Intelligent prediction of hydrate induction time in oil–water emulsion system based on data-driven and driving force

•A data augmentation method is proposed for hydrate induction time.•A GBRT model for hydrate induction time prediction based on data augmentation is proposed.•The model has good accuracy and overcomes the disadvantages caused by small samples.•An empirical equation for hydrate induction time based o...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 307; p. 121305
Main Authors Lv, Xiao-Fang, Chen, Shu-Kai, Liu, Yang, Peng, Ming-Guo, Duan, Ji-Miao, Wang, Chuan-Shuo, Ma, Qian-Li, Zhou, Shi-Dong, Li, Xiao-Yan, Shi, Bo-Hui, Song, Shang-Fei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2025
Subjects
Online AccessGet full text
ISSN0009-2509
DOI10.1016/j.ces.2025.121305

Cover

Loading…
Abstract •A data augmentation method is proposed for hydrate induction time.•A GBRT model for hydrate induction time prediction based on data augmentation is proposed.•The model has good accuracy and overcomes the disadvantages caused by small samples.•An empirical equation for hydrate induction time based on driving force is proposed.•The empirical equation has good physical consistency and can be used as a reference for field production. The prevention of natural gas hydrates is critical to oil and gas flow assurance. The nucleation process of hydrates has always been a research hotspot, yet its randomness makes the induction time of hydrates difficult to predict. To address this issue, this paper uses a Noise Injection Target Autoencoder (NITAE) to augment data, followed by a GBRT model for predicting hydrate induction time. Finally, the gplearn method is employed to generate an empirical equation for the hydrate induction time. The GBRT model achieves an R2 of 0.9858, with an absolute error within ±0.02, addressing poor prediction performance due to data scarcity. The gplearn-based empirical equation achieves an R2 of 0.8353, with an error within ±20 %. These results provide a new direction for predicting the hydrate formation induction time in actual field conditions and the prevention of hydrate formation in oil and gas pipelines.
AbstractList •A data augmentation method is proposed for hydrate induction time.•A GBRT model for hydrate induction time prediction based on data augmentation is proposed.•The model has good accuracy and overcomes the disadvantages caused by small samples.•An empirical equation for hydrate induction time based on driving force is proposed.•The empirical equation has good physical consistency and can be used as a reference for field production. The prevention of natural gas hydrates is critical to oil and gas flow assurance. The nucleation process of hydrates has always been a research hotspot, yet its randomness makes the induction time of hydrates difficult to predict. To address this issue, this paper uses a Noise Injection Target Autoencoder (NITAE) to augment data, followed by a GBRT model for predicting hydrate induction time. Finally, the gplearn method is employed to generate an empirical equation for the hydrate induction time. The GBRT model achieves an R2 of 0.9858, with an absolute error within ±0.02, addressing poor prediction performance due to data scarcity. The gplearn-based empirical equation achieves an R2 of 0.8353, with an error within ±20 %. These results provide a new direction for predicting the hydrate formation induction time in actual field conditions and the prevention of hydrate formation in oil and gas pipelines.
ArticleNumber 121305
Author Duan, Ji-Miao
Song, Shang-Fei
Ma, Qian-Li
Liu, Yang
Zhou, Shi-Dong
Lv, Xiao-Fang
Wang, Chuan-Shuo
Li, Xiao-Yan
Peng, Ming-Guo
Shi, Bo-Hui
Chen, Shu-Kai
Author_xml – sequence: 1
  givenname: Xiao-Fang
  surname: Lv
  fullname: Lv, Xiao-Fang
  organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China
– sequence: 2
  givenname: Shu-Kai
  surname: Chen
  fullname: Chen, Shu-Kai
  organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China
– sequence: 3
  givenname: Yang
  orcidid: 0000-0002-9897-4019
  surname: Liu
  fullname: Liu, Yang
  email: liu.y@cczu.edu.cn
  organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China
– sequence: 4
  givenname: Ming-Guo
  surname: Peng
  fullname: Peng, Ming-Guo
  organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China
– sequence: 5
  givenname: Ji-Miao
  surname: Duan
