for lithium metal batteries publication-title: SmartMat doi: 10.1002/smm2.1015 – volume: 3 issue: 1 year: 2020 ident: 10.1016/j.etran.2023.100279_bib27 article-title: Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes publication-title: EcoMat doi: 10.1002/eom2.12066 – volume: 9 start-page: 1507 issue: 2 year: 2017 ident: 10.1016/j.etran.2023.100279_bib42 article-title: Are all-solid-state lithium-ion batteries really safe?-verification by differential scanning calorimetry with an all-inclusive microcell publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b13224 – volume: 34 start-page: 9159 issue: 20 year: 2022 ident: 10.1016/j.etran.2023.100279_bib56 article-title: Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries publication-title: Chem Mater doi: 10.1021/acs.chemmater.2c02106 – volume: 21 start-page: 445 issue: 4 year: 2022 ident: 10.1016/j.etran.2023.100279_bib10 article-title: Suspension electrolyte with modified Li(+) solvation environment for lithium metal batteries publication-title: Nat Mater doi: 10.1038/s41563-021-01172-3 – volume: 11 issue: 2 year: 2020 ident: 10.1016/j.etran.2023.100279_bib33 article-title: Garnet solid electrolyte for advanced all‐solid‐state Li batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.202000648 – volume: 13 start-page: 18743 issue: 16 year: 2021 ident: 10.1016/j.etran.2023.100279_bib41 article-title: Enhancing the thermal stability of nasicon solid electrolyte pellets against metallic lithium by defect modification publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c01246 – volume: 11 issue: 4 year: 2020 ident: 10.1016/j.etran.2023.100279_bib46 article-title: Toward the scale‐up of solid‐state lithium metal batteries: the gaps between lab‐level cells and practical large‐format batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.202002360 – volume: 52 start-page: 20 year: 2021 ident: 10.1016/j.etran.2023.100279_bib17 article-title: Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge publication-title: J Energy Chem doi: 10.1016/j.jechem.2020.03.029 – volume: 62 start-page: 262 year: 2021 ident: 10.1016/j.etran.2023.100279_bib18 article-title: A review of fire-extinguishing agent on suppressing lithium-ion batteries fire publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.03.031 – volume: 32 issue: 13 year: 2021 ident: 10.1016/j.etran.2023.100279_bib53 article-title: Unveiling the role of transition‐metal ion in the thermal degradation of layered Ni–Co–Mn cathodes for lithium rechargeable batteries publication-title: Adv Funct Mater doi: 10.1002/adfm.202108790 – volume: 14 start-page: 2577 issue: 5 year: 2021 ident: 10.1016/j.etran.2023.100279_bib43 article-title: All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design publication-title: Energy Environ Sci doi: 10.1039/D1EE00551K – volume: 5 start-page: 105 issue: 2 year: 2019 ident: 10.1016/j.etran.2023.100279_bib59 article-title: Understanding interface stability in solid-state batteries publication-title: Nat Rev Mater doi: 10.1038/s41578-019-0157-5 – volume: 37 issue: 11 year: 2020 ident: 10.1016/j.etran.2023.100279_bib32 article-title: Research progress of solid electrolyte interphase in lithium batteries publication-title: Acta Phys Chim Sin – volume: 6 start-page: 742 issue: 4 year: 2022 ident: 10.1016/j.etran.2023.100279_bib1 article-title: Are solid-state batteries safer than lithium-ion batteries? publication-title: Joule doi: 10.1016/j.joule.2022.02.007 |
SSID | ssj0002963885 |
Score | 2.4746685 |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 100279 |
Title | Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFO0BeQDt8VRXmvvHpcVqCpQEGqlRRyi2HGaVE0WtYmg3PjnzDiON0urinKJotmJ4818msxM5kHIqyyI0lgoxUKtZiwGF4LJPPeZmEyUkJn0ZzkG9D8e8v3j-GA5WY5Gv4fVJY301K9r60r-R6pAA7lilewtJOsWBQKcg3zhCBKG4z_J-NPPS_iNgVvd4md8tOUqbNTf1umP9HJcaSzrLS8qk64xL9gZZgiNYU9lxkwlEVYgF2Vb4SBpLMlataoYYyz_Ymi0atcBvUfLdF5hg4UM0eQiCV_70HNRsoNyABiDFIDhCXvfli5lp7Ts8ERP2KGjLwrd0Zdlzd70L1YblwjXGW5WfYFf5bMg6IbmePoa2qb-7RQodoTtpstc0e1dmOHU0w38aQ9v6a25Nztp__WGc3mHfUrbaWIWSXCRpFvkDtkOwdMAVbk9X3z58NkF6kJUUWa0q9t9373K5Ale2c7AwhmYKkcPyH3rY9B5B5iHZKTrR-TeoPPkY_JtEzrUQoda6NA1dOgqpz106AA61EKHGuhQAx1qoPOEHL97e7TYZ3bOBlPgfDdsqmY4dDrjIp_6EyVzrdIwVCLSERdgwM3QqxSBknEqeSaDKAe_NeP4AY9LrvPoKdmqV7V-Rqjg4G8I4IzBTNWwqIhjrbhKpfAzPw12SNg_m0TZJvQ4C-UsuUE0O-S1u-h714PlJvbd27Hvkbtr-D4nW815q1-AodnIlxYKfwDyy326 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen-induced+thermal+runaway+mechanisms+of+Ah-level+solid-state+lithium+metal+pouch+cells&rft.jtitle=eTransportation+%28Amsterdam%29&rft.au=Yang%2C+Shi-Jie&rft.au=Hu%2C+Jiang-Kui&rft.au=Jiang%2C+Feng-Ni&rft.au=Cheng%2C+Xin-Bing&rft.date=2023-10-01&rft.issn=2590-1168&rft.eissn=2590-1168&rft.volume=18&rft.spage=100279&rft_id=info:doi/10.1016%2Fj.etran.2023.100279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_etran_2023_100279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1168&client=summon |