Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells

Saved in:
Bibliographic Details
Published ineTransportation (Amsterdam) Vol. 18; p. 100279
Main Authors Yang, Shi-Jie, Hu, Jiang-Kui, Jiang, Feng-Ni, Cheng, Xin-Bing, Sun, Shuo, Hsu, Hung-Jen, Ren, Dongsheng, Zhao, Chen-Zi, Yuan, Hong, Ouyang, Minggao, Fan, Li-Zhen, Huang, Jia-Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published 01.10.2023
Online AccessGet full text

Cover

Loading…
ArticleNumber 100279
Author Zhao, Chen-Zi
Ren, Dongsheng
Zhang, Qiang
Yang, Shi-Jie
Sun, Shuo
Jiang, Feng-Ni
Ouyang, Minggao
Hu, Jiang-Kui
Yuan, Hong
Hsu, Hung-Jen
Huang, Jia-Qi
Fan, Li-Zhen
Cheng, Xin-Bing
Author_xml – sequence: 1
  givenname: Shi-Jie
  surname: Yang
  fullname: Yang, Shi-Jie
– sequence: 2
  givenname: Jiang-Kui
  surname: Hu
  fullname: Hu, Jiang-Kui
– sequence: 3
  givenname: Feng-Ni
  surname: Jiang
  fullname: Jiang, Feng-Ni
– sequence: 4
  givenname: Xin-Bing
  surname: Cheng
  fullname: Cheng, Xin-Bing
– sequence: 5
  givenname: Shuo
  surname: Sun
  fullname: Sun, Shuo
– sequence: 6
  givenname: Hung-Jen
  surname: Hsu
  fullname: Hsu, Hung-Jen
– sequence: 7
  givenname: Dongsheng
  surname: Ren
  fullname: Ren, Dongsheng
– sequence: 8
  givenname: Chen-Zi
  surname: Zhao
  fullname: Zhao, Chen-Zi
– sequence: 9
  givenname: Hong
  surname: Yuan
  fullname: Yuan, Hong
– sequence: 10
  givenname: Minggao
  surname: Ouyang
  fullname: Ouyang, Minggao
– sequence: 11
  givenname: Li-Zhen
  surname: Fan
  fullname: Fan, Li-Zhen
– sequence: 12
  givenname: Jia-Qi
  surname: Huang
  fullname: Huang, Jia-Qi
– sequence: 13
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
BookMark eNp9kMtOwzAQRS1UJErpF7DxD6T40Tj2sqp4VKrUDaxYRI4zJq4cp4oToH-PS1kgFqzmanTPSHOu0SR0ARC6pWRBCRV3-wUMvQ4LRhhPG8IKdYGmLFcko1TIya98heYx7knqKMGlzKfodfd5fIOQuVCPBmo8NNC32uN-DPpDH3ELptHBxTbizuJVk3l4B49j512dxUEPgL0bGje2qTok8NCNpsEGvI836NJqH2H-M2fo5eH-ef2UbXePm_Vqmxm2VEMmjRJMyloUVpLcVBaMZswUHLgomBCKiCIvqKmWuhJ1RbllnNSCikKJSoDlM8TPd03fxdiDLQ-9a3V_LCkpT4rKffmtqDwpKs-KEqX-UMalf1wXUtX5f9kvFtZxgQ
CitedBy_id crossref_primary_10_1002_aenm_202405183
crossref_primary_10_1016_j_jechem_2024_01_036
crossref_primary_10_1002_smll_202401675
crossref_primary_10_1016_j_jechem_2024_12_006
crossref_primary_10_1002_inf2_12613
crossref_primary_10_1002_adma_202419782
crossref_primary_10_1021_acsenergylett_4c00621
crossref_primary_10_1039_D4CS00797B
crossref_primary_10_1016_j_jechem_2024_01_073
crossref_primary_10_1016_j_energy_2025_134900
crossref_primary_10_1016_j_ensm_2024_103366
crossref_primary_10_1002_eem2_12892
crossref_primary_10_1039_D4EE02358G
crossref_primary_10_1002_anie_202421101
crossref_primary_10_23919_CHAIN_2024_000011
crossref_primary_10_1016_j_ensm_2024_103481
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1021_acsaem_4c00248
crossref_primary_10_1016_j_cclet_2024_110007
crossref_primary_10_1002_adfm_202311633
crossref_primary_10_1016_j_jechem_2024_03_015
crossref_primary_10_1016_j_jechem_2024_11_031
crossref_primary_10_1007_s12598_024_02931_2
crossref_primary_10_1002_aenm_202303850
crossref_primary_10_1002_adma_202405086
crossref_primary_10_1016_j_jechem_2024_03_060
crossref_primary_10_1016_j_energy_2025_135168
crossref_primary_10_1016_j_xcrp_2024_102056
crossref_primary_10_1002_adma_202401482
crossref_primary_10_1002_adfm_202400348
crossref_primary_10_1002_ange_202421101
crossref_primary_10_1016_j_ensm_2023_103034
crossref_primary_10_1021_acs_energyfuels_4c02174
crossref_primary_10_1002_inf2_12512
crossref_primary_10_1016_j_cclet_2025_110851
crossref_primary_10_1002_sus2_70004
crossref_primary_10_1016_j_jechem_2024_07_003
crossref_primary_10_1016_j_jechem_2024_07_043
crossref_primary_10_1016_j_ensm_2024_103422
crossref_primary_10_1002_advs_202400953
crossref_primary_10_1016_j_applthermaleng_2024_122941
crossref_primary_10_1016_j_joule_2024_07_007
crossref_primary_10_1007_s41918_024_00221_0
crossref_primary_10_1016_j_partic_2024_04_007
crossref_primary_10_1021_acsenergylett_4c01583
crossref_primary_10_1016_j_jechem_2024_11_014
crossref_primary_10_1002_adfm_202406080
crossref_primary_10_1002_smll_202406110
crossref_primary_10_1016_j_etran_2024_100354
crossref_primary_10_1016_j_enrev_2024_100117
crossref_primary_10_1016_j_partic_2023_12_017
crossref_primary_10_1016_j_jechem_2024_12_050
Cites_doi 10.1016/j.etran.2022.100211
10.1016/j.joule.2020.02.010
10.1016/j.etran.2022.100203
10.1016/j.ensm.2022.01.007
10.1016/j.ensm.2021.10.030
10.1002/sus2.37
10.1021/acs.chemmater.5b04082
10.1038/s41467-020-18868-w
10.1021/acsami.1c17209
10.1002/sstr.202000042
10.1021/acsomega.3c00261
10.1002/adma.202209114
10.1007/s40242-020-0103-5
10.1016/j.jpowsour.2021.229503
10.1016/j.partic.2020.12.003
10.1021/acs.chemmater.7b00931
10.1002/advs.202003694
10.1039/C5TA08574H
10.1038/s41578-019-0165-5
10.1002/inf2.12401
10.1002/aenm.202102299
10.1016/j.jechem.2021.03.025
10.1002/inf2.12224
10.1016/j.joule.2019.02.006
10.1016/j.etran.2021.100140
10.1002/smm2.1007
10.1039/D1TA02615A
10.1002/adma.202000751
10.1016/j.electacta.2016.08.081
10.1016/j.jechem.2022.01.019
10.1038/s41586-021-03486-3
10.1002/sus2.74
10.1021/acsami.5b07517
10.1039/D3EE00084B
10.1002/smll.202101326
10.1016/j.electacta.2021.139249
10.1149/1945-7111/ababd2
10.1021/acsenergylett.2c00255
10.1039/D1CS00450F
10.1002/aenm.202003456
10.1021/acs.chemrev.0c00275
10.1016/j.jechem.2022.05.005
10.1038/s41467-018-04862-w
10.1002/anie.202214545
10.1016/j.etran.2021.100152
10.1016/j.ensm.2019.03.005
10.1126/sciadv.aas9820
10.1016/j.ensm.2021.04.035
10.1002/anie.202103909
10.1016/j.cclet.2020.03.015
10.1016/j.joule.2020.03.012
10.1016/j.jechem.2020.10.017
10.1016/j.jechem.2020.11.034
10.1002/smm2.1015
10.1002/eom2.12066
10.1021/acsami.6b13224
10.1021/acs.chemmater.2c02106
10.1038/s41563-021-01172-3
10.1002/aenm.202000648
10.1021/acsami.1c01246
10.1002/aenm.202002360
10.1016/j.jechem.2020.03.029
10.1016/j.jechem.2021.03.031
10.1002/adfm.202108790
10.1039/D1EE00551K
10.1038/s41578-019-0157-5
10.1016/j.joule.2022.02.007
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.etran.2023.100279
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1168
ExternalDocumentID 10_1016_j_etran_2023_100279
GroupedDBID 0R~
AABXZ
AAEDW
AAHCO
AAKOC
AALRI
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABJNI
ACDAQ
ACRLP
ACVFH
ADCNI
AEBSH
AEIPS
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFXIZ
AGCQF
AGRNS
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BNPGV
CITATION
EBS
EFJIC
EJD
FDB
FYGXN
KOM
M41
M~E
ROL
SPC
SPCBC
SSH
SSM
SSR
SST
T5K
~G-
ID FETCH-LOGICAL-c249t-8c96288d67f805cbfeca22c73e3672669067571cb4ab6db13f230d616796b6ef3
ISSN 2590-1168
IngestDate Tue Jul 01 03:42:26 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-8c96288d67f805cbfeca22c73e3672669067571cb4ab6db13f230d616796b6ef3
ORCID 0000-0002-3929-1541
ParticipantIDs crossref_primary_10_1016_j_etran_2023_100279
crossref_citationtrail_10_1016_j_etran_2023_100279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationTitle eTransportation (Amsterdam)
PublicationYear 2023
References Thieu (10.1016/j.etran.2023.100279_bib39) 2021; 397
Zhao (10.1016/j.etran.2023.100279_bib27) 2020; 3
Zhu (10.1016/j.etran.2023.100279_bib58) 2016; 4
Wu (10.1016/j.etran.2023.100279_bib22) 2021; 3
Wu (10.1016/j.etran.2023.100279_bib44) 2021; 33
Chen (10.1016/j.etran.2023.100279_bib41) 2021; 13
Rui (10.1016/j.etran.2023.100279_bib60) 2023; 16
Jiang (10.1016/j.etran.2023.100279_bib2) 2021; 1
Yang (10.1016/j.etran.2023.100279_bib6) 2022; 61
Kim (10.1016/j.etran.2023.100279_bib10) 2022; 21
Chen (10.1016/j.etran.2023.100279_bib14) 2021; 8
Xu (10.1016/j.etran.2023.100279_bib26) 2022; 69
Zhang (10.1016/j.etran.2023.100279_bib25) 2021; 60
Wang (10.1016/j.etran.2023.100279_bib43) 2021; 14
Kim (10.1016/j.etran.2023.100279_bib56) 2022; 34
Yang (10.1016/j.etran.2023.100279_bib9) 2021; 9
Feng (10.1016/j.etran.2023.100279_bib13) 2020; 4
Ho (10.1016/j.etran.2023.100279_bib5) 2022; 7
Zhang (10.1016/j.etran.2023.100279_bib12) 2020; 120
Liu (10.1016/j.etran.2023.100279_bib3) 2021; 57
Jiang (10.1016/j.etran.2023.100279_bib20) 2023; 35
Li (10.1016/j.etran.2023.100279_bib54) 2022; 46
Geng (10.1016/j.etran.2023.100279_bib65) 2019; 23
Xiao (10.1016/j.etran.2023.100279_bib61) 2019; 3
Yang (10.1016/j.etran.2023.100279_bib32) 2020; 37
Sun (10.1016/j.etran.2023.100279_bib35) 2022; 14
Jiang (10.1016/j.etran.2023.100279_bib34) 2022; 72
Hou (10.1016/j.etran.2023.100279_bib68) 2020; 11
Puthusseri (10.1016/j.etran.2023.100279_bib21) 2020; 167
Chen (10.1016/j.etran.2023.100279_bib40) 2020; 4
Xu (10.1016/j.etran.2023.100279_bib46) 2020; 11
Xu (10.1016/j.etran.2023.100279_bib33) 2020; 11
Chen (10.1016/j.etran.2023.100279_bib16) 2021; 59
Yuan (10.1016/j.etran.2023.100279_bib18) 2021; 62
Yan (10.1016/j.etran.2023.100279_bib55) 2018; 9
Zhang (10.1016/j.etran.2023.100279_bib63) 2020; 1
Richards (10.1016/j.etran.2023.100279_bib50) 2015; 28
Li (10.1016/j.etran.2023.100279_bib67) 2021; 13
Zhou (10.1016/j.etran.2023.100279_bib19) 2022; 44
Yu (10.1016/j.etran.2023.100279_bib49) 2016; 215
Liu (10.1016/j.etran.2023.100279_bib17) 2021; 52
Xiao (10.1016/j.etran.2023.100279_bib59) 2019; 5
Ding (10.1016/j.etran.2023.100279_bib29) 2020; 31
Jung (10.1016/j.etran.2023.100279_bib53) 2021; 32
Hou (10.1016/j.etran.2023.100279_bib52) 2021; 39
Koerver (10.1016/j.etran.2023.100279_bib62) 2017; 29
Gao (10.1016/j.etran.2023.100279_bib28) 2021; 59
Yang (10.1016/j.etran.2023.100279_bib36) 2022; 11
Zheng (10.1016/j.etran.2023.100279_bib47) 2021; 17
Zhu (10.1016/j.etran.2023.100279_bib57) 2015; 7
Xu (10.1016/j.etran.2023.100279_bib48) 2022; 2
Huang (10.1016/j.etran.2023.100279_bib66) 2021; 489
Liu (10.1016/j.etran.2023.100279_bib15) 2021; 61
Ye (10.1016/j.etran.2023.100279_bib51) 2021; 593
Wang (10.1016/j.etran.2023.100279_bib38) 2023; 5
Yuan (10.1016/j.etran.2023.100279_bib45) 2020; 36
Zhao (10.1016/j.etran.2023.100279_bib31) 2020; 5
Hu (10.1016/j.etran.2023.100279_bib23) 2021; 10
Wu (10.1016/j.etran.2023.100279_bib64) 2021; 11
Liu (10.1016/j.etran.2023.100279_bib24) 2018; 4
Bates (10.1016/j.etran.2023.100279_bib1) 2022; 6
Liu (10.1016/j.etran.2023.100279_bib37) 2023; 8
Fan (10.1016/j.etran.2023.100279_bib8) 2021; 50
Inoue (10.1016/j.etran.2023.100279_bib42) 2017; 9
Piątek (10.1016/j.etran.2023.100279_bib4) 2020; 11
Kong (10.1016/j.etran.2023.100279_bib7) 2020; 1
Jiang (10.1016/j.etran.2023.100279_bib30) 2023; 15
Wu (10.1016/j.etran.2023.100279_bib11) 2020; 2
References_xml – volume: 15
  year: 2023
  ident: 10.1016/j.etran.2023.100279_bib30
  article-title: An interface-contact regulation renders thermally safe lithium metal batteries
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100211
– volume: 4
  start-page: 743
  issue: 4
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib13
  article-title: Mitigating thermal runaway of lithium-ion batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.010
– volume: 14
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib35
  article-title: In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100203
– volume: 46
  start-page: 90
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib54
  article-title: In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2022.01.007
– volume: 44
  start-page: 326
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib19
  article-title: Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2021.10.030
– volume: 1
  start-page: 506
  issue: 4
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib2
  article-title: Mechanism understanding for stripping electrochemistry of Li metal anode
  publication-title: SusMat
  doi: 10.1002/sus2.37
– volume: 28
  start-page: 266
  issue: 1
  year: 2015
  ident: 10.1016/j.etran.2023.100279_bib50
  article-title: Interface stability in solid-state batteries
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04082
– volume: 11
  start-page: 5100
  issue: 1
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib68
  article-title: Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18868-w
– volume: 13
  start-page: 57142
  issue: 48
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib67
  article-title: Achieving a stable solid electrolyte interphase and enhanced thermal stability by a dual-functional electrolyte additive toward a high-loading LiNi0.8Mn0.1Co0.1O2/lithium pouch battery
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c17209
– volume: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib63
  article-title: Structure design of cathode electrodes for solid‐state batteries: challenges and progress
  publication-title: Small Struct
  doi: 10.1002/sstr.202000042
– volume: 8
  start-page: 12411
  issue: 13
  year: 2023
  ident: 10.1016/j.etran.2023.100279_bib37
  article-title: Thermal, electrical, and environmental safeties of sulfide electrolyte-based all-solid-state Li-ion batteries
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c00261
– volume: 35
  issue: 12
  year: 2023
  ident: 10.1016/j.etran.2023.100279_bib20
  article-title: Thermoresponsive electrolytes for safe lithium metal batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.202209114
– volume: 36
  start-page: 377
  issue: 3
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib45
  article-title: Toward practical all-solid-state batteries with sulfide electrolyte: a review
  publication-title: Chem Res Chin Univ
  doi: 10.1007/s40242-020-0103-5
– volume: 489
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib66
  article-title: Thermal runaway features of lithium sulfur pouch cells at various states of charge evaluated by extended volume-accelerating rate calorimetry
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2021.229503
– volume: 57
  start-page: 56
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib3
  article-title: Advanced electrode processing of lithium ion batteries: a review of powder technology in battery fabrication
  publication-title: Particuology
  doi: 10.1016/j.partic.2020.12.003
– volume: 29
  start-page: 5574
  issue: 13
  year: 2017
  ident: 10.1016/j.etran.2023.100279_bib62
  article-title: Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b00931
– volume: 8
  issue: 11
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib14
  article-title: Abuse‐tolerant electrolytes for lithium‐ion batteries
  publication-title: Adv Sci
  doi: 10.1002/advs.202003694
– volume: 4
  start-page: 3253
  issue: 9
  year: 2016
  ident: 10.1016/j.etran.2023.100279_bib58
  article-title: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA08574H
– volume: 5
  start-page: 229
  issue: 3
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib31
  article-title: Designing solid-state electrolytes for safe, energy-dense batteries
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-019-0165-5
– volume: 5
  issue: 4
  year: 2023
  ident: 10.1016/j.etran.2023.100279_bib38
  article-title: Advances in thermal‐related analysis techniques for solid‐state lithium batteries
  publication-title: InfoMat
  doi: 10.1002/inf2.12401
– volume: 11
  issue: 47
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib64
  article-title: High‐voltage and high‐safety practical lithium batteries with ethylene carbonate‐free electrolyte
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202102299
– volume: 61
  start-page: 269
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib15
  article-title: Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2021.03.025
– volume: 3
  start-page: 827
  issue: 8
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib22
  article-title: Progress in thermal stability of all‐solid‐state‐Li‐ion‐batteries
  publication-title: InfoMat
  doi: 10.1002/inf2.12224
– volume: 3
  start-page: 1252
  issue: 5
  year: 2019
  ident: 10.1016/j.etran.2023.100279_bib61
  article-title: Computational screening of cathode coatings for solid-state batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.006
– volume: 10
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib23
  article-title: Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery
  publication-title: eTransportation
  doi: 10.1016/j.etran.2021.100140
– volume: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib7
  article-title: Advanced energy materials for flexible batteries in energy storage: a review
  publication-title: SmartMat
  doi: 10.1002/smm2.1007
– volume: 9
  start-page: 19664
  issue: 35
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib9
  article-title: Formation mechanism of the solid electrolyte interphase in different ester electrolytes
  publication-title: J Mater Chem A
  doi: 10.1039/D1TA02615A
– volume: 33
  issue: 6
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib44
  article-title: Lithium/sulfide all-solid-state batteries using sulfide electrolytes
  publication-title: Adv Mater
  doi: 10.1002/adma.202000751
– volume: 215
  start-page: 93
  year: 2016
  ident: 10.1016/j.etran.2023.100279_bib49
  article-title: Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for li-ion solid state batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.08.081
– volume: 69
  start-page: 205
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib26
  article-title: Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2022.01.019
– volume: 593
  start-page: 218
  issue: 7858
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib51
  article-title: A dynamic stability design strategy for lithium metal solid state batteries
  publication-title: Nature
  doi: 10.1038/s41586-021-03486-3
– volume: 2
  start-page: 435
  issue: 4
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib48
  article-title: Dendrite‐accelerated thermal runaway mechanisms of lithium metal pouch batteries
  publication-title: SusMat
  doi: 10.1002/sus2.74
– volume: 7
  start-page: 23685
  issue: 42
  year: 2015
  ident: 10.1016/j.etran.2023.100279_bib57
  article-title: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b07517
– volume: 16
  start-page: 3552
  issue: 8
  year: 2023
  ident: 10.1016/j.etran.2023.100279_bib60
  article-title: Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries
  publication-title: Energy Environ Sci
  doi: 10.1039/D3EE00084B
– volume: 17
  issue: 37
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib47
  article-title: Unprecedented self-healing effect of Li6PS5Cl-based all-solid-state lithium battery
  publication-title: Small
  doi: 10.1002/smll.202101326
– volume: 397
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib39
  article-title: Long cycle-life prototype lithium-metal all-solid-state pouch cells employing garnet-rich composite electrolyte
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2021.139249
– volume: 167
  issue: 12
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib21
  article-title: Probing the thermal safety of Li metal batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/1945-7111/ababd2
– volume: 7
  start-page: 1120
  issue: 3
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib5
  article-title: Comparing the purity of rolled versus evaporated lithium metal films using X-ray microtomography
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.2c00255
– volume: 50
  start-page: 10486
  issue: 18
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib8
  article-title: High-voltage liquid electrolytes for li batteries: progress and perspectives
  publication-title: Chem Soc Rev
  doi: 10.1039/D1CS00450F
– volume: 11
  issue: 43
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib4
  article-title: Sustainable Li‐ion batteries: chemistry and recycling
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202003456
– volume: 120
  start-page: 13312
  issue: 24
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib12
  article-title: Lithium metal anodes with nonaqueous electrolytes
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c00275
– volume: 72
  start-page: 158
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib34
  article-title: Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2022.05.005
– volume: 9
  start-page: 2437
  issue: 1
  year: 2018
  ident: 10.1016/j.etran.2023.100279_bib55
  article-title: Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04862-w
– volume: 61
  issue: 51
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib6
  article-title: Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202214545
– volume: 11
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib36
  article-title: Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries
  publication-title: eTransportation
  doi: 10.1016/j.etran.2021.100152
– volume: 23
  start-page: 646
  year: 2019
  ident: 10.1016/j.etran.2023.100279_bib65
  article-title: Lithium metal batteries capable of stable operation at elevated temperature
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2019.03.005
– volume: 4
  issue: 6
  year: 2018
  ident: 10.1016/j.etran.2023.100279_bib24
  article-title: Materials for lithium-ion battery safety
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aas9820
– volume: 39
  start-page: 395
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib52
  article-title: Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2021.04.035
– volume: 60
  start-page: 19183
  issue: 35
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib25
  article-title: Enabling lithium metal anode in nonflammable phosphate electrolyte with electrochemically induced chemical reactions
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202103909
– volume: 31
  start-page: 2339
  issue: 9
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib29
  article-title: Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2020.03.015
– volume: 4
  start-page: 812
  issue: 4
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib40
  article-title: The thermal stability of lithium solid electrolytes with metallic lithium
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.012
– volume: 59
  start-page: 83
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib16
  article-title: A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2020.10.017
– volume: 59
  start-page: 666
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib28
  article-title: Lithium metal batteries for high energy density: fundamental electrochemistry and challenges
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2020.11.034
– volume: 2
  start-page: 5
  issue: 1
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib11
  article-title: Perspective on solid‐electrolyte interphase regulation for lithium metal batteries
  publication-title: SmartMat
  doi: 10.1002/smm2.1015
– volume: 3
  issue: 1
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib27
  article-title: Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes
  publication-title: EcoMat
  doi: 10.1002/eom2.12066
– volume: 9
  start-page: 1507
  issue: 2
  year: 2017
  ident: 10.1016/j.etran.2023.100279_bib42
  article-title: Are all-solid-state lithium-ion batteries really safe?-verification by differential scanning calorimetry with an all-inclusive microcell
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b13224
– volume: 34
  start-page: 9159
  issue: 20
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib56
  article-title: Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.2c02106
– volume: 21
  start-page: 445
  issue: 4
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib10
  article-title: Suspension electrolyte with modified Li(+) solvation environment for lithium metal batteries
  publication-title: Nat Mater
  doi: 10.1038/s41563-021-01172-3
– volume: 11
  issue: 2
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib33
  article-title: Garnet solid electrolyte for advanced all‐solid‐state Li batteries
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202000648
– volume: 13
  start-page: 18743
  issue: 16
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib41
  article-title: Enhancing the thermal stability of nasicon solid electrolyte pellets against metallic lithium by defect modification
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c01246
– volume: 11
  issue: 4
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib46
  article-title: Toward the scale‐up of solid‐state lithium metal batteries: the gaps between lab‐level cells and practical large‐format batteries
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202002360
– volume: 52
  start-page: 20
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib17
  article-title: Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2020.03.029
– volume: 62
  start-page: 262
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib18
  article-title: A review of fire-extinguishing agent on suppressing lithium-ion batteries fire
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2021.03.031
– volume: 32
  issue: 13
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib53
  article-title: Unveiling the role of transition‐metal ion in the thermal degradation of layered Ni–Co–Mn cathodes for lithium rechargeable batteries
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202108790
– volume: 14
  start-page: 2577
  issue: 5
  year: 2021
  ident: 10.1016/j.etran.2023.100279_bib43
  article-title: All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design
  publication-title: Energy Environ Sci
  doi: 10.1039/D1EE00551K
– volume: 5
  start-page: 105
  issue: 2
  year: 2019
  ident: 10.1016/j.etran.2023.100279_bib59
  article-title: Understanding interface stability in solid-state batteries
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-019-0157-5
– volume: 37
  issue: 11
  year: 2020
  ident: 10.1016/j.etran.2023.100279_bib32
  article-title: Research progress of solid electrolyte interphase in lithium batteries
  publication-title: Acta Phys Chim Sin
– volume: 6
  start-page: 742
  issue: 4
  year: 2022
  ident: 10.1016/j.etran.2023.100279_bib1
  article-title: Are solid-state batteries safer than lithium-ion batteries?
  publication-title: Joule
  doi: 10.1016/j.joule.2022.02.007
SSID ssj0002963885
Score 2.4746685
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 100279
Title Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFO0BeQDt8VRXmvvHpcVqCpQEGqlRRyi2HGaVE0WtYmg3PjnzDiON0urinKJotmJ4818msxM5kHIqyyI0lgoxUKtZiwGF4LJPPeZmEyUkJn0ZzkG9D8e8v3j-GA5WY5Gv4fVJY301K9r60r-R6pAA7lilewtJOsWBQKcg3zhCBKG4z_J-NPPS_iNgVvd4md8tOUqbNTf1umP9HJcaSzrLS8qk64xL9gZZgiNYU9lxkwlEVYgF2Vb4SBpLMlataoYYyz_Ymi0atcBvUfLdF5hg4UM0eQiCV_70HNRsoNyABiDFIDhCXvfli5lp7Ts8ERP2KGjLwrd0Zdlzd70L1YblwjXGW5WfYFf5bMg6IbmePoa2qb-7RQodoTtpstc0e1dmOHU0w38aQ9v6a25Nztp__WGc3mHfUrbaWIWSXCRpFvkDtkOwdMAVbk9X3z58NkF6kJUUWa0q9t9373K5Ale2c7AwhmYKkcPyH3rY9B5B5iHZKTrR-TeoPPkY_JtEzrUQoda6NA1dOgqpz106AA61EKHGuhQAx1qoPOEHL97e7TYZ3bOBlPgfDdsqmY4dDrjIp_6EyVzrdIwVCLSERdgwM3QqxSBknEqeSaDKAe_NeP4AY9LrvPoKdmqV7V-Rqjg4G8I4IzBTNWwqIhjrbhKpfAzPw12SNg_m0TZJvQ4C-UsuUE0O-S1u-h714PlJvbd27Hvkbtr-D4nW815q1-AodnIlxYKfwDyy326
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen-induced+thermal+runaway+mechanisms+of+Ah-level+solid-state+lithium+metal+pouch+cells&rft.jtitle=eTransportation+%28Amsterdam%29&rft.au=Yang%2C+Shi-Jie&rft.au=Hu%2C+Jiang-Kui&rft.au=Jiang%2C+Feng-Ni&rft.au=Cheng%2C+Xin-Bing&rft.date=2023-10-01&rft.issn=2590-1168&rft.eissn=2590-1168&rft.volume=18&rft.spage=100279&rft_id=info:doi/10.1016%2Fj.etran.2023.100279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_etran_2023_100279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1168&client=summon