  fullname: Duan, Ji-Miao
  organization: Army Logistics Academy, Chongqing 401331, China
– sequence: 6
  givenname: Chuan-Shuo
  surname: Wang
  fullname: Wang, Chuan-Shuo
  organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China
– sequence: 7
  givenname: Qian-Li
  surname: Ma
  fullname: Ma, Qian-Li
  organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China
– sequence: 8
  givenname: Shi-Dong
  surname: Zhou
  fullname: Zhou, Shi-Dong
  organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China
– sequence: 9
  givenname: Xiao-Yan
  surname: Li
  fullname: Li, Xiao-Yan
  organization: Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology/Engineering Laboratory for High-Value Utilization of Biomass Waste in Petroleum and Chemical Industries, Changzhou University, Changzhou, Jiangsu 213016, China
– sequence: 10
  givenname: Bo-Hui
  surname: Shi
  fullname: Shi, Bo-Hui
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China
– sequence: 11
  givenname: Shang-Fei
  surname: Song
  fullname: Song, Shang-Fei
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China
BookMark eNp9kE1OwzAQhb0oEi1wAHa-QIKdP9tihSp-KlViA2vLscfFVeJUtlvUHXfghpyERGHNaubN0xs9fSu08IMHhG4pySmhzd0-1xDzghR1TgtaknqBloQQkRU1EZdoFeN-lIxRskSnjU_QdW4HPuFDAON0coPHg8UfZxNUAuy8Oc7H5PpJ4sF1P1_fn6MZMPTHLk5mPMcEPW5VBINHbVRSmQnuBB4rb_C0Or_DdggartGFVV2Em795hd6fHt_WL9n29XmzfthmuqhEyjhpWl1abklBKs1pXSnBGTOUMSVIxRpb8rZmVlNRAKdMCM6ppo3S2pRlC-UVovNfHYYYA1h5CK5X4SwpkRMsuZcjLDnBkjOsMXM_Z2AsdnIQZNQOvB7ZBNBJmsH9k_4FCPl4og
Cites_doi 10.1021/acsomega.1c05127
10.1016/S0022-0248(02)01134-X
10.1016/j.fuel.2022.124335
10.1021/ef5028923
10.1021/acsomega.3c04825
10.1016/j.cherd.2024.02.034
10.1016/j.molliq.2017.08.053
10.1038/nature02135
10.1109/TIME-E.2015.7389761
10.1016/j.ress.2021.107530
10.1016/j.matcom.2021.08.011
10.1016/j.ces.2021.116831
10.1039/C8RA07571A
10.1016/j.ces.2021.117384
10.1016/j.cherd.2023.01.017
10.1021/acs.energyfuels.9b03543
10.1016/j.jct.2019.03.030
10.1021/acs.energyfuels.8b01713
10.1021/acs.energyfuels.2c03972
10.1016/j.fluid.2013.08.028
10.1016/S0022-0248(02)02461-2
10.1039/C7RA13495A
10.1016/j.ces.2004.10.005
10.1109/ICAIA57370.2023.10169711
10.1016/j.ces.2014.04.035
10.1016/0009-2509(93)80299-6
10.1021/acs.energyfuels.9b00815
10.1021/acs.iecr.7b01332
10.4043/29411-MS
10.1162/neco.1995.7.1.108
10.1016/j.jtice.2014.08.001
10.2516/ogst/2014032
10.1080/10916466.2016.1202966
10.1016/j.fuel.2019.02.014
10.1016/0009-2509(94)E0026-M
10.1016/j.molliq.2016.09.009
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ces.2025.121305
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ces_2025_121305
S0009250925001289
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
LX7
M41
NDZJH
R2-
RIG
SC5
SSH
T9H
VH1
WUQ
Y6R
ZY4
ID FETCH-LOGICAL-c249t-806bc3f8f0204c8154a9877d177a90476f38b57fc192e81799881c16accd33be3
IEDL.DBID .~1
ISSN 0009-2509
IngestDate Sun Jul 06 05:02:26 EDT 2025
Sat Mar 08 15:48:09 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Driving force
Data augmentation
Oil-water emulsion
Small sample
Hydrate induction time
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-806bc3f8f0204c8154a9877d177a90476f38b57fc192e81799881c16accd33be3
ORCID 0000-0002-9897-4019
ParticipantIDs crossref_primary_10_1016_j_ces_2025_121305
elsevier_sciencedirect_doi_10_1016_j_ces_2025_121305
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering science
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Natarajan, Bishnoi, Kalogerakis (b0110) 1994; 49
Kashchieva, Firoozabadib (b0070) 2002; 241
Sun, Chen, Yue (b0165) 2004; 12
Kang, Shin, Lim (b0060) 2014; 116
Lv, Shi, Zhou (b0085) 2018; 8
Xu, Saleh (b0185) 2021; 211
Kashchiev, Firoozabadi (b0065) 2003; 250
Li, Chen, Chen (b0075) 2015; 29
Foroozesh, Khosravani, Mohsenzadeh (b0040) 2014; 45
Jing, Zhuang, Karimov (b0055) 2023; 190
Baghban, Namvarrechi, Le Thi (b0020) 2016; 34
Chen, Shi, Liu (b0030) 2018; 32
Skovborg, Ng, Rasmussen (b0140) 1993; 48
Gainville, Sinquin, Darbouret (b0045) 2011
Sasaki, Y., Tanemura, K., Tokuni, Y., et al., 2023. Application of symbolic regression to unsolved mathematical problems. In: proceedings of the 2023 International Conference on Artificial Intelligence and Applications, ICAIA 2023 and Alliance Technology Conference, ATCON-1 2023, April 21, 2023 – April 22, 2023, Hybrid, Bangalore, India, F, 2023. Institute of Electrical and Electronics Engineers Inc.
Lv, Shi, Wang (b0100) 2015; 70
Qin, H., Srivastava, V., Wang, H., et al., 2019. Machine learning models to predict gas hydrate plugging risks using flowloop and field data. In: Proceedings of the Offshore Technology Conference 2019, OTC 2019, May 6, 2019 – May 9, 2019, Houston, TX, United states, F. Offshore Technology Conference.
Dai, Sun, Song (b0035) 2022; 323
Song, Zhou, Wang (b0155) 2019; 135
Sun (b0160) 2001
Arjmandi, Tohidi, Danesh (b0015) 2005; 60
Perez-Moroyoqui, Ibanez-Orozco, Rodriguez-Romo (b0120) 2022; 192
Zhang, Huang, Zheng (b0195) 2019; 33
Ghiasi, Yarveicy, Arabloo (b0050) 2016; 223
Turner (b0170) 2005
Lv, Chen, Zeng (b0095) 2024; 204
Yarveicy, Ghiasi (b0190) 2017; 243
Wang, Huang, Hu (b0175) 2020; 34
Abbasi, A., Hashim, F.M., IEEE, 2015. Prediction of hydrate formation conditions in subsea pipeline with genetic algorithm. In: Proceedings of the International Conference on Technology, Information, Management, Engineering and Environment, Indonesia, F 2015 Sep 07-09, 2015.
Sloan, Koh (b0150) 2007
Osei, Bavoh, Lal (b0115) 2024; 9
Shi, Ding, Liu (b0135) 2018; 8
Lv, Zhang, Zhao (b0090) 2021; 7
Mu, Li, Ma (b0105) 2014; 362
Liu, Shi, Ding (b0080) 2019; 244
Zheng, Huang, Wang (b0205) 2017; 56
Bishop (b0025) 1995; 7
Sloan (b0145) 2003; 426
Aghajanloo, Reza Ehsani, Taheri (b0010) 2022; 250
Xiao, Zhou, Li (b0180) 2023; 37
Zhang, Huang, Li (b0200) 2021; 244
Kang (10.1016/j.ces.2025.121305_b0060) 2014; 116
Xiao (10.1016/j.ces.2025.121305_b0180) 2023; 37
Gainville (10.1016/j.ces.2025.121305_b0045) 2011
Bishop (10.1016/j.ces.2025.121305_b0025) 1995; 7
Osei (10.1016/j.ces.2025.121305_b0115) 2024; 9
Arjmandi (10.1016/j.ces.2025.121305_b0015) 2005; 60
Lv (10.1016/j.ces.2025.121305_b0100) 2015; 70
Turner (10.1016/j.ces.2025.121305_b0170) 2005
10.1016/j.ces.2025.121305_b0130
Song (10.1016/j.ces.2025.121305_b0155) 2019; 135
Baghban (10.1016/j.ces.2025.121305_b0020) 2016; 34
Skovborg (10.1016/j.ces.2025.121305_b0140) 1993; 48
Zheng (10.1016/j.ces.2025.121305_b0205) 2017; 56
Zhang (10.1016/j.ces.2025.121305_b0200) 2021; 244
10.1016/j.ces.2025.121305_b0005
Kashchiev (10.1016/j.ces.2025.121305_b0065) 2003; 250
Dai (10.1016/j.ces.2025.121305_b0035) 2022; 323
Lv (10.1016/j.ces.2025.121305_b0090) 2021; 7
Sloan (10.1016/j.ces.2025.121305_b0150) 2007
Zhang (10.1016/j.ces.2025.121305_b0195) 2019; 33
Perez-Moroyoqui (10.1016/j.ces.2025.121305_b0120) 2022; 192
Mu (10.1016/j.ces.2025.121305_b0105) 2014; 362
Lv (10.1016/j.ces.2025.121305_b0085) 2018; 8
Natarajan (10.1016/j.ces.2025.121305_b0110) 1994; 49
Aghajanloo (10.1016/j.ces.2025.121305_b0010) 2022; 250
Liu (10.1016/j.ces.2025.121305_b0080) 2019; 244
Sun (10.1016/j.ces.2025.121305_b0165) 2004; 12
Yarveicy (10.1016/j.ces.2025.121305_b0190) 2017; 243
Sloan (10.1016/j.ces.2025.121305_b0145) 2003; 426
Li (10.1016/j.ces.2025.121305_b0075) 2015; 29
10.1016/j.ces.2025.121305_b0125
Foroozesh (10.1016/j.ces.2025.121305_b0040) 2014; 45
Kashchieva (10.1016/j.ces.2025.121305_b0070) 2002; 241
Lv (10.1016/j.ces.2025.121305_b0095) 2024; 204
Xu (10.1016/j.ces.2025.121305_b0185) 2021; 211
Ghiasi (10.1016/j.ces.2025.121305_b0050) 2016; 223
Jing (10.1016/j.ces.2025.121305_b0055) 2023; 190
Shi (10.1016/j.ces.2025.121305_b0135) 2018; 8
Sun (10.1016/j.ces.2025.121305_b0160) 2001
Chen (10.1016/j.ces.2025.121305_b0030) 2018; 32
Wang (10.1016/j.ces.2025.121305_b0175) 2020; 34
References_xml – volume: 70
  start-page: 1111
  year: 2015
  end-page: 1124
  ident: b0100
  article-title: Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop
  publication-title: Oil Gas Sci. Technol.
– volume: 29
  start-page: 2277
  year: 2015
  end-page: 2288
  ident: b0075
  article-title: Kinetics of methane clathrate hydrate formation in water-in-oil emulsion
  publication-title: Energy Fuel
– volume: 37
  start-page: 2972
  year: 2023
  end-page: 2982
  ident: b0180
  article-title: Kinetic properties of CO<inf>2</inf> hydrate formation in the wax-containing system at different concentrations
  publication-title: Energy Fuel
– volume: 323
  year: 2022
  ident: b0035
  article-title: Effect of liquid alkane on carbon dioxide hydrate formation
  publication-title: Fuel
– volume: 426
  start-page: 353
  year: 2003
  end-page: 359
  ident: b0145
  article-title: Fundamental principles and applications of natural gas hydrates
  publication-title: Nature
– volume: 7
  start-page: 599
  year: 2021
  end-page: 616
  ident: b0090
  article-title: Experimental study of the growth kinetics of natural gas hydrates in an oil–water emulsion system
  publication-title: ACS Omega
– volume: 211
  year: 2021
  ident: b0185
  article-title: Machine learning for reliability engineering and safety applications: Review of current status and future opportunities
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 60
  start-page: 1313
  year: 2005
  end-page: 1321
  ident: b0015
  article-title: Is subcooling the right driving force for testing low-dosage hydrate inhibitors?
  publication-title: Chem. Eng. Sci.
– volume: 223
  start-page: 1081
  year: 2016
  end-page: 1092
  ident: b0050
  article-title: Modeling of stability conditions of natural gas clathrate hydrates using least squares support vector machine approach
  publication-title: J. Mol. Liq.
– volume: 116
  start-page: 817
  year: 2014
  end-page: 823
  ident: b0060
  article-title: Experimental measurement of the induction time of natural gas Hydrate and its prediction with polymeric kinetic inhibitor
  publication-title: Chem. Eng. Sci.
– volume: 250
  year: 2022
  ident: b0010
  article-title: Kinetics of methane
  publication-title: Chem. Eng. Sci.
– volume: 56
  start-page: 8330
  year: 2017
  end-page: 8339
  ident: b0205
  article-title: Induction time of hydrate formation in water-in-oil emulsions
  publication-title: Ind. Eng. Chem. Res.
– year: 2005
  ident: b0170
  article-title: Clathrate hydrate formation in water-in-oil dispersions
  publication-title: 2000-2009-Mines Theses & Dissertations
– reference: Sasaki, Y., Tanemura, K., Tokuni, Y., et al., 2023. Application of symbolic regression to unsolved mathematical problems. In: proceedings of the 2023 International Conference on Artificial Intelligence and Applications, ICAIA 2023 and Alliance Technology Conference, ATCON-1 2023, April 21, 2023 – April 22, 2023, Hybrid, Bangalore, India, F, 2023. Institute of Electrical and Electronics Engineers Inc.
– volume: 48
  start-page: 445
  year: 1993
  end-page: 453
  ident: b0140
  article-title: Measurement of induction times for the formation of methane and ethane gas hydrates
  publication-title: Chem. Eng. Sci.
– volume: 362
  start-page: 28
  year: 2014
  end-page: 34
  ident: b0105
  article-title: Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion
  publication-title: Fluid Phase Equilib.
– volume: 34
  start-page: 1431
  year: 2016
  end-page: 1438
  ident: b0020
  article-title: Phase equilibrium modelling of natural gas hydrate formation conditions using LSSVM approach
  publication-title: Petrol. Sci. Technol.
– year: 2001
  ident: b0160
  article-title: The related basic research to the development of gas mixtures separation technology by forming hydrate
  publication-title: PhD Dissertation
– reference: Qin, H., Srivastava, V., Wang, H., et al., 2019. Machine learning models to predict gas hydrate plugging risks using flowloop and field data. In: Proceedings of the Offshore Technology Conference 2019, OTC 2019, May 6, 2019 – May 9, 2019, Houston, TX, United states, F. Offshore Technology Conference.
– reference: Abbasi, A., Hashim, F.M., IEEE, 2015. Prediction of hydrate formation conditions in subsea pipeline with genetic algorithm. In: Proceedings of the International Conference on Technology, Information, Management, Engineering and Environment, Indonesia, F 2015 Sep 07-09, 2015.
– volume: 244
  start-page: 282
  year: 2019
  end-page: 295
  ident: b0080
  article-title: Study of hydrate formation in water-in-waxy oil emulsions considering heat transfer and mass transfer
  publication-title: Fuel
– volume: 135
  start-page: 86
  year: 2019
  end-page: 96
  ident: b0155
  article-title: Prediction of clathrate hydrate phase equilibria using gradient boosted regression trees and deep neural networks
  publication-title: J. Chem. Thermodyn.
– volume: 7
  start-page: 108
  year: 1995
  ident: b0025
  article-title: Training with noise is equivalent to tikhonov regularization
  publication-title: Neural Comput.
– volume: 244
  year: 2021
  ident: b0200
  article-title: Effects of waxes on hydrate behaviors in water-in-oil emulsions containing asphaltenes
  publication-title: Chem. Eng. Sci.
– volume: 12
  start-page: 527
  year: 2004
  end-page: 531
  ident: b0165
  article-title: Induction period of hydrate formation in a flow system
  publication-title: Chin. J. Chem. Eng.
– volume: 8
  start-page: 36484
  year: 2018
  end-page: 36492
  ident: b0085
  article-title: Study on the growth rate of natural gas hydrate in water-in-oil emulsion system using a high-pressure flow loop
  publication-title: RSC Adv.
– volume: 192
  start-page: 19
  year: 2022
  end-page: 32
  ident: b0120
  article-title: An intelligent equation for methane hydrate growth kinetics
  publication-title: Math. Comput. Simul
– volume: 33
  start-page: 5081
  year: 2019
  end-page: 5090
  ident: b0195
  article-title: Effect of wax crystals on nucleation during gas hydrate formation
  publication-title: Energy Fuel
– year: 2007
  ident: b0150
  article-title: Clathrate Hydrates of Natural Gases
– volume: 241
  start-page: 220
  year: 2002
  end-page: 230
  ident: b0070
  article-title: Driving force for crystallization of gas hydrates
  publication-title: J. Cryst. Growth
– volume: 9
  start-page: 4210
  year: 2024
  end-page: 4228
  ident: b0115
  article-title: Research advances in machine learning techniques in gas hydrate applications
  publication-title: ACS Omega
– volume: 8
  start-page: 11436
  year: 2018
  end-page: 11445
  ident: b0135
  article-title: Hydrate slurry flow property in W/O emulsion systems
  publication-title: RSC Adv.
– volume: 204
  start-page: 137
  year: 2024
  end-page: 146
  ident: b0095
  article-title: Study of hydrate generation risk in gas-saturated oil-water emulsion system based on artificial intelligence
  publication-title: Chem. Eng. Res. Des.
– volume: 34
  start-page: 1482
  year: 2020
  end-page: 1491
  ident: b0175
  article-title: Influence of wax on cyclopentane clathrate hydrate cohesive forces and interfacial properties
  publication-title: Energy Fuel
– volume: 45
  start-page: 2258
  year: 2014
  end-page: 2264
  ident: b0040
  article-title: Application of artificial intelligence (AI) in kinetic modeling of methane gas hydrate formation
  publication-title: J. Taiwan Inst. Chem. Eng.
– year: 2011
  ident: b0045
  article-title: Hydrate slurry characterization for laminar and turbulent flows in pipelines
  publication-title: Proceedings of the International Conference on Gas Hydrates (ICGH), Edinburgh, F
– volume: 190
  start-page: 687
  year: 2023
  end-page: 703
  ident: b0055
  article-title: Investigation of natural gas hydrate formation and slurry viscosity in non-emulsifying oil systems
  publication-title: Chem. Eng. Res. Des.
– volume: 243
  start-page: 533
  year: 2017
  end-page: 541
  ident: b0190
  article-title: Modeling of gas hydrate phase equilibria: extremely randomized trees and LSSVM approaches
  publication-title: J. Mol. Liq.
– volume: 49
  start-page: 2075
  year: 1994
  end-page: 2087
  ident: b0110
  article-title: Induction phenomena in gas hydrate nucleation
  publication-title: Chem. Eng. Sci.
– volume: 250
  start-page: 499
  year: 2003
  end-page: 515
  ident: b0065
  article-title: Induction time in crystallization of gas hydrates
  publication-title: J. Cryst. Growth
– volume: 32
  start-page: 9081
  year: 2018
  end-page: 9092
  ident: b0030
  article-title: Experimental and theoretical investigation of the interaction between hydrate formation and wax precipitation in water-in-oil emulsions
  publication-title: Energy Fuels
– year: 2001
  ident: 10.1016/j.ces.2025.121305_b0160
  article-title: The related basic research to the development of gas mixtures separation technology by forming hydrate
  publication-title: PhD Dissertation
– volume: 7
  start-page: 599
  issue: 1
  year: 2021
  ident: 10.1016/j.ces.2025.121305_b0090
  article-title: Experimental study of the growth kinetics of natural gas hydrates in an oil–water emulsion system
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c05127
– volume: 241
  start-page: 220
  year: 2002
  ident: 10.1016/j.ces.2025.121305_b0070
  article-title: Driving force for crystallization of gas hydrates
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(02)01134-X
– volume: 323
  year: 2022
  ident: 10.1016/j.ces.2025.121305_b0035
  article-title: Effect of liquid alkane on carbon dioxide hydrate formation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.124335
– volume: 29
  start-page: 2277
  issue: 4
  year: 2015
  ident: 10.1016/j.ces.2025.121305_b0075
  article-title: Kinetics of methane clathrate hydrate formation in water-in-oil emulsion
  publication-title: Energy Fuel
  doi: 10.1021/ef5028923
– volume: 9
  start-page: 4210
  issue: 4
  year: 2024
  ident: 10.1016/j.ces.2025.121305_b0115
  article-title: Research advances in machine learning techniques in gas hydrate applications
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c04825
– volume: 204
  start-page: 137
  year: 2024
  ident: 10.1016/j.ces.2025.121305_b0095
  article-title: Study of hydrate generation risk in gas-saturated oil-water emulsion system based on artificial intelligence
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2024.02.034
– volume: 243
  start-page: 533
  year: 2017
  ident: 10.1016/j.ces.2025.121305_b0190
  article-title: Modeling of gas hydrate phase equilibria: extremely randomized trees and LSSVM approaches
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.08.053
– volume: 426
  start-page: 353
  issue: 6964
  year: 2003
  ident: 10.1016/j.ces.2025.121305_b0145
  article-title: Fundamental principles and applications of natural gas hydrates
  publication-title: Nature
  doi: 10.1038/nature02135
– volume: 12
  start-page: 527
  issue: 4
  year: 2004
  ident: 10.1016/j.ces.2025.121305_b0165
  article-title: Induction period of hydrate formation in a flow system
  publication-title: Chin. J. Chem. Eng.
– ident: 10.1016/j.ces.2025.121305_b0005
  doi: 10.1109/TIME-E.2015.7389761
– volume: 211
  year: 2021
  ident: 10.1016/j.ces.2025.121305_b0185
  article-title: Machine learning for reliability engineering and safety applications: Review of current status and future opportunities
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107530
– volume: 192
  start-page: 19
  year: 2022
  ident: 10.1016/j.ces.2025.121305_b0120
  article-title: An intelligent equation for methane hydrate growth kinetics
  publication-title: Math. Comput. Simul
  doi: 10.1016/j.matcom.2021.08.011
– year: 2005
  ident: 10.1016/j.ces.2025.121305_b0170
  article-title: Clathrate hydrate formation in water-in-oil dispersions
  publication-title: 2000-2009-Mines Theses & Dissertations
– volume: 244
  year: 2021
  ident: 10.1016/j.ces.2025.121305_b0200
  article-title: Effects of waxes on hydrate behaviors in water-in-oil emulsions containing asphaltenes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116831
– volume: 8
  start-page: 36484
  issue: 64
  year: 2018
  ident: 10.1016/j.ces.2025.121305_b0085
  article-title: Study on the growth rate of natural gas hydrate in water-in-oil emulsion system using a high-pressure flow loop
  publication-title: RSC Adv.
  doi: 10.1039/C8RA07571A
– volume: 250
  year: 2022
  ident: 10.1016/j.ces.2025.121305_b0010
  article-title: Kinetics of methane+hydrogen sulfide clathrate hydrate formation in the presence/absence of poly N-vinyl pyrrolidone (PVP) and L-tyrosine: experimental study and modeling of the induction time
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117384
– volume: 190
  start-page: 687
  year: 2023
  ident: 10.1016/j.ces.2025.121305_b0055
  article-title: Investigation of natural gas hydrate formation and slurry viscosity in non-emulsifying oil systems
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2023.01.017
– volume: 34
  start-page: 1482
  issue: 2
  year: 2020
  ident: 10.1016/j.ces.2025.121305_b0175
  article-title: Influence of wax on cyclopentane clathrate hydrate cohesive forces and interfacial properties
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.9b03543
– volume: 135
  start-page: 86
  year: 2019
  ident: 10.1016/j.ces.2025.121305_b0155
  article-title: Prediction of clathrate hydrate phase equilibria using gradient boosted regression trees and deep neural networks
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2019.03.030
– volume: 32
  start-page: 9081
  issue: 9
  year: 2018
  ident: 10.1016/j.ces.2025.121305_b0030
  article-title: Experimental and theoretical investigation of the interaction between hydrate formation and wax precipitation in water-in-oil emulsions
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.8b01713
– volume: 37
  start-page: 2972
  issue: 4
  year: 2023
  ident: 10.1016/j.ces.2025.121305_b0180
  article-title: Kinetic properties of CO2 hydrate formation in the wax-containing system at different concentrations
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.2c03972
– volume: 362
  start-page: 28
  year: 2014
  ident: 10.1016/j.ces.2025.121305_b0105
  article-title: Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2013.08.028
– volume: 250
  start-page: 499
  issue: 3–4
  year: 2003
  ident: 10.1016/j.ces.2025.121305_b0065
  article-title: Induction time in crystallization of gas hydrates
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(02)02461-2
– volume: 8
  start-page: 11436
  issue: 21
  year: 2018
  ident: 10.1016/j.ces.2025.121305_b0135
  article-title: Hydrate slurry flow property in W/O emulsion systems
  publication-title: RSC Adv.
  doi: 10.1039/C7RA13495A
– volume: 60
  start-page: 1313
  issue: 5
  year: 2005
  ident: 10.1016/j.ces.2025.121305_b0015
  article-title: Is subcooling the right driving force for testing low-dosage hydrate inhibitors?
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.10.005
– ident: 10.1016/j.ces.2025.121305_b0130
  doi: 10.1109/ICAIA57370.2023.10169711
– volume: 116
  start-page: 817
  year: 2014
  ident: 10.1016/j.ces.2025.121305_b0060
  article-title: Experimental measurement of the induction time of natural gas Hydrate and its prediction with polymeric kinetic inhibitor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.04.035
– volume: 48
  start-page: 445
  issue: 3
  year: 1993
  ident: 10.1016/j.ces.2025.121305_b0140
  article-title: Measurement of induction times for the formation of methane and ethane gas hydrates
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(93)80299-6
– volume: 33
  start-page: 5081
  issue: 6
  year: 2019
  ident: 10.1016/j.ces.2025.121305_b0195
  article-title: Effect of wax crystals on nucleation during gas hydrate formation
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.9b00815
– volume: 56
  start-page: 8330
  issue: 29
  year: 2017
  ident: 10.1016/j.ces.2025.121305_b0205
  article-title: Induction time of hydrate formation in water-in-oil emulsions
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b01332
– ident: 10.1016/j.ces.2025.121305_b0125
  doi: 10.4043/29411-MS
– volume: 7
  start-page: 108
  issue: 1
  year: 1995
  ident: 10.1016/j.ces.2025.121305_b0025
  article-title: Training with noise is equivalent to tikhonov regularization
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.1.108
– volume: 45
  start-page: 2258
  issue: 5
  year: 2014
  ident: 10.1016/j.ces.2025.121305_b0040
  article-title: Application of artificial intelligence (AI) in kinetic modeling of methane gas hydrate formation
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2014.08.001
– year: 2011
  ident: 10.1016/j.ces.2025.121305_b0045
  article-title: Hydrate slurry characterization for laminar and turbulent flows in pipelines
– volume: 70
  start-page: 1111
  issue: 6
  year: 2015
  ident: 10.1016/j.ces.2025.121305_b0100
  article-title: Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop
  publication-title: Oil Gas Sci. Technol.
  doi: 10.2516/ogst/2014032
– volume: 34
  start-page: 1431
  issue: 16
  year: 2016
  ident: 10.1016/j.ces.2025.121305_b0020
  article-title: Phase equilibrium modelling of natural gas hydrate formation conditions using LSSVM approach
  publication-title: Petrol. Sci. Technol.
  doi: 10.1080/10916466.2016.1202966
– year: 2007
  ident: 10.1016/j.ces.2025.121305_b0150
– volume: 244
  start-page: 282
  year: 2019
  ident: 10.1016/j.ces.2025.121305_b0080
  article-title: Study of hydrate formation in water-in-waxy oil emulsions considering heat transfer and mass transfer
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.02.014
– volume: 49
  start-page: 2075
  issue: 13
  year: 1994
  ident: 10.1016/j.ces.2025.121305_b0110
  article-title: Induction phenomena in gas hydrate nucleation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(94)E0026-M
– volume: 223
  start-page: 1081
  year: 2016
  ident: 10.1016/j.ces.2025.121305_b0050
  article-title: Modeling of stability conditions of natural gas clathrate hydrates using least squares support vector machine approach
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.09.009
SSID ssj0007710
Score 2.4613874
Snippet •A data augmentation method is proposed for hydrate induction time.•A GBRT model for hydrate induction time prediction based on data augmentation is...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 121305
SubjectTerms Data augmentation
Driving force
Hydrate induction time
Machine learning
Oil-water emulsion
Small sample
Title Intelligent prediction of hydrate induction time in oil–water emulsion system based on data-driven and driving force
URI https://dx.doi.org/10.1016/j.ces.2025.121305
Volume 307
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIYUmjR07Y1VRtSA6UalbFD8iikpaRSmIBfEf-If8Eu7ygCLBwhDJdmI5-uzcneO77wg519y1rhszxwSaO6yrjKN4zB0ftKvyrZWyoF28HQfDCbue8mmD9OtYGHSrrGR_KdMLaV21dCo0O8vZDGN83RAUOF4oZTGID9nrYE1fvn67eQjhuXU2NXy6PtksfLzgU4QtYpcjx4KPGex-001r-mawQ7YrQ5H2ynfZJQ2b7pGtNfrAffI0-uLTzOkywyMXhJkuEnr_YpADgsKOu6SHpZhEHqp0MZt_vL0_w82M2sfVHP-W0ZLPmaJKMxTq6DfqmAwlIY1TQ7EIQ1KwcLU9IJPB1V1_6FR5FBwNm6sclFCgtJ_IBANhtQSjKQ6lEMYTIg5dJoLEl4qLRIO1ZyVSxEnpaS-ItTa-r6x_SJrpIrVHhMYeNCuwEgJtmICp5CywioVeDAWvK1rkokYwWpZ0GVHtR_YQAdwRwh2VcLcIqzGOfsx5BOL8727H_-t2Qjaxhv5jHj8lzTxb2TMwKHLVLlZMm2z0RjfD8Sd-hMtc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Ylv9-BJCCbNbnZzlGJpre2pBW8h-whWNC2lVbz5H_yH_hJnmkQq6MVDYB8sCd8m38xmZ78BuDDCd76fcs9GRni8oa2nRSq8EK2rDp1TaiG72OtH7SG_vRf3NWhWZ2EorLLk_oLTF2xdtlyVaF5NRiM64-vHaMDpIpaNV2CV1Kl4HVavO912_5uQpQz8KqEaDag2NxdhXvg14iqxIUhmIaQkdr-ZpyWT09qCzdJXZNfF42xDzeU7sLGkILgLL51vSc0Zm0xp14WQZuOMPbxZkoFguOguFGIZ5ZHHKhuPnj7fP16xc8rc8_yJfpixQtKZkVWzDOsUOurZKZEhS3PLqIi3ZOjkGrcHw9bNoNn2ylQKnsH11QztUKRNmKmMzsIahX5TGispbSBlGvtcRlmotJCZQYfPKVKJUyowQZQaY8NQu3Af6vk4dwfA0gCbNToKkbFc4mwKHjnN4yDFQtCQh3BZIZhMCsWMpAole0wQ7oTgTgq4D4FXGCc_pj1BRv972NH_hp3DWnvQu0vuOv3uMaxTD4WTBeIE6rPp3J2ifzHTZ-X78wWHQM4N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+prediction+of+hydrate+induction+time+in+oil%E2%80%93water+emulsion+system+based+on+data-driven+and+driving+force&rft.jtitle=Chemical+engineering+science&rft.au=Lv%2C+Xiao-Fang&rft.au=Chen%2C+Shu-Kai&rft.au=Liu%2C+Yang&rft.au=Peng%2C+Ming-Guo&rft.date=2025-03-15&rft.issn=0009-2509&rft.volume=307&rft.spage=121305&rft_id=info:doi/10.1016%2Fj.ces.2025.121305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2025_121305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon