Intelligent prediction of hydrate induction time in oil–water emulsion system based on data-driven and driving force
•A data augmentation method is proposed for hydrate induction time.•A GBRT model for hydrate induction time prediction based on data augmentation is proposed.•The model has good accuracy and overcomes the disadvantages caused by small samples.•An empirical equation for hydrate induction time based o...
Saved in:
Published in | Chemical engineering science Vol. 307; p. 121305 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2509 |
DOI | 10.1016/j.ces.2025.121305 |
Cover
Loading…
Abstract | •A data augmentation method is proposed for hydrate induction time.•A GBRT model for hydrate induction time prediction based on data augmentation is proposed.•The model has good accuracy and overcomes the disadvantages caused by small samples.•An empirical equation for hydrate induction time based on driving force is proposed.•The empirical equation has good physical consistency and can be used as a reference for field production.
The prevention of natural gas hydrates is critical to oil and gas flow assurance. The nucleation process of hydrates has always been a research hotspot, yet its randomness makes the induction time of hydrates difficult to predict. To address this issue, this paper uses a Noise Injection Target Autoencoder (NITAE) to augment data, followed by a GBRT model for predicting hydrate induction time. Finally, the gplearn method is employed to generate an empirical equation for the hydrate induction time. The GBRT model achieves an R2 of 0.9858, with an absolute error within ±0.02, addressing poor prediction performance due to data scarcity. The gplearn-based empirical equation achieves an R2 of 0.8353, with an error within ±20 %. These results provide a new direction for predicting the hydrate formation induction time in actual field conditions and the prevention of hydrate formation in oil and gas pipelines. |
---|---|
AbstractList | •A data augmentation method is proposed for hydrate induction time.•A GBRT model for hydrate induction time prediction based on data augmentation is proposed.•The model has good accuracy and overcomes the disadvantages caused by small samples.•An empirical equation for hydrate induction time based on driving force is proposed.•The empirical equation has good physical consistency and can be used as a reference for field production.
The prevention of natural gas hydrates is critical to oil and gas flow assurance. The nucleation process of hydrates has always been a research hotspot, yet its randomness makes the induction time of hydrates difficult to predict. To address this issue, this paper uses a Noise Injection Target Autoencoder (NITAE) to augment data, followed by a GBRT model for predicting hydrate induction time. Finally, the gplearn method is employed to generate an empirical equation for the hydrate induction time. The GBRT model achieves an R2 of 0.9858, with an absolute error within ±0.02, addressing poor prediction performance due to data scarcity. The gplearn-based empirical equation achieves an R2 of 0.8353, with an error within ±20 %. These results provide a new direction for predicting the hydrate formation induction time in actual field conditions and the prevention of hydrate formation in oil and gas pipelines. |
ArticleNumber | 121305 |
Author | Duan, Ji-Miao Song, Shang-Fei Ma, Qian-Li Liu, Yang Zhou, Shi-Dong Lv, Xiao-Fang Wang, Chuan-Shuo Li, Xiao-Yan Peng, Ming-Guo Shi, Bo-Hui Chen, Shu-Kai |
Author_xml | – sequence: 1 givenname: Xiao-Fang surname: Lv fullname: Lv, Xiao-Fang organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China – sequence: 2 givenname: Shu-Kai surname: Chen fullname: Chen, Shu-Kai organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China – sequence: 3 givenname: Yang orcidid: 0000-0002-9897-4019 surname: Liu fullname: Liu, Yang email: liu.y@cczu.edu.cn organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China – sequence: 4 givenname: Ming-Guo surname: Peng fullname: Peng, Ming-Guo organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China – sequence: 5 givenname: Ji-Miao surname: Duan fullname: Duan, Ji-Miao organization: Army Logistics Academy, Chongqing 401331, China – sequence: 6 givenname: Chuan-Shuo surname: Wang fullname: Wang, Chuan-Shuo organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China – sequence: 7 givenname: Qian-Li surname: Ma fullname: Ma, Qian-Li organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China – sequence: 8 givenname: Shi-Dong surname: Zhou fullname: Zhou, Shi-Dong organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China – sequence: 9 givenname: Xiao-Yan surname: Li fullname: Li, Xiao-Yan organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China – sequence: 10 givenname: Bo-Hui surname: Shi fullname: Shi, Bo-Hui organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China – sequence: 11 givenname: Shang-Fei surname: Song fullname: Song, Shang-Fei organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China |
BookMark | eNp9kE1OwzAQhb0oEi1wAHa-QIKdP9tihSp-KlViA2vLscfFVeJUtlvUHXfghpyERGHNaubN0xs9fSu08IMHhG4pySmhzd0-1xDzghR1TgtaknqBloQQkRU1EZdoFeN-lIxRskSnjU_QdW4HPuFDAON0coPHg8UfZxNUAuy8Oc7H5PpJ4sF1P1_fn6MZMPTHLk5mPMcEPW5VBINHbVRSmQnuBB4rb_C0Or_DdggartGFVV2Em795hd6fHt_WL9n29XmzfthmuqhEyjhpWl1abklBKs1pXSnBGTOUMSVIxRpb8rZmVlNRAKdMCM6ppo3S2pRlC-UVovNfHYYYA1h5CK5X4SwpkRMsuZcjLDnBkjOsMXM_Z2AsdnIQZNQOvB7ZBNBJmsH9k_4FCPl4og |
Cites_doi | 10.1021/acsomega.1c05127 10.1016/S0022-0248(02)01134-X 10.1016/j.fuel.2022.124335 10.1021/ef5028923 10.1021/acsomega.3c04825 10.1016/j.cherd.2024.02.034 10.1016/j.molliq.2017.08.053 10.1038/nature02135 10.1109/TIME-E.2015.7389761 10.1016/j.ress.2021.107530 10.1016/j.matcom.2021.08.011 10.1016/j.ces.2021.116831 10.1039/C8RA07571A 10.1016/j.ces.2021.117384 10.1016/j.cherd.2023.01.017 10.1021/acs.energyfuels.9b03543 10.1016/j.jct.2019.03.030 10.1021/acs.energyfuels.8b01713 10.1021/acs.energyfuels.2c03972 10.1016/j.fluid.2013.08.028 10.1016/S0022-0248(02)02461-2 10.1039/C7RA13495A 10.1016/j.ces.2004.10.005 10.1109/ICAIA57370.2023.10169711 10.1016/j.ces.2014.04.035 10.1016/0009-2509(93)80299-6 10.1021/acs.energyfuels.9b00815 10.1021/acs.iecr.7b01332 10.4043/29411-MS 10.1162/neco.1995.7.1.108 10.1016/j.jtice.2014.08.001 10.2516/ogst/2014032 10.1080/10916466.2016.1202966 10.1016/j.fuel.2019.02.014 10.1016/0009-2509(94)E0026-M 10.1016/j.molliq.2016.09.009 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ces.2025.121305 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_ces_2025_121305 S0009250925001289 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ LX7 M41 NDZJH R2- RIG SC5 SSH T9H VH1 WUQ Y6R ZY4 |
ID | FETCH-LOGICAL-c249t-806bc3f8f0204c8154a9877d177a90476f38b57fc192e81799881c16accd33be3 |
IEDL.DBID | .~1 |
ISSN | 0009-2509 |
IngestDate | Sun Jul 06 05:02:26 EDT 2025 Sat Mar 08 15:48:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Driving force Data augmentation Oil-water emulsion Small sample Hydrate induction time Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-806bc3f8f0204c8154a9877d177a90476f38b57fc192e81799881c16accd33be3 |
ORCID | 0000-0002-9897-4019 |
ParticipantIDs | crossref_primary_10_1016_j_ces_2025_121305 elsevier_sciencedirect_doi_10_1016_j_ces_2025_121305 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-15 |
PublicationDateYYYYMMDD | 2025-03-15 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering science |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Natarajan, Bishnoi, Kalogerakis (b0110) 1994; 49 Kashchieva, Firoozabadib (b0070) 2002; 241 Sun, Chen, Yue (b0165) 2004; 12 Kang, Shin, Lim (b0060) 2014; 116 Lv, Shi, Zhou (b0085) 2018; 8 Xu, Saleh (b0185) 2021; 211 Kashchiev, Firoozabadi (b0065) 2003; 250 Li, Chen, Chen (b0075) 2015; 29 Foroozesh, Khosravani, Mohsenzadeh (b0040) 2014; 45 Jing, Zhuang, Karimov (b0055) 2023; 190 Baghban, Namvarrechi, Le Thi (b0020) 2016; 34 Chen, Shi, Liu (b0030) 2018; 32 Skovborg, Ng, Rasmussen (b0140) 1993; 48 Gainville, Sinquin, Darbouret (b0045) 2011 Sasaki, Y., Tanemura, K., Tokuni, Y., et al., 2023. Application of symbolic regression to unsolved mathematical problems. In: proceedings of the 2023 International Conference on Artificial Intelligence and Applications, ICAIA 2023 and Alliance Technology Conference, ATCON-1 2023, April 21, 2023 – April 22, 2023, Hybrid, Bangalore, India, F, 2023. Institute of Electrical and Electronics Engineers Inc. Lv, Shi, Wang (b0100) 2015; 70 Qin, H., Srivastava, V., Wang, H., et al., 2019. Machine learning models to predict gas hydrate plugging risks using flowloop and field data. In: Proceedings of the Offshore Technology Conference 2019, OTC 2019, May 6, 2019 – May 9, 2019, Houston, TX, United states, F. Offshore Technology Conference. Dai, Sun, Song (b0035) 2022; 323 Song, Zhou, Wang (b0155) 2019; 135 Sun (b0160) 2001 Arjmandi, Tohidi, Danesh (b0015) 2005; 60 Perez-Moroyoqui, Ibanez-Orozco, Rodriguez-Romo (b0120) 2022; 192 Zhang, Huang, Zheng (b0195) 2019; 33 Ghiasi, Yarveicy, Arabloo (b0050) 2016; 223 Turner (b0170) 2005 Lv, Chen, Zeng (b0095) 2024; 204 Yarveicy, Ghiasi (b0190) 2017; 243 Wang, Huang, Hu (b0175) 2020; 34 Abbasi, A., Hashim, F.M., IEEE, 2015. Prediction of hydrate formation conditions in subsea pipeline with genetic algorithm. In: Proceedings of the International Conference on Technology, Information, Management, Engineering and Environment, Indonesia, F 2015 Sep 07-09, 2015. Sloan, Koh (b0150) 2007 Osei, Bavoh, Lal (b0115) 2024; 9 Shi, Ding, Liu (b0135) 2018; 8 Lv, Zhang, Zhao (b0090) 2021; 7 Mu, Li, Ma (b0105) 2014; 362 Liu, Shi, Ding (b0080) 2019; 244 Zheng, Huang, Wang (b0205) 2017; 56 Bishop (b0025) 1995; 7 Sloan (b0145) 2003; 426 Aghajanloo, Reza Ehsani, Taheri (b0010) 2022; 250 Xiao, Zhou, Li (b0180) 2023; 37 Zhang, Huang, Li (b0200) 2021; 244 Kang (10.1016/j.ces.2025.121305_b0060) 2014; 116 Xiao (10.1016/j.ces.2025.121305_b0180) 2023; 37 Gainville (10.1016/j.ces.2025.121305_b0045) 2011 Bishop (10.1016/j.ces.2025.121305_b0025) 1995; 7 Osei (10.1016/j.ces.2025.121305_b0115) 2024; 9 Arjmandi (10.1016/j.ces.2025.121305_b0015) 2005; 60 Lv (10.1016/j.ces.2025.121305_b0100) 2015; 70 Turner (10.1016/j.ces.2025.121305_b0170) 2005 10.1016/j.ces.2025.121305_b0130 Song (10.1016/j.ces.2025.121305_b0155) 2019; 135 Baghban (10.1016/j.ces.2025.121305_b0020) 2016; 34 Skovborg (10.1016/j.ces.2025.121305_b0140) 1993; 48 Zheng (10.1016/j.ces.2025.121305_b0205) 2017; 56 Zhang (10.1016/j.ces.2025.121305_b0200) 2021; 244 10.1016/j.ces.2025.121305_b0005 Kashchiev (10.1016/j.ces.2025.121305_b0065) 2003; 250 Dai (10.1016/j.ces.2025.121305_b0035) 2022; 323 Lv (10.1016/j.ces.2025.121305_b0090) 2021; 7 Sloan (10.1016/j.ces.2025.121305_b0150) 2007 Zhang (10.1016/j.ces.2025.121305_b0195) 2019; 33 Perez-Moroyoqui (10.1016/j.ces.2025.121305_b0120) 2022; 192 Mu (10.1016/j.ces.2025.121305_b0105) 2014; 362 Lv (10.1016/j.ces.2025.121305_b0085) 2018; 8 Natarajan (10.1016/j.ces.2025.121305_b0110) 1994; 49 Aghajanloo (10.1016/j.ces.2025.121305_b0010) 2022; 250 Liu (10.1016/j.ces.2025.121305_b0080) 2019; 244 Sun (10.1016/j.ces.2025.121305_b0165) 2004; 12 Yarveicy (10.1016/j.ces.2025.121305_b0190) 2017; 243 Sloan (10.1016/j.ces.2025.121305_b0145) 2003; 426 Li (10.1016/j.ces.2025.121305_b0075) 2015; 29 10.1016/j.ces.2025.121305_b0125 Foroozesh (10.1016/j.ces.2025.121305_b0040) 2014; 45 Kashchieva (10.1016/j.ces.2025.121305_b0070) 2002; 241 Lv (10.1016/j.ces.2025.121305_b0095) 2024; 204 Xu (10.1016/j.ces.2025.121305_b0185) 2021; 211 Ghiasi (10.1016/j.ces.2025.121305_b0050) 2016; 223 Jing (10.1016/j.ces.2025.121305_b0055) 2023; 190 Shi (10.1016/j.ces.2025.121305_b0135) 2018; 8 Sun (10.1016/j.ces.2025.121305_b0160) 2001 Chen (10.1016/j.ces.2025.121305_b0030) 2018; 32 Wang (10.1016/j.ces.2025.121305_b0175) 2020; 34 |
References_xml | – volume: 70 start-page: 1111 year: 2015 end-page: 1124 ident: b0100 article-title: Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop publication-title: Oil Gas Sci. Technol. – volume: 29 start-page: 2277 year: 2015 end-page: 2288 ident: b0075 article-title: Kinetics of methane clathrate hydrate formation in water-in-oil emulsion publication-title: Energy Fuel – volume: 37 start-page: 2972 year: 2023 end-page: 2982 ident: b0180 article-title: Kinetic properties of CO<inf>2</inf> hydrate formation in the wax-containing system at different concentrations publication-title: Energy Fuel – volume: 323 year: 2022 ident: b0035 article-title: Effect of liquid alkane on carbon dioxide hydrate formation publication-title: Fuel – volume: 426 start-page: 353 year: 2003 end-page: 359 ident: b0145 article-title: Fundamental principles and applications of natural gas hydrates publication-title: Nature – volume: 7 start-page: 599 year: 2021 end-page: 616 ident: b0090 article-title: Experimental study of the growth kinetics of natural gas hydrates in an oil–water emulsion system publication-title: ACS Omega – volume: 211 year: 2021 ident: b0185 article-title: Machine learning for reliability engineering and safety applications: Review of current status and future opportunities publication-title: Reliab. Eng. Syst. Saf. – volume: 60 start-page: 1313 year: 2005 end-page: 1321 ident: b0015 article-title: Is subcooling the right driving force for testing low-dosage hydrate inhibitors? publication-title: Chem. Eng. Sci. – volume: 223 start-page: 1081 year: 2016 end-page: 1092 ident: b0050 article-title: Modeling of stability conditions of natural gas clathrate hydrates using least squares support vector machine approach publication-title: J. Mol. Liq. – volume: 116 start-page: 817 year: 2014 end-page: 823 ident: b0060 article-title: Experimental measurement of the induction time of natural gas Hydrate and its prediction with polymeric kinetic inhibitor publication-title: Chem. Eng. Sci. – volume: 250 year: 2022 ident: b0010 article-title: Kinetics of methane publication-title: Chem. Eng. Sci. – volume: 56 start-page: 8330 year: 2017 end-page: 8339 ident: b0205 article-title: Induction time of hydrate formation in water-in-oil emulsions publication-title: Ind. Eng. Chem. Res. – year: 2005 ident: b0170 article-title: Clathrate hydrate formation in water-in-oil dispersions publication-title: 2000-2009-Mines Theses & Dissertations – reference: Sasaki, Y., Tanemura, K., Tokuni, Y., et al., 2023. Application of symbolic regression to unsolved mathematical problems. In: proceedings of the 2023 International Conference on Artificial Intelligence and Applications, ICAIA 2023 and Alliance Technology Conference, ATCON-1 2023, April 21, 2023 – April 22, 2023, Hybrid, Bangalore, India, F, 2023. Institute of Electrical and Electronics Engineers Inc. – volume: 48 start-page: 445 year: 1993 end-page: 453 ident: b0140 article-title: Measurement of induction times for the formation of methane and ethane gas hydrates publication-title: Chem. Eng. Sci. – volume: 362 start-page: 28 year: 2014 end-page: 34 ident: b0105 article-title: Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion publication-title: Fluid Phase Equilib. – volume: 34 start-page: 1431 year: 2016 end-page: 1438 ident: b0020 article-title: Phase equilibrium modelling of natural gas hydrate formation conditions using LSSVM approach publication-title: Petrol. Sci. Technol. – year: 2001 ident: b0160 article-title: The related basic research to the development of gas mixtures separation technology by forming hydrate publication-title: PhD Dissertation – reference: Qin, H., Srivastava, V., Wang, H., et al., 2019. Machine learning models to predict gas hydrate plugging risks using flowloop and field data. In: Proceedings of the Offshore Technology Conference 2019, OTC 2019, May 6, 2019 – May 9, 2019, Houston, TX, United states, F. Offshore Technology Conference. – reference: Abbasi, A., Hashim, F.M., IEEE, 2015. Prediction of hydrate formation conditions in subsea pipeline with genetic algorithm. In: Proceedings of the International Conference on Technology, Information, Management, Engineering and Environment, Indonesia, F 2015 Sep 07-09, 2015. – volume: 244 start-page: 282 year: 2019 end-page: 295 ident: b0080 article-title: Study of hydrate formation in water-in-waxy oil emulsions considering heat transfer and mass transfer publication-title: Fuel – volume: 135 start-page: 86 year: 2019 end-page: 96 ident: b0155 article-title: Prediction of clathrate hydrate phase equilibria using gradient boosted regression trees and deep neural networks publication-title: J. Chem. Thermodyn. – volume: 7 start-page: 108 year: 1995 ident: b0025 article-title: Training with noise is equivalent to tikhonov regularization publication-title: Neural Comput. – volume: 244 year: 2021 ident: b0200 article-title: Effects of waxes on hydrate behaviors in water-in-oil emulsions containing asphaltenes publication-title: Chem. Eng. Sci. – volume: 12 start-page: 527 year: 2004 end-page: 531 ident: b0165 article-title: Induction period of hydrate formation in a flow system publication-title: Chin. J. Chem. Eng. – volume: 8 start-page: 36484 year: 2018 end-page: 36492 ident: b0085 article-title: Study on the growth rate of natural gas hydrate in water-in-oil emulsion system using a high-pressure flow loop publication-title: RSC Adv. – volume: 192 start-page: 19 year: 2022 end-page: 32 ident: b0120 article-title: An intelligent equation for methane hydrate growth kinetics publication-title: Math. Comput. Simul – volume: 33 start-page: 5081 year: 2019 end-page: 5090 ident: b0195 article-title: Effect of wax crystals on nucleation during gas hydrate formation publication-title: Energy Fuel – year: 2007 ident: b0150 article-title: Clathrate Hydrates of Natural Gases – volume: 241 start-page: 220 year: 2002 end-page: 230 ident: b0070 article-title: Driving force for crystallization of gas hydrates publication-title: J. Cryst. Growth – volume: 9 start-page: 4210 year: 2024 end-page: 4228 ident: b0115 article-title: Research advances in machine learning techniques in gas hydrate applications publication-title: ACS Omega – volume: 8 start-page: 11436 year: 2018 end-page: 11445 ident: b0135 article-title: Hydrate slurry flow property in W/O emulsion systems publication-title: RSC Adv. – volume: 204 start-page: 137 year: 2024 end-page: 146 ident: b0095 article-title: Study of hydrate generation risk in gas-saturated oil-water emulsion system based on artificial intelligence publication-title: Chem. Eng. Res. Des. – volume: 34 start-page: 1482 year: 2020 end-page: 1491 ident: b0175 article-title: Influence of wax on cyclopentane clathrate hydrate cohesive forces and interfacial properties publication-title: Energy Fuel – volume: 45 start-page: 2258 year: 2014 end-page: 2264 ident: b0040 article-title: Application of artificial intelligence (AI) in kinetic modeling of methane gas hydrate formation publication-title: J. Taiwan Inst. Chem. Eng. – year: 2011 ident: b0045 article-title: Hydrate slurry characterization for laminar and turbulent flows in pipelines publication-title: Proceedings of the International Conference on Gas Hydrates (ICGH), Edinburgh, F – volume: 190 start-page: 687 year: 2023 end-page: 703 ident: b0055 article-title: Investigation of natural gas hydrate formation and slurry viscosity in non-emulsifying oil systems publication-title: Chem. Eng. Res. Des. – volume: 243 start-page: 533 year: 2017 end-page: 541 ident: b0190 article-title: Modeling of gas hydrate phase equilibria: extremely randomized trees and LSSVM approaches publication-title: J. Mol. Liq. – volume: 49 start-page: 2075 year: 1994 end-page: 2087 ident: b0110 article-title: Induction phenomena in gas hydrate nucleation publication-title: Chem. Eng. Sci. – volume: 250 start-page: 499 year: 2003 end-page: 515 ident: b0065 article-title: Induction time in crystallization of gas hydrates publication-title: J. Cryst. Growth – volume: 32 start-page: 9081 year: 2018 end-page: 9092 ident: b0030 article-title: Experimental and theoretical investigation of the interaction between hydrate formation and wax precipitation in water-in-oil emulsions publication-title: Energy Fuels – year: 2001 ident: 10.1016/j.ces.2025.121305_b0160 article-title: The related basic research to the development of gas mixtures separation technology by forming hydrate publication-title: PhD Dissertation – volume: 7 start-page: 599 issue: 1 year: 2021 ident: 10.1016/j.ces.2025.121305_b0090 article-title: Experimental study of the growth kinetics of natural gas hydrates in an oil–water emulsion system publication-title: ACS Omega doi: 10.1021/acsomega.1c05127 – volume: 241 start-page: 220 year: 2002 ident: 10.1016/j.ces.2025.121305_b0070 article-title: Driving force for crystallization of gas hydrates publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(02)01134-X – volume: 323 year: 2022 ident: 10.1016/j.ces.2025.121305_b0035 article-title: Effect of liquid alkane on carbon dioxide hydrate formation publication-title: Fuel doi: 10.1016/j.fuel.2022.124335 – volume: 29 start-page: 2277 issue: 4 year: 2015 ident: 10.1016/j.ces.2025.121305_b0075 article-title: Kinetics of methane clathrate hydrate formation in water-in-oil emulsion publication-title: Energy Fuel doi: 10.1021/ef5028923 – volume: 9 start-page: 4210 issue: 4 year: 2024 ident: 10.1016/j.ces.2025.121305_b0115 article-title: Research advances in machine learning techniques in gas hydrate applications publication-title: ACS Omega doi: 10.1021/acsomega.3c04825 – volume: 204 start-page: 137 year: 2024 ident: 10.1016/j.ces.2025.121305_b0095 article-title: Study of hydrate generation risk in gas-saturated oil-water emulsion system based on artificial intelligence publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2024.02.034 – volume: 243 start-page: 533 year: 2017 ident: 10.1016/j.ces.2025.121305_b0190 article-title: Modeling of gas hydrate phase equilibria: extremely randomized trees and LSSVM approaches publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.08.053 – volume: 426 start-page: 353 issue: 6964 year: 2003 ident: 10.1016/j.ces.2025.121305_b0145 article-title: Fundamental principles and applications of natural gas hydrates publication-title: Nature doi: 10.1038/nature02135 – volume: 12 start-page: 527 issue: 4 year: 2004 ident: 10.1016/j.ces.2025.121305_b0165 article-title: Induction period of hydrate formation in a flow system publication-title: Chin. J. Chem. Eng. – ident: 10.1016/j.ces.2025.121305_b0005 doi: 10.1109/TIME-E.2015.7389761 – volume: 211 year: 2021 ident: 10.1016/j.ces.2025.121305_b0185 article-title: Machine learning for reliability engineering and safety applications: Review of current status and future opportunities publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107530 – volume: 192 start-page: 19 year: 2022 ident: 10.1016/j.ces.2025.121305_b0120 article-title: An intelligent equation for methane hydrate growth kinetics publication-title: Math. Comput. Simul doi: 10.1016/j.matcom.2021.08.011 – year: 2005 ident: 10.1016/j.ces.2025.121305_b0170 article-title: Clathrate hydrate formation in water-in-oil dispersions publication-title: 2000-2009-Mines Theses & Dissertations – volume: 244 year: 2021 ident: 10.1016/j.ces.2025.121305_b0200 article-title: Effects of waxes on hydrate behaviors in water-in-oil emulsions containing asphaltenes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116831 – volume: 8 start-page: 36484 issue: 64 year: 2018 ident: 10.1016/j.ces.2025.121305_b0085 article-title: Study on the growth rate of natural gas hydrate in water-in-oil emulsion system using a high-pressure flow loop publication-title: RSC Adv. doi: 10.1039/C8RA07571A – volume: 250 year: 2022 ident: 10.1016/j.ces.2025.121305_b0010 article-title: Kinetics of methane+hydrogen sulfide clathrate hydrate formation in the presence/absence of poly N-vinyl pyrrolidone (PVP) and L-tyrosine: experimental study and modeling of the induction time publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117384 – volume: 190 start-page: 687 year: 2023 ident: 10.1016/j.ces.2025.121305_b0055 article-title: Investigation of natural gas hydrate formation and slurry viscosity in non-emulsifying oil systems publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2023.01.017 – volume: 34 start-page: 1482 issue: 2 year: 2020 ident: 10.1016/j.ces.2025.121305_b0175 article-title: Influence of wax on cyclopentane clathrate hydrate cohesive forces and interfacial properties publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.9b03543 – volume: 135 start-page: 86 year: 2019 ident: 10.1016/j.ces.2025.121305_b0155 article-title: Prediction of clathrate hydrate phase equilibria using gradient boosted regression trees and deep neural networks publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2019.03.030 – volume: 32 start-page: 9081 issue: 9 year: 2018 ident: 10.1016/j.ces.2025.121305_b0030 article-title: Experimental and theoretical investigation of the interaction between hydrate formation and wax precipitation in water-in-oil emulsions publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b01713 – volume: 37 start-page: 2972 issue: 4 year: 2023 ident: 10.1016/j.ces.2025.121305_b0180 article-title: Kinetic properties of CO2 hydrate formation in the wax-containing system at different concentrations publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.2c03972 – volume: 362 start-page: 28 year: 2014 ident: 10.1016/j.ces.2025.121305_b0105 article-title: Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2013.08.028 – volume: 250 start-page: 499 issue: 3–4 year: 2003 ident: 10.1016/j.ces.2025.121305_b0065 article-title: Induction time in crystallization of gas hydrates publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(02)02461-2 – volume: 8 start-page: 11436 issue: 21 year: 2018 ident: 10.1016/j.ces.2025.121305_b0135 article-title: Hydrate slurry flow property in W/O emulsion systems publication-title: RSC Adv. doi: 10.1039/C7RA13495A – volume: 60 start-page: 1313 issue: 5 year: 2005 ident: 10.1016/j.ces.2025.121305_b0015 article-title: Is subcooling the right driving force for testing low-dosage hydrate inhibitors? publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.10.005 – ident: 10.1016/j.ces.2025.121305_b0130 doi: 10.1109/ICAIA57370.2023.10169711 – volume: 116 start-page: 817 year: 2014 ident: 10.1016/j.ces.2025.121305_b0060 article-title: Experimental measurement of the induction time of natural gas Hydrate and its prediction with polymeric kinetic inhibitor publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.04.035 – volume: 48 start-page: 445 issue: 3 year: 1993 ident: 10.1016/j.ces.2025.121305_b0140 article-title: Measurement of induction times for the formation of methane and ethane gas hydrates publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(93)80299-6 – volume: 33 start-page: 5081 issue: 6 year: 2019 ident: 10.1016/j.ces.2025.121305_b0195 article-title: Effect of wax crystals on nucleation during gas hydrate formation publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.9b00815 – volume: 56 start-page: 8330 issue: 29 year: 2017 ident: 10.1016/j.ces.2025.121305_b0205 article-title: Induction time of hydrate formation in water-in-oil emulsions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01332 – ident: 10.1016/j.ces.2025.121305_b0125 doi: 10.4043/29411-MS – volume: 7 start-page: 108 issue: 1 year: 1995 ident: 10.1016/j.ces.2025.121305_b0025 article-title: Training with noise is equivalent to tikhonov regularization publication-title: Neural Comput. doi: 10.1162/neco.1995.7.1.108 – volume: 45 start-page: 2258 issue: 5 year: 2014 ident: 10.1016/j.ces.2025.121305_b0040 article-title: Application of artificial intelligence (AI) in kinetic modeling of methane gas hydrate formation publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2014.08.001 – year: 2011 ident: 10.1016/j.ces.2025.121305_b0045 article-title: Hydrate slurry characterization for laminar and turbulent flows in pipelines – volume: 70 start-page: 1111 issue: 6 year: 2015 ident: 10.1016/j.ces.2025.121305_b0100 article-title: Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst/2014032 – volume: 34 start-page: 1431 issue: 16 year: 2016 ident: 10.1016/j.ces.2025.121305_b0020 article-title: Phase equilibrium modelling of natural gas hydrate formation conditions using LSSVM approach publication-title: Petrol. Sci. Technol. doi: 10.1080/10916466.2016.1202966 – year: 2007 ident: 10.1016/j.ces.2025.121305_b0150 – volume: 244 start-page: 282 year: 2019 ident: 10.1016/j.ces.2025.121305_b0080 article-title: Study of hydrate formation in water-in-waxy oil emulsions considering heat transfer and mass transfer publication-title: Fuel doi: 10.1016/j.fuel.2019.02.014 – volume: 49 start-page: 2075 issue: 13 year: 1994 ident: 10.1016/j.ces.2025.121305_b0110 article-title: Induction phenomena in gas hydrate nucleation publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(94)E0026-M – volume: 223 start-page: 1081 year: 2016 ident: 10.1016/j.ces.2025.121305_b0050 article-title: Modeling of stability conditions of natural gas clathrate hydrates using least squares support vector machine approach publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.09.009 |
SSID | ssj0007710 |
Score | 2.4613874 |
Snippet | •A data augmentation method is proposed for hydrate induction time.•A GBRT model for hydrate induction time prediction based on data augmentation is... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 121305 |
SubjectTerms | Data augmentation Driving force Hydrate induction time Machine learning Oil-water emulsion Small sample |
Title | Intelligent prediction of hydrate induction time in oil–water emulsion system based on data-driven and driving force |
URI | https://dx.doi.org/10.1016/j.ces.2025.121305 |
Volume | 307 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIYUmjR07Y1VRtSA6UalbFD8iikpaRSmIBfEf-If8Eu7ygCLBwhDJdmI5-uzcneO77wg519y1rhszxwSaO6yrjKN4zB0ftKvyrZWyoF28HQfDCbue8mmD9OtYGHSrrGR_KdMLaV21dCo0O8vZDGN83RAUOF4oZTGID9nrYE1fvn67eQjhuXU2NXy6PtksfLzgU4QtYpcjx4KPGex-001r-mawQ7YrQ5H2ynfZJQ2b7pGtNfrAffI0-uLTzOkywyMXhJkuEnr_YpADgsKOu6SHpZhEHqp0MZt_vL0_w82M2sfVHP-W0ZLPmaJKMxTq6DfqmAwlIY1TQ7EIQ1KwcLU9IJPB1V1_6FR5FBwNm6sclFCgtJ_IBANhtQSjKQ6lEMYTIg5dJoLEl4qLRIO1ZyVSxEnpaS-ItTa-r6x_SJrpIrVHhMYeNCuwEgJtmICp5CywioVeDAWvK1rkokYwWpZ0GVHtR_YQAdwRwh2VcLcIqzGOfsx5BOL8727H_-t2Qjaxhv5jHj8lzTxb2TMwKHLVLlZMm2z0RjfD8Sd-hMtc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Ylv9-BJCCbNbnZzlGJpre2pBW8h-whWNC2lVbz5H_yH_hJnmkQq6MVDYB8sCd8m38xmZ78BuDDCd76fcs9GRni8oa2nRSq8EK2rDp1TaiG72OtH7SG_vRf3NWhWZ2EorLLk_oLTF2xdtlyVaF5NRiM64-vHaMDpIpaNV2CV1Kl4HVavO912_5uQpQz8KqEaDag2NxdhXvg14iqxIUhmIaQkdr-ZpyWT09qCzdJXZNfF42xDzeU7sLGkILgLL51vSc0Zm0xp14WQZuOMPbxZkoFguOguFGIZ5ZHHKhuPnj7fP16xc8rc8_yJfpixQtKZkVWzDOsUOurZKZEhS3PLqIi3ZOjkGrcHw9bNoNn2ylQKnsH11QztUKRNmKmMzsIahX5TGispbSBlGvtcRlmotJCZQYfPKVKJUyowQZQaY8NQu3Af6vk4dwfA0gCbNToKkbFc4mwKHjnN4yDFQtCQh3BZIZhMCsWMpAole0wQ7oTgTgq4D4FXGCc_pj1BRv972NH_hp3DWnvQu0vuOv3uMaxTD4WTBeIE6rPp3J2ifzHTZ-X78wWHQM4N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+prediction+of+hydrate+induction+time+in+oil%E2%80%93water+emulsion+system+based+on+data-driven+and+driving+force&rft.jtitle=Chemical+engineering+science&rft.au=Lv%2C+Xiao-Fang&rft.au=Chen%2C+Shu-Kai&rft.au=Liu%2C+Yang&rft.au=Peng%2C+Ming-Guo&rft.date=2025-03-15&rft.issn=0009-2509&rft.volume=307&rft.spage=121305&rft_id=info:doi/10.1016%2Fj.ces.2025.121305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2025_121305 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |