Physical conditions for dust grain alignment in Class 0 protostellar cores II. The role of the radiation field in models that align and disrupt dust grains
Context. The polarized dust emission observed in Class 0 protostellar cores at high angular resolution with ALMA has raised several concerns about the grain alignment conditions in these regions. Aims. We aim to study the role of the radiation field in grain alignment mechanisms that occur in the in...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 675; p. A133 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Context.
The polarized dust emission observed in Class 0 protostellar cores at high angular resolution with ALMA has raised several concerns about the grain alignment conditions in these regions.
Aims.
We aim to study the role of the radiation field in grain alignment mechanisms that occur in the interior (≤1000 au) of Class 0 protostars.
Methods.
We produced synthetic observations of the polarized dust emission from a magnetohydrodynamic model of protostellar formation using the POLARIS dust radiative transfer tool, which includes dust alignment with radiative torque alignment (RAT). We tested how the polarized dust emission from the model core depends on the irradiation conditions in the protostellar envelope by varying the radiation due to accretion luminosity propagating from the central protostellar embryo throughout the envelope. The level of grain alignment efficiency obtained in the radiative transfer models was then compared to (sub)millimeter ALMA dust polarization observations of Class 0 protostars.
Results.
Our radiative transfer calculations have a central irradiation that reproduces the protostellar luminosities typically observed toward low- to intermediate-mass protostars, as well as super-paramagnetic grains and grains ≥10 µm, which are required to bring the dust grain alignment efficiencies of the synthetic observations up to the observed levels. We discuss the characteristics timescales of the grain alignment physics together with the radiative torque disruption (RATD) of grains and the typical time variability of accretion occurring in Class 0 protostellar cores. In our model, during an accretion burst or a steady-state phase of high luminosity from the protostellar embryo, RATD could have enough time to disrupt the largest grains in irradiated regions. Finally, in high-luminosity conditions (with
L
★
≥ 20
L
⊙
in our model), we find that the alignment of grains with respect to the anisotropic component of the radiation field (
k
-RAT) could drive inefficient alignment for grains ≳10 µm. However, given the high grain alignment efficiency observed in protostellar envelopes, large grains are most likely aligned with the magnetic field and thus potentially subject to rotational disruption, depending on their tensile strength.
Conclusions.
Our radiative transfer calculations show that irradiation plays an important role in the mechanisms that dictate the size range of aligned grains in Class 0 protostars. Regions of the envelope that are preferentially irradiated harbor strong polarized dust emission but can be affected by the rotational disruption of dust grains, thus controlling the population of the largest aligned grains. Episodes of high luminosity could affect grain alignment and trigger grain disruption mechanisms. |
---|---|
AbstractList | Context.
The polarized dust emission observed in Class 0 protostellar cores at high angular resolution with ALMA has raised several concerns about the grain alignment conditions in these regions.
Aims.
We aim to study the role of the radiation field in grain alignment mechanisms that occur in the interior (≤1000 au) of Class 0 protostars.
Methods.
We produced synthetic observations of the polarized dust emission from a magnetohydrodynamic model of protostellar formation using the POLARIS dust radiative transfer tool, which includes dust alignment with radiative torque alignment (RAT). We tested how the polarized dust emission from the model core depends on the irradiation conditions in the protostellar envelope by varying the radiation due to accretion luminosity propagating from the central protostellar embryo throughout the envelope. The level of grain alignment efficiency obtained in the radiative transfer models was then compared to (sub)millimeter ALMA dust polarization observations of Class 0 protostars.
Results.
Our radiative transfer calculations have a central irradiation that reproduces the protostellar luminosities typically observed toward low- to intermediate-mass protostars, as well as super-paramagnetic grains and grains ≥10 µm, which are required to bring the dust grain alignment efficiencies of the synthetic observations up to the observed levels. We discuss the characteristics timescales of the grain alignment physics together with the radiative torque disruption (RATD) of grains and the typical time variability of accretion occurring in Class 0 protostellar cores. In our model, during an accretion burst or a steady-state phase of high luminosity from the protostellar embryo, RATD could have enough time to disrupt the largest grains in irradiated regions. Finally, in high-luminosity conditions (with
L
★
≥ 20
L
⊙
in our model), we find that the alignment of grains with respect to the anisotropic component of the radiation field (
k
-RAT) could drive inefficient alignment for grains ≳10 µm. However, given the high grain alignment efficiency observed in protostellar envelopes, large grains are most likely aligned with the magnetic field and thus potentially subject to rotational disruption, depending on their tensile strength.
Conclusions.
Our radiative transfer calculations show that irradiation plays an important role in the mechanisms that dictate the size range of aligned grains in Class 0 protostars. Regions of the envelope that are preferentially irradiated harbor strong polarized dust emission but can be affected by the rotational disruption of dust grains, thus controlling the population of the largest aligned grains. Episodes of high luminosity could affect grain alignment and trigger grain disruption mechanisms. |
Author | Hull, C. L. H. Hennebelle, P. Valdivia, V. Le Gouellec, V. J. M. Verliat, A. Maury, A. J. |
Author_xml | – sequence: 1 givenname: V. J. M. orcidid: 0000-0002-5714-799X surname: Le Gouellec fullname: Le Gouellec, V. J. M. – sequence: 2 givenname: A. J. surname: Maury fullname: Maury, A. J. – sequence: 3 givenname: C. L. H. surname: Hull fullname: Hull, C. L. H. – sequence: 4 givenname: A. surname: Verliat fullname: Verliat, A. – sequence: 5 givenname: P. surname: Hennebelle fullname: Hennebelle, P. – sequence: 6 givenname: V. surname: Valdivia fullname: Valdivia, V. |
BookMark | eNp9kM1KAzEUhYNUsK0-gZu8wNj8z2QpxV8KutD1kN5JaiRNShIXfXtnULpw4epy4H4HvrNAs5iiReiakhtKJF0RQkSjuKIrRhgTkgt1huZUcNaQVqgZmp8-LtCilM8xMtrxOXp-_TgWDyZgSHHw1adYsEsZD1-l4l02PmIT_C7ubax4DOtgSsEEH3KqqVQbgskjm225ROfOhGKvfu8Svd_fva0fm83Lw9P6dtMAE7o2nekk53K7VRaIodoBUcBbJbgTrB2Ms53VBpiTEgbNpdMt7QC0dR3dEuB8ifhPL-RUSrauP2S_N_nYU9JPc_STbD_J9qc5Rkr_ocBXM_nWUTL8y34DfYBm2g |
CitedBy_id | crossref_primary_10_3847_1538_4357_ad182d crossref_primary_10_3847_1538_4357_ada3cf crossref_primary_10_1051_0004_6361_202244628 |
Cites_doi | 10.3847/1538-4357/ab9609 10.3847/1538-4357/ab1845 10.1093/mnras/stx2844 10.3847/1538-4357/ac978b 10.1051/0004-6361/201731071 10.1051/0004-6361/201525669 10.1088/0004-637X/772/1/61 10.1088/0004-637X/756/2/118 10.1088/0067-0049/220/1/11 10.1051/0004-6361/202038105 10.3847/1538-4357/aac21a 10.1093/mnras/stt2240 10.1088/0004-637X/710/1/470 10.1086/175920 10.1051/0004-6361:20052889 10.1088/0004-637X/754/1/71 10.1051/0004-6361/202142528 10.1093/mnras/stz2056 10.1051/0004-6361/202038174 10.1051/0004-6361/201322151 10.3847/1538-4357/ab6eff 10.3847/1538-4357/abd6c6 10.1088/0067-0049/181/2/321 10.3847/1538-4357/abd54f 10.1016/j.newar.2021.101615 10.1046/j.1365-8711.1999.02235.x 10.1038/s41550-019-0763-6 10.3847/1538-4357/ac6023 10.1051/0004-6361/202038404 10.1146/annurev-astro-082214-122414 10.1088/0004-637X/743/1/98 10.1051/0004-6361/201527622 10.1051/0004-6361/200811158 10.1088/0004-637X/801/2/110 10.3847/2041-8213/ac2b2f 10.1093/mnras/sty024 10.1007/BF00640010 10.3847/1538-4357/abd02c 10.1086/176173 10.1098/rsos.160224 10.3847/1538-4357/ab5809 10.3847/1538-4357/abd0fa 10.1086/305048 10.3847/1538-4357/ab24c8 10.1051/0004-6361/201425365 10.1016/0022-4073(84)90112-2 10.1086/155591 10.1093/mnras/stab608 10.1051/0004-6361/202141765 10.1111/j.1365-2966.2008.13094.x 10.3847/1538-4357/ac5408 10.1051/0004-6361/201321325 10.1051/0004-6361/202038644 10.3847/1538-4357/ab01dc 10.3847/1538-4365/ab4257 10.3847/0004-637X/821/2/91 10.1086/117200 10.1086/304309 10.1051/0004-6361/201322945 10.3847/1538-3881/ab9abf 10.1051/0004-6361/201833885 10.1086/303547 10.3847/2041-8213/ab22bb 10.1051/0004-6361/201833666 10.1093/mnras/stu2005 10.1086/159157 10.3847/1538-4357/ac1745 10.1086/309840 10.3847/1538-4357/acc4c2 10.1088/0004-637X/702/1/L27 10.1093/mnras/stab663 10.1051/0004-6361:20065371 10.3847/2041-8213/ac46ae 10.1093/mnras/staa382 10.1086/586706 10.3847/1538-3881/ac9af5 10.1051/0004-6361/201117109 10.1051/0004-6361/201424011 10.1086/498303 10.1051/0004-6361/202243633 10.1086/304008 10.1086/186663 10.3847/1538-3881/aac387 10.3847/1538-4357/abc6fe 10.1088/0004-637X/697/2/1316 10.1086/115380 10.1093/pasj/psw066 10.1088/2041-8205/742/1/L9 10.1088/0004-637X/803/1/22 10.1038/s41550-020-1172-6 10.3847/1538-4357/aaf6ed 10.3847/1538-4357/aaacd2 10.1063/1.1729324 10.1093/mnras/sty574 10.1086/172425 10.1086/149086 10.1088/0004-637X/781/1/33 10.1051/0004-6361:20011817 10.1086/321334 10.3847/1538-4357/abbfab 10.1051/0004-6361/202038111 10.1051/0004-6361/201936605 10.1086/187890 10.1086/173608 10.1093/mnras/stad020 10.1051/0004-6361/201834147 10.1086/507320 10.1109/9780470546581 10.1093/mnras/stac1391 10.1051/0004-6361/201321775 10.1088/0004-6256/145/4/94 10.1146/annurev-astro-081915-023341 10.1086/177887 10.1086/177823 10.3847/2041-8213/ab8eaa 10.1051/0004-6361/201527831 10.1111/j.1365-2966.2008.13249.x 10.1111/j.1365-2966.2011.20046.x 10.3847/0004-637X/831/2/159 10.1093/mnras/stv567 10.1093/mnras/stz1019 10.1093/mnras/stz784 10.1051/0004-6361/201732075 10.1086/306387 10.1146/annurev-astro-032620-021927 10.1051/0004-6361/201424930 10.1051/0004-6361/201322858 10.1051/0004-6361/201937387 10.1051/0004-6361/202244865 10.1088/0004-637X/719/2/1896 10.1088/0004-637X/691/1/823 10.1086/192235 10.1051/0004-6361/201936342 10.1086/312137 10.3847/1538-4357/ab43c2 10.3847/1538-4357/ab5e79 10.1088/0004-637X/693/2/L81 10.1051/0004-6361/201937177 10.1086/145464 10.3847/1538-4357/ac1679 10.1086/421935 10.1088/0004-637X/703/1/131 10.1111/j.1365-2966.2007.11817.x 10.1088/2041-8205/779/2/L22 10.1088/0004-637X/736/1/53 10.1086/157204 10.1051/0004-6361/201015880 10.3847/1538-4357/abebde 10.3847/1538-4357/abb1b4 10.1051/0004-6361/201730408 10.1126/science.265.5174.925 10.3847/1538-4357/ab1075 10.1093/mnras/stt1722 10.1088/0067-0049/201/2/24 10.1086/318651 10.1051/0004-6361/202037479 10.3847/1538-4357/839/1/56 10.3847/1538-4357/aa9edc 10.1051/0004-6361/201629303 10.1051/0004-6361/201731584 10.3847/1538-4357/abccbe 10.3847/1538-4357/aa7fe9 10.1051/0004-6361/200811115 10.1051/0004-6361:20048091 10.1086/430436 10.3847/1538-4357/aaef81 10.3390/galaxies8030052 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1051/0004-6361/202245346 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202245346 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 |
ID | FETCH-LOGICAL-c249t-8a85335bb6ec0a19fc06c37643f427dafe8e9ac2f55cd935f9718cc9ef81b0c33 |
ISSN | 0004-6361 |
IngestDate | Thu Apr 24 22:52:01 EDT 2025 Tue Jul 01 03:54:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c249t-8a85335bb6ec0a19fc06c37643f427dafe8e9ac2f55cd935f9718cc9ef81b0c33 |
ORCID | 0000-0002-5714-799X |
ParticipantIDs | crossref_primary_10_1051_0004_6361_202245346 crossref_citationtrail_10_1051_0004_6361_202245346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2023 |
References | Offner (R122) 2011; 736 Baraffe (R10) 2009; 702 Vorobyov (R163) 2006; 650 Ostriker (R126) 1995; 447 Jones (R70) 2016; 3 Park (R127) 2021; 920 Le Gouellec (R104) 2023; 671 Bally (R9) 2016; 54 Evans (R34) 2009; 181 Hartmann (R45) 1997; 475 Kenyon (R78) 1990; 99 Masson (R109) 2012; 201 Hildebrand (R49) 1995; 450 Andre (R6) 1993; 406 Agurto-Gangas (R1) 2019; 623 Price-Whelan (R8) 2018; 156 Vaytet (R158) 2018; 615 Jones (R72) 1996; 469 Draine (R29) 1996; 470 Tram (R153) 2021; 906 McMullin (R114) 2007; 376 Planck Collaboration XII (R130) 2020; 641 Bonnell (R15) 1992; 401 Ko (R81) 2020; 889 Lee (R100) 2021; 648 R36 Dunham (R32) 2013; 145 Maury (R112) 2018; 477 Krumholz (R84) 2004; 611 Hoang (R56) 2016; 821 Mathis (R110) 1977; 217 Verliat (R159) 2022; 663 Kenyon (R79) 1994; 108 Offner (R123) 2009; 703 Jørgensen (R74) 2020; 58 Davis (R25) 1951; 114 Silsbee (R146) 2022; 940 Reissl (R135) 2016; 593 Contreras Peña (R22) 2019; 486 Vorobyov (R162) 2005; 633 Baraffe (R11) 2012; 756 Draine (R28) 1998; 508 Fromang (R38) 2006; 457 Hosokawa (R65) 2009; 691 Hoang (R63) 2021; 908 Arce (R7) 2001; 554 Gerrard (R41) 2019; 485 Andre (R5) 1994; 420 Hoang (R60) 2020; 891 Hoang (R51) 2020; 8 Kuffmeier (R86) 2018; 475 Bradley (R16) 1994; 265 Myers (R119) 2014; 781 Vorobyov (R164) 2010; 719 Plunkett (R131) 2015; 803 Visser (R161) 2015; 577 Reissl (R138) 2023; 674 Andersson (R4) 2015; 53 Chau Giang (R17) 2023; 520 Koumpia (R82) 2015; 580 Kataoka (R75) 2013; 554 Lazarian (R93) 1999; 303 Ormel (R125) 2009; 502 Andersen (R3) 2014; 568 Poteet (R132) 2015; 801 Hoang (R61) 2018; 852 Rosdahl (R140) 2015; 449 Valdivia (R157) 2022; 668 Garcia (R40) 2020; 493 Jones (R71) 1967; 147 Young (R170) 2005; 627 Lazarian (R95) 2008; 676 Miotello (R116) 2014; 567 Nakatani (R121) 2020; 895 Hoang (R59) 2019; 877 Krumholz (R85) 2012; 754 Hull (R68) 2022; 930 Kneller (R80) 1963; 34 Guillet (R44) 2020; 643 Hennebelle (R47) 2020; 904 Kristensen (R83) 2018; 618 Pillai (R129) 2020; 4 Vorobyov (R165) 2013; 557 Kuiper (R88) 2013; 772 Draine (R27) 2021; 909 Frimann (R37) 2016; 587 Takahashi (R149) 2019; 872 Lee (R101) 2021; 920 Reissl (R136) 2017; 603 Commerçon (R19) 2011; 529 Commerçon (R21) 2022; 658 Bate (R13) 2022; 514 Goodman (R42) 1995; 455 Dunham (R31) 2010; 710 Sadavoy (R145) 2019; 245 Weingartner (R167) 2021; 504 Takasao (R150) 2019; 878 Tazaki (R151) 2017; 839 Kataoka (R76) 2013; 557 McClure (R113) 2009; 693 Stäuber (R147) 2004; 425 Tram (R154) 2021; 908 Lazarian (R91) 2020; 902 Lebreuilly (R99) 2020; 641 Martin (R108) 1995; 445 Reissl (R137) 2020; 640 Zakri (R171) 2022; 924 Lazarian (R94) 2007; 378 Lebreuilly (R98) 2019; 626 Ohashi (R124) 2021; 907 Tsukamoto (R155) 2021; 920 Le Gouellec (R102) 2019; 885 Commerçon (R18) 2011; 742 Kuffmeier (R87) 2020; 639 Stäuber (R148) 2005; 440 R117 Anderl (R2) 2016; 591 Hoang (R64) 2022; 164 Kwon (R90) 2019; 879 Weingartner (R166) 2001; 548 Cox (R23) 2018; 855 Lehmann (R105) 2020; 643 Myers (R120) 1998; 492 Hull (R67) 2020; 892 Ray (R134) 2021; 93 Hoang (R54) 2009; 697 Rosdahl (R141) 2013; 436 Galametz (R39) 2019; 632 Jensen (R69) 2018; 474 Mathis (R111) 1983; 500 Hull (R66) 2017; 847 Baraffe (R12) 2017; 597 Hennebelle (R46) 2018; 611 Valdivia (R156) 2019; 488 Lazarian (R97) 1997; 484 Lazarian (R96) 2021; 908 Le Gouellec (R103) 2020; 644 Hoang (R62) 2019; 3 Kenyon (R77) 1995; 101 Guillet (R43) 2009; 497 Myers (R118) 2011; 743 Hoang (R57) 2016; 831 Dunham (R33) 2015; 220 Mignon-Risse (R115) 2020; 635 Pattle (R128) 2021; 503 Yang (R169) 2021; 911 Hoang (R52) 2022; 928 Bleuler (R14) 2014; 445 Hoang (R55) 2014; 438 Lazarian (R92) 1999; 520 Purcell (R133) 1979; 231 Kulkarni (R89) 2008; 386 R139 Sadavoy (R143) 2018; 859 Hensley (R48) 2023; 948 Dolginov (R26) 1976; 43 Hoang (R58) 2020; 896 Teyssier (R152) 2002; 385 Commerçon (R20) 2014; 563 Rosen (R142) 2020; 160 Wong (R168) 2016; 68 Levermore (R106) 1981; 248 Draine (R30) 1997; 480 Sadavoy (R144) 2018; 869 Hoang (R50) 2019; 876 Hoang (R53) 2008; 388 Levermore (R107) 1984; 31 Visser (R160) 2012; 537 D’Angelo (R24) 2012; 420 Fischer (R35) 2019; 872 Jørgensen (R73) 2013; 779 |
References_xml | – volume: 896 start-page: 144 year: 2020 ident: R58 publication-title: ApJ doi: 10.3847/1538-4357/ab9609 – volume: 877 start-page: 36 year: 2019 ident: R59 publication-title: ApJ doi: 10.3847/1538-4357/ab1845 – volume: 474 start-page: 1176 year: 2018 ident: R69 publication-title: MNRAS doi: 10.1093/mnras/stx2844 – volume: 940 start-page: 188 year: 2022 ident: R146 publication-title: ApJ doi: 10.3847/1538-4357/ac978b – volume: 611 start-page: A24 year: 2018 ident: R46 publication-title: A&A doi: 10.1051/0004-6361/201731071 – volume: 580 start-page: A68 year: 2015 ident: R82 publication-title: A&A doi: 10.1051/0004-6361/201525669 – volume: 772 start-page: 61 year: 2013 ident: R88 publication-title: ApJ doi: 10.1088/0004-637X/772/1/61 – volume: 756 start-page: 118 year: 2012 ident: R11 publication-title: ApJ doi: 10.1088/0004-637X/756/2/118 – volume: 220 start-page: 11 year: 2015 ident: R33 publication-title: ApJS doi: 10.1088/0067-0049/220/1/11 – volume: 648 start-page: A101 year: 2021 ident: R100 publication-title: A&A doi: 10.1051/0004-6361/202038105 – volume: 859 start-page: 165 year: 2018 ident: R143 publication-title: ApJ doi: 10.3847/1538-4357/aac21a – volume: 438 start-page: 680 year: 2014 ident: R55 publication-title: MNRAS doi: 10.1093/mnras/stt2240 – volume: 710 start-page: 470 year: 2010 ident: R31 publication-title: ApJ doi: 10.1088/0004-637X/710/1/470 – volume: 447 start-page: 813 year: 1995 ident: R126 publication-title: ApJ doi: 10.1086/175920 – volume: 440 start-page: 949 year: 2005 ident: R148 publication-title: A&A doi: 10.1051/0004-6361:20052889 – volume: 754 start-page: 71 year: 2012 ident: R85 publication-title: ApJ doi: 10.1088/0004-637X/754/1/71 – volume: 674 start-page: A47 year: 2023 ident: R138 publication-title: A&A doi: 10.1051/0004-6361/202142528 – volume: 376 start-page: 127 year: 2007 ident: R114 publication-title: ASP Conf. Ser. – volume: 488 start-page: 4897 year: 2019 ident: R156 publication-title: MNRAS doi: 10.1093/mnras/stz2056 – volume: 641 start-page: A112 year: 2020 ident: R99 publication-title: A&A doi: 10.1051/0004-6361/202038174 – volume: 557 start-page: L4 year: 2013 ident: R76 publication-title: A&A doi: 10.1051/0004-6361/201322151 – volume: 891 start-page: 38 year: 2020 ident: R60 publication-title: ApJ doi: 10.3847/1538-4357/ab6eff – volume: 909 start-page: 94 year: 2021 ident: R27 publication-title: ApJ doi: 10.3847/1538-4357/abd6c6 – volume: 181 start-page: 321 year: 2009 ident: R34 publication-title: ApJS doi: 10.1088/0067-0049/181/2/321 – volume: 908 start-page: 218 year: 2021 ident: R63 publication-title: ApJ doi: 10.3847/1538-4357/abd54f – volume: 93 start-page: 101615 year: 2021 ident: R134 publication-title: New A Rev. doi: 10.1016/j.newar.2021.101615 – volume: 303 start-page: 673 year: 1999 ident: R93 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02235.x – volume: 3 start-page: 766 year: 2019 ident: R62 publication-title: Nat. Astron. doi: 10.1038/s41550-019-0763-6 – volume: 930 start-page: 49 year: 2022 ident: R68 publication-title: ApJ doi: 10.3847/1538-4357/ac6023 – volume: 644 start-page: A11 year: 2020 ident: R103 publication-title: A&A doi: 10.1051/0004-6361/202038404 – volume: 53 start-page: 501 year: 2015 ident: R4 publication-title: ARA&A doi: 10.1146/annurev-astro-082214-122414 – volume: 743 start-page: 98 year: 2011 ident: R118 publication-title: ApJ doi: 10.1088/0004-637X/743/1/98 – volume: 587 start-page: A60 year: 2016 ident: R37 publication-title: A&A doi: 10.1051/0004-6361/201527622 – volume: 502 start-page: 845 year: 2009 ident: R125 publication-title: A&A doi: 10.1051/0004-6361/200811158 – volume: 801 start-page: 110 year: 2015 ident: R132 publication-title: ApJ doi: 10.1088/0004-637X/801/2/110 – volume: 920 start-page: L35 year: 2021 ident: R155 publication-title: ApJ doi: 10.3847/2041-8213/ac2b2f – volume: 475 start-page: 2642 year: 2018 ident: R86 publication-title: MNRAS doi: 10.1093/mnras/sty024 – volume: 43 start-page: 291 year: 1976 ident: R26 publication-title: Ap&SS doi: 10.1007/BF00640010 – volume: 908 start-page: 12 year: 2021 ident: R96 publication-title: ApJ doi: 10.3847/1538-4357/abd02c – volume: 450 start-page: 663 year: 1995 ident: R49 publication-title: ApJ doi: 10.1086/176173 – volume: 3 start-page: 160224 year: 2016 ident: R70 publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.160224 – volume: 892 start-page: 152 year: 2020 ident: R67 publication-title: ApJ doi: 10.3847/1538-4357/ab5809 – volume: 907 start-page: 80 year: 2021 ident: R124 publication-title: ApJ doi: 10.3847/1538-4357/abd0fa – volume: 492 start-page: 703 year: 1998 ident: R120 publication-title: ApJ doi: 10.1086/305048 – volume: 879 start-page: 25 year: 2019 ident: R90 publication-title: ApJ doi: 10.3847/1538-4357/ab24c8 – volume: 577 start-page: A102 year: 2015 ident: R161 publication-title: A&A doi: 10.1051/0004-6361/201425365 – volume: 31 start-page: 149 year: 1984 ident: R107 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/0022-4073(84)90112-2 – volume: 217 start-page: 425 year: 1977 ident: R110 publication-title: ApJ doi: 10.1086/155591 – volume: 503 start-page: 3414 year: 2021 ident: R128 publication-title: MNRAS doi: 10.1093/mnras/stab608 – volume: 663 start-page: A6 year: 2022 ident: R159 publication-title: A&A doi: 10.1051/0004-6361/202141765 – volume: 386 start-page: 673 year: 2008 ident: R89 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13094.x – ident: R36 – volume: 928 start-page: 102 year: 2022 ident: R52 publication-title: ApJ doi: 10.3847/1538-4357/ac5408 – volume: 554 start-page: A4 year: 2013 ident: R75 publication-title: A&A doi: 10.1051/0004-6361/201321325 – volume: 643 start-page: A101 year: 2020 ident: R105 publication-title: A&A doi: 10.1051/0004-6361/202038644 – volume: 872 start-page: 183 year: 2019 ident: R35 publication-title: ApJ doi: 10.3847/1538-4357/ab01dc – volume: 245 start-page: 2 year: 2019 ident: R145 publication-title: ApJS doi: 10.3847/1538-4365/ab4257 – volume: 821 start-page: 91 year: 2016 ident: R56 publication-title: ApJ doi: 10.3847/0004-637X/821/2/91 – volume: 108 start-page: 1872 year: 1994 ident: R79 publication-title: AJ doi: 10.1086/117200 – volume: 484 start-page: 230 year: 1997 ident: R97 publication-title: ApJ doi: 10.1086/304309 – volume: 567 start-page: A32 year: 2014 ident: R116 publication-title: A&A doi: 10.1051/0004-6361/201322945 – volume: 160 start-page: 78 year: 2020 ident: R142 publication-title: AJ doi: 10.3847/1538-3881/ab9abf – volume: 641 start-page: A12 year: 2020 ident: R130 publication-title: A&A doi: 10.1051/0004-6361/201833885 – volume: 475 start-page: 770 year: 1997 ident: R45 publication-title: ApJ doi: 10.1086/303547 – ident: R139 – volume: 878 start-page: L10 year: 2019 ident: R150 publication-title: ApJ doi: 10.3847/2041-8213/ab22bb – volume: 623 start-page: A147 year: 2019 ident: R1 publication-title: A&A doi: 10.1051/0004-6361/201833666 – volume: 445 start-page: 4015 year: 2014 ident: R14 publication-title: MNRAS doi: 10.1093/mnras/stu2005 – volume: 248 start-page: 321 year: 1981 ident: R106 publication-title: ApJ doi: 10.1086/159157 – volume: 920 start-page: 132 year: 2021 ident: R127 publication-title: ApJ doi: 10.3847/1538-4357/ac1745 – volume: 455 start-page: L181 year: 1995 ident: R42 publication-title: ApJ doi: 10.1086/309840 – volume: 948 start-page: 55 year: 2023 ident: R48 publication-title: ApJ doi: 10.3847/1538-4357/acc4c2 – volume: 702 start-page: L27 year: 2009 ident: R10 publication-title: ApJ doi: 10.1088/0004-637X/702/1/L27 – volume: 504 start-page: 1164 year: 2021 ident: R167 publication-title: MNRAS doi: 10.1093/mnras/stab663 – volume: 457 start-page: 371 year: 2006 ident: R38 publication-title: A&A doi: 10.1051/0004-6361:20065371 – volume: 924 start-page: L23 year: 2022 ident: R171 publication-title: ApJ doi: 10.3847/2041-8213/ac46ae – volume: 493 start-page: 1788 year: 2020 ident: R40 publication-title: MNRAS doi: 10.1093/mnras/staa382 – volume: 676 start-page: L25 year: 2008 ident: R95 publication-title: ApJ doi: 10.1086/586706 – volume: 164 start-page: 248 year: 2022 ident: R64 publication-title: AJ doi: 10.3847/1538-3881/ac9af5 – volume: 537 start-page: A55 year: 2012 ident: R160 publication-title: A&A doi: 10.1051/0004-6361/201117109 – volume: 568 start-page: L3 year: 2014 ident: R3 publication-title: A&A doi: 10.1051/0004-6361/201424011 – volume: 633 start-page: L137 year: 2005 ident: R162 publication-title: ApJ doi: 10.1086/498303 – volume: 668 start-page: A83 year: 2022 ident: R157 publication-title: A&A doi: 10.1051/0004-6361/202243633 – volume: 480 start-page: 633 year: 1997 ident: R30 publication-title: ApJ doi: 10.1086/304008 – volume: 401 start-page: L31 year: 1992 ident: R15 publication-title: ApJ doi: 10.1086/186663 – volume: 156 start-page: 123 year: 2018 ident: R8 publication-title: AJ doi: 10.3847/1538-3881/aac387 – volume: 906 start-page: 115 year: 2021 ident: R153 publication-title: ApJ doi: 10.3847/1538-4357/abc6fe – volume: 697 start-page: 1316 year: 2009 ident: R54 publication-title: ApJ doi: 10.1088/0004-637X/697/2/1316 – volume: 99 start-page: 869 year: 1990 ident: R78 publication-title: AJ doi: 10.1086/115380 – volume: 68 start-page: 67 year: 2016 ident: R168 publication-title: PASJ doi: 10.1093/pasj/psw066 – volume: 742 start-page: L9 year: 2011 ident: R18 publication-title: ApJ doi: 10.1088/2041-8205/742/1/L9 – volume: 803 start-page: 22 year: 2015 ident: R131 publication-title: ApJ doi: 10.1088/0004-637X/803/1/22 – volume: 4 start-page: 1195 year: 2020 ident: R129 publication-title: Nat. Astron. doi: 10.1038/s41550-020-1172-6 – volume: 872 start-page: 70 year: 2019 ident: R149 publication-title: ApJ doi: 10.3847/1538-4357/aaf6ed – volume: 855 start-page: 92 year: 2018 ident: R23 publication-title: ApJ doi: 10.3847/1538-4357/aaacd2 – volume: 34 start-page: 656 year: 1963 ident: R80 publication-title: J. Appl. Phys. doi: 10.1063/1.1729324 – volume: 477 start-page: 2760 year: 2018 ident: R112 publication-title: MNRAS doi: 10.1093/mnras/sty574 – volume: 406 start-page: 122 year: 1993 ident: R6 publication-title: ApJ doi: 10.1086/172425 – volume: 147 start-page: 943 year: 1967 ident: R71 publication-title: ApJ doi: 10.1086/149086 – volume: 781 start-page: 33 year: 2014 ident: R119 publication-title: ApJ doi: 10.1088/0004-637X/781/1/33 – volume: 385 start-page: 337 year: 2002 ident: R152 publication-title: A&A doi: 10.1051/0004-6361:20011817 – volume: 554 start-page: 132 year: 2001 ident: R7 publication-title: ApJ doi: 10.1086/321334 – volume: 904 start-page: 194 year: 2020 ident: R47 publication-title: ApJ doi: 10.3847/1538-4357/abbfab – volume: 639 start-page: A137 year: 2020 ident: R87 publication-title: A&A doi: 10.1051/0004-6361/202038111 – volume: 635 start-page: A42 year: 2020 ident: R115 publication-title: A&A doi: 10.1051/0004-6361/201936605 – volume: 445 start-page: L63 year: 1995 ident: R108 publication-title: ApJ doi: 10.1086/187890 – volume: 420 start-page: 837 year: 1994 ident: R5 publication-title: ApJ doi: 10.1086/173608 – volume: 520 start-page: 3788 year: 2023 ident: R17 publication-title: MNRAS doi: 10.1093/mnras/stad020 – volume: 626 start-page: A96 year: 2019 ident: R98 publication-title: A&A doi: 10.1051/0004-6361/201834147 – volume: 650 start-page: 956 year: 2006 ident: R163 publication-title: ApJ doi: 10.1086/507320 – ident: R117 doi: 10.1109/9780470546581 – volume: 514 start-page: 2145 year: 2022 ident: R13 publication-title: MNRAS doi: 10.1093/mnras/stac1391 – volume: 557 start-page: A35 year: 2013 ident: R165 publication-title: A&A doi: 10.1051/0004-6361/201321775 – volume: 145 start-page: 94 year: 2013 ident: R32 publication-title: AJ doi: 10.1088/0004-6256/145/4/94 – volume: 54 start-page: 491 year: 2016 ident: R9 publication-title: ARA&A doi: 10.1146/annurev-astro-081915-023341 – volume: 470 start-page: 551 year: 1996 ident: R29 publication-title: ApJ doi: 10.1086/177887 – volume: 469 start-page: 740 year: 1996 ident: R72 publication-title: ApJ doi: 10.1086/177823 – volume: 895 start-page: L2 year: 2020 ident: R121 publication-title: ApJ doi: 10.3847/2041-8213/ab8eaa – volume: 591 start-page: A3 year: 2016 ident: R2 publication-title: A&A doi: 10.1051/0004-6361/201527831 – volume: 388 start-page: 117 year: 2008 ident: R53 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13249.x – volume: 420 start-page: 416 year: 2012 ident: R24 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20046.x – volume: 831 start-page: 159 year: 2016 ident: R57 publication-title: ApJ doi: 10.3847/0004-637X/831/2/159 – volume: 449 start-page: 4380 year: 2015 ident: R140 publication-title: MNRAS doi: 10.1093/mnras/stv567 – volume: 486 start-page: 4590 year: 2019 ident: R22 publication-title: MNRAS doi: 10.1093/mnras/stz1019 – volume: 485 start-page: 5532 year: 2019 ident: R41 publication-title: MNRAS doi: 10.1093/mnras/stz784 – volume: 615 start-page: A5 year: 2018 ident: R158 publication-title: A&A doi: 10.1051/0004-6361/201732075 – volume: 508 start-page: 157 year: 1998 ident: R28 publication-title: ApJ doi: 10.1086/306387 – volume: 58 start-page: 727 year: 2020 ident: R74 publication-title: ARA&A doi: 10.1146/annurev-astro-032620-021927 – volume: 593 start-page: A87 year: 2016 ident: R135 publication-title: A&A doi: 10.1051/0004-6361/201424930 – volume: 563 start-page: A11 year: 2014 ident: R20 publication-title: A&A doi: 10.1051/0004-6361/201322858 – volume: 643 start-page: A17 year: 2020 ident: R44 publication-title: A&A doi: 10.1051/0004-6361/201937387 – volume: 671 start-page: A167 year: 2023 ident: R104 publication-title: A&A doi: 10.1051/0004-6361/202244865 – volume: 719 start-page: 1896 year: 2010 ident: R164 publication-title: ApJ doi: 10.1088/0004-637X/719/2/1896 – volume: 691 start-page: 823 year: 2009 ident: R65 publication-title: ApJ doi: 10.1088/0004-637X/691/1/823 – volume: 101 start-page: 117 year: 1995 ident: R77 publication-title: ApJS doi: 10.1086/192235 – volume: 632 start-page: A5 year: 2019 ident: R39 publication-title: A&A doi: 10.1051/0004-6361/201936342 – volume: 520 start-page: L67 year: 1999 ident: R92 publication-title: ApJ doi: 10.1086/312137 – volume: 885 start-page: 106 year: 2019 ident: R102 publication-title: ApJ doi: 10.3847/1538-4357/ab43c2 – volume: 889 start-page: 172 year: 2020 ident: R81 publication-title: ApJ doi: 10.3847/1538-4357/ab5e79 – volume: 693 start-page: L81 year: 2009 ident: R113 publication-title: ApJ doi: 10.1088/0004-637X/693/2/L81 – volume: 640 start-page: A118 year: 2020 ident: R137 publication-title: A&A doi: 10.1051/0004-6361/201937177 – volume: 114 start-page: 206 year: 1951 ident: R25 publication-title: ApJ doi: 10.1086/145464 – volume: 920 start-page: 119 year: 2021 ident: R101 publication-title: ApJ doi: 10.3847/1538-4357/ac1679 – volume: 611 start-page: 399 year: 2004 ident: R84 publication-title: ApJ doi: 10.1086/421935 – volume: 703 start-page: 131 year: 2009 ident: R123 publication-title: ApJ doi: 10.1088/0004-637X/703/1/131 – volume: 378 start-page: 910 year: 2007 ident: R94 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.11817.x – volume: 779 start-page: L22 year: 2013 ident: R73 publication-title: ApJ doi: 10.1088/2041-8205/779/2/L22 – volume: 736 start-page: 53 year: 2011 ident: R122 publication-title: ApJ doi: 10.1088/0004-637X/736/1/53 – volume: 231 start-page: 404 year: 1979 ident: R133 publication-title: ApJ doi: 10.1086/157204 – volume: 529 start-page: A35 year: 2011 ident: R19 publication-title: A&A doi: 10.1051/0004-6361/201015880 – volume: 911 start-page: 125 year: 2021 ident: R169 publication-title: ApJ doi: 10.3847/1538-4357/abebde – volume: 902 start-page: 97 year: 2020 ident: R91 publication-title: ApJ doi: 10.3847/1538-4357/abb1b4 – volume: 603 start-page: A71 year: 2017 ident: R136 publication-title: A&A doi: 10.1051/0004-6361/201730408 – volume: 265 start-page: 925 year: 1994 ident: R16 publication-title: Science doi: 10.1126/science.265.5174.925 – volume: 876 start-page: 13 year: 2019 ident: R50 publication-title: ApJ doi: 10.3847/1538-4357/ab1075 – volume: 436 start-page: 2188 year: 2013 ident: R141 publication-title: MNRAS doi: 10.1093/mnras/stt1722 – volume: 201 start-page: 24 year: 2012 ident: R109 publication-title: ApJS doi: 10.1088/0067-0049/201/2/24 – volume: 548 start-page: 296 year: 2001 ident: R166 publication-title: ApJ doi: 10.1086/318651 – volume: 658 start-page: A52 year: 2022 ident: R21 publication-title: A&A doi: 10.1051/0004-6361/202037479 – volume: 839 start-page: 56 year: 2017 ident: R151 publication-title: ApJ doi: 10.3847/1538-4357/839/1/56 – volume: 852 start-page: 129 year: 2018 ident: R61 publication-title: ApJ doi: 10.3847/1538-4357/aa9edc – volume: 597 start-page: A19 year: 2017 ident: R12 publication-title: A&A doi: 10.1051/0004-6361/201629303 – volume: 618 start-page: A158 year: 2018 ident: R83 publication-title: A&A doi: 10.1051/0004-6361/201731584 – volume: 908 start-page: 159 year: 2021 ident: R154 publication-title: ApJ doi: 10.3847/1538-4357/abccbe – volume: 847 start-page: 92 year: 2017 ident: R66 publication-title: ApJ doi: 10.3847/1538-4357/aa7fe9 – volume: 497 start-page: 145 year: 2009 ident: R43 publication-title: A&A doi: 10.1051/0004-6361/200811115 – volume: 425 start-page: 577 year: 2004 ident: R147 publication-title: A&A doi: 10.1051/0004-6361:20048091 – volume: 627 start-page: 293 year: 2005 ident: R170 publication-title: ApJ doi: 10.1086/430436 – volume: 500 start-page: 259 year: 1983 ident: R111 publication-title: A&A – volume: 869 start-page: 115 year: 2018 ident: R144 publication-title: ApJ doi: 10.3847/1538-4357/aaef81 – volume: 8 start-page: 52 year: 2020 ident: R51 publication-title: Galaxies doi: 10.3390/galaxies8030052 |
SSID | ssj0002183 |
Score | 2.4604583 |
Snippet | Context.
The polarized dust emission observed in Class 0 protostellar cores at high angular resolution with ALMA has raised several concerns about the grain... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | A133 |
Subtitle | II. The role of the radiation field in models that align and disrupt dust grains |
Title | Physical conditions for dust grain alignment in Class 0 protostellar cores |
Volume | 675 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKEBIvaAzQBgz5AfESkiWxnSaP0bRRqg3xsEl7q2zH3svWIpq9TBO_nTs7dSyYJsZL1LjuVfJ9On93vjsT8rHIVQ5EtUpL2M5TzlWXAomt0q6qlVRSSub6FJx-q2bnfH4hLiaTu7i6pFeZvr23ruR_tApjoFeskn2EZoNQGIDPoF94gobh-U86_r5ZZHBqO5975dIG8TaO5BIvf0iAZl_6A38s70OqnOSYlNVjcccVpqBiH8t1zFHbNYbHV9e-M5PENx__cAFa3x8rCiCcAM5WNy7-75Jms2SeJafZGOoeTupb_GJEkT_uOMySkyyZhXEMLwJY_Pw4IlGykL06WlmeVsw3Wc-MN6ycYZbrEG4cLG81FZHtbAvfEuMvow52w2dBeqlYw4LMQzB-TxPtPza3kHLoDttFgYftfIFiFkHIE_K0BCcD77_48vVX2MeRPHrnyf_vpmeVKA7C2EEQEvGaiKCcbZMXg2dBWw-Tl2RiljtkNyiTfqJtpMod8syjZ_2KzDc4oiOOKOCIIo6owxENOKLw4nBEcxrjiDocvSbnx0dnh7N0uGMj1eB492ktga8xoVRldC6Lxuq80rDpcGZ5Oe2kNbVppC6tELprmLANkBmtG2PB38k1Y2_I1nK1NLuEsk5Y0ZV155bE8tqIxqpCl43Iy6kRe6TcrNBCDw3o8R6Uq8UDutkjn8OPfvj-Kw9Nf_u46e_I8xHA78lW__PG7APJ7NUHh4XfeK9wYQ |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physical+conditions+for+dust+grain+alignment+in+Class+0+protostellar+cores&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Le+Gouellec%2C+V.+J.+M.&rft.au=Maury%2C+A.+J.&rft.au=Hull%2C+C.+L.+H.&rft.au=Verliat%2C+A.&rft.date=2023-07-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=675&rft.spage=A133&rft_id=info:doi/10.1051%2F0004-6361%2F202245346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202245346 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |