Minimum weight Euclidean (1+ɛ)-spanners
Given a set S of n points in the plane and a parameter ɛ>0, a Euclidean (1+ɛ)-spanner is a geometric graph G=(S,E) that contains, for all p,q∈S, a pq-path of weight at most (1+ɛ)‖pq‖. We show that the minimum weight of a Euclidean (1+ɛ)-spanner for n points in the unit square [0,1]2 is O(ɛ−3/2n),...
Saved in:
Published in | European journal of combinatorics Vol. 118; p. 103927 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2024
|
Online Access | Get full text |
ISSN | 0195-6698 1095-9971 |
DOI | 10.1016/j.ejc.2024.103927 |
Cover
Loading…
Abstract | Given a set S of n points in the plane and a parameter ɛ>0, a Euclidean (1+ɛ)-spanner is a geometric graph G=(S,E) that contains, for all p,q∈S, a pq-path of weight at most (1+ɛ)‖pq‖. We show that the minimum weight of a Euclidean (1+ɛ)-spanner for n points in the unit square [0,1]2 is O(ɛ−3/2n), and this bound is the best possible. The upper bound is based on a new spanner algorithm in the plane. It improves upon the baseline O(ɛ−2n), obtained by combining a tight bound for the weight of a Euclidean minimum spanning tree (MST) on n points in [0,1]2, and a tight bound for the lightness of Euclidean (1+ɛ)-spanners, which is the ratio of the spanner weight to the weight of the MST. Our result generalizes to Euclidean d-space for every constant dimension d∈N: The minimum weight of a Euclidean (1+ɛ)-spanner for n points in the unit cube [0,1]d is Od(ɛ(1−d2)/dn(d−1)/d), and this bound is the best possible.
For the n×n section of the integer lattice in the plane, we show that the minimum weight of a Euclidean (1+ɛ)-spanner is between Ω(ɛ−3/4⋅n2) and O(ɛ−1log(ɛ−1)⋅n2). These bounds become Ω(ɛ−3/4⋅n) and O(ɛ−1log(ɛ−1)⋅n) when scaled to a grid of n points in the unit square. In particular, this shows that the integer grid is not an extremal configuration for minimum weight Euclidean (1+ɛ)-spanners. |
---|---|
AbstractList | Given a set S of n points in the plane and a parameter ɛ>0, a Euclidean (1+ɛ)-spanner is a geometric graph G=(S,E) that contains, for all p,q∈S, a pq-path of weight at most (1+ɛ)‖pq‖. We show that the minimum weight of a Euclidean (1+ɛ)-spanner for n points in the unit square [0,1]2 is O(ɛ−3/2n), and this bound is the best possible. The upper bound is based on a new spanner algorithm in the plane. It improves upon the baseline O(ɛ−2n), obtained by combining a tight bound for the weight of a Euclidean minimum spanning tree (MST) on n points in [0,1]2, and a tight bound for the lightness of Euclidean (1+ɛ)-spanners, which is the ratio of the spanner weight to the weight of the MST. Our result generalizes to Euclidean d-space for every constant dimension d∈N: The minimum weight of a Euclidean (1+ɛ)-spanner for n points in the unit cube [0,1]d is Od(ɛ(1−d2)/dn(d−1)/d), and this bound is the best possible.
For the n×n section of the integer lattice in the plane, we show that the minimum weight of a Euclidean (1+ɛ)-spanner is between Ω(ɛ−3/4⋅n2) and O(ɛ−1log(ɛ−1)⋅n2). These bounds become Ω(ɛ−3/4⋅n) and O(ɛ−1log(ɛ−1)⋅n) when scaled to a grid of n points in the unit square. In particular, this shows that the integer grid is not an extremal configuration for minimum weight Euclidean (1+ɛ)-spanners. |
ArticleNumber | 103927 |
Author | Tóth, Csaba D. |
Author_xml | – sequence: 1 givenname: Csaba D. surname: Tóth fullname: Tóth, Csaba D. email: csaba.toth@csun.edu organization: Department of Mathematics, California State University Northridge, Los Angeles, CA, USA |
BookMark | eNp9j8tOwzAQRS1UJNLCB7DrsgileBI_YrFCVXlIRWxgbTn2BBy1bmWnIL6lX8RfkSqsWc2dxbm6Z0xGYRuQkEugc6Agbto5tnZe0IL1f6kKeUIyoIrnSkkYkYxCn4VQ1RkZp9RSCsDLMiOzZx_8Zr-ZfqF__-imy71de4cmTGdw_XO4ytPOhIAxnZPTxqwTXvzdCXm7X74uHvPVy8PT4m6V24KpLpeu5spa5Nwo6cpKGnBSgOFUIKcNQ-WEQ1bL2ipBBSsQmaga1tRVpWxRlxMCQ6-N25QiNnoX_cbEbw1UH1V1q3tVfVTVg2rP3A4M9sM-PUadrMdg0fmIttNu6_-hfwG2F1zs |
Cites_doi | 10.1137/22M1502707 10.1112/S0025579300000784 10.1145/2819008 10.1137/0218019 10.1006/jnth.1996.0145 10.1016/j.comgeo.2021.101807 10.1137/0212009 10.1007/BF02523237 10.1137/0211059 10.1137/120901295 10.1137/19M1246493 10.1142/S179383092150124X 10.1016/j.comgeo.2005.10.001 10.1016/j.comgeo.2014.05.001 10.1007/s00453-001-0075-x 10.1142/S0218195997000193 10.1007/s00454-020-00228-6 10.1016/j.tcs.2015.12.017 10.1007/BF02189308 10.5802/jtnb.255 10.1007/s10474-018-0868-x 10.1007/s00453-011-9504-7 10.1016/0020-0190(90)90054-2 10.1007/s00454-009-9230-y 10.1007/BF02187821 10.1142/S1793830916500518 10.1137/18M1210678 10.1137/S0097539700382947 |
ContentType | Journal Article |
Copyright | 2024 The Author |
Copyright_xml | – notice: 2024 The Author |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.ejc.2024.103927 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1095-9971 |
ExternalDocumentID | 10_1016_j_ejc_2024_103927 S019566982400012X |
GrantInformation_xml | – fundername: National Science Foundation, USA grantid: DMS-1800734; DMS-2154347 |
GroupedDBID | --K --M -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c249t-7db59cce55a97d387a1d761a506e50f4e9d6de4b7bc960642ee468f4fb889c2b3 |
IEDL.DBID | .~1 |
ISSN | 0195-6698 |
IngestDate | Tue Jul 01 01:37:07 EDT 2025 Sat Apr 06 16:24:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-7db59cce55a97d387a1d761a506e50f4e9d6de4b7bc960642ee468f4fb889c2b3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S019566982400012X |
ParticipantIDs | crossref_primary_10_1016_j_ejc_2024_103927 elsevier_sciencedirect_doi_10_1016_j_ejc_2024_103927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | European journal of combinatorics |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Levcopoulos, Narasimhan, Smid (b43) 2002; 32 Funke, Sanders (b27) 2023; vol. 265 Chang, Huang, Tang (b15) 1990; 35 Franel (b26) 1924 Keil, Gutwin (b37) 1992; 7 Arya, Smid (b7) 1997; 17 Few (b24) 1955; 2 Steele, Snyder (b50) 1989; 18 Borradaile, Le, Wulff-Nilsen (b10) 2019 Agarwal (b2) 2017 Bose, Hill, Ooms (b12) 2021; vol. 12808 Ledoan (b42) 2018; 156 Landau (b38) 1924 Barba, Bose, Damian, Fagerberg, Keng, O’Rourke, van Renssen, Taslakian, Verdonschot, Xia (b8) 2015; 6 Gottlieb (b30) 2015 Gudmundsson, Levcopoulos, Narasimhan (b32) 2002; 31 Bhore, Tóth (b9) 2022; 36 Buchin, Har-Peled, Oláh (b13) 2020; 64 Narasimhan, Smid (b45) 2007 Elkin, Solomon (b23) 2015; 62 Clarkson (b16) 1987 Mitchell, Mulzer (b44) 2018 Ruppert, Seidel (b48) 1991 Hardy, Wright (b34) 1979 Gao, Guibas, Nguyen (b29) 2006; 35 Dress (b21) 1999; 11 Kargaev, Zhigljavsky (b35) 1996; 61 Le, Solomon (b39) 2020; vol. 173 Abu-Affash, Bar-On, Carmi (b1) 2022; 100 Das, Narasimhan (b18) 1997; 7 Solomon, Elkin (b49) 2014; 28 Har-Peled (b33) 2011; vol. 173 Dumitrescu, Ghosh (b22) 2016; 8 Bose, Carufel, Morin, van Renssen, Verdonschot (b11) 2016; 616 Le, Solomon (b41) 2023 Supowit, Reingold, Plaisted (b51) 1983; 12 Das, Heffernan, Narasimhan (b17) 1993 Gudmundsson, Knauer (b31) 2018; vol. 2 Agarwal, Wang, Yin (b3) 2005 Dinitz, Elkin, Solomon (b20) 2010; 43 Filtser, Solomon (b25) 2020; 49 Chan, Har-Peled, Jones (b14) 2020; 49 Galant, Pilatte (b28) 2022; 14 Keil (b36) 1988; vol. 318 Roditty (b47) 2012; 62 Le, Solomon (b40) 2022 Rao, Smith (b46) 1998 Yao (b52) 1982; 11 Akitaya, Biniaz, Bose (b5) 2022; 105–106 Das, Narasimhan, Salowe (b19) 1995 Aichholzer, Bae, Barba, Bose, Korman, van Renssen, Taslakian, Verdonschot (b4) 2014; 47 Althöfer, Das, Dobkin, Joseph, Soares (b6) 1993; 9 Borradaile (10.1016/j.ejc.2024.103927_b10) 2019 Ledoan (10.1016/j.ejc.2024.103927_b42) 2018; 156 Har-Peled (10.1016/j.ejc.2024.103927_b33) 2011; vol. 173 Chan (10.1016/j.ejc.2024.103927_b14) 2020; 49 Narasimhan (10.1016/j.ejc.2024.103927_b45) 2007 Rao (10.1016/j.ejc.2024.103927_b46) 1998 Gudmundsson (10.1016/j.ejc.2024.103927_b31) 2018; vol. 2 Le (10.1016/j.ejc.2024.103927_b39) 2020; vol. 173 Das (10.1016/j.ejc.2024.103927_b17) 1993 Agarwal (10.1016/j.ejc.2024.103927_b3) 2005 Gao (10.1016/j.ejc.2024.103927_b29) 2006; 35 Das (10.1016/j.ejc.2024.103927_b18) 1997; 7 Filtser (10.1016/j.ejc.2024.103927_b25) 2020; 49 Le (10.1016/j.ejc.2024.103927_b40) 2022 Yao (10.1016/j.ejc.2024.103927_b52) 1982; 11 Supowit (10.1016/j.ejc.2024.103927_b51) 1983; 12 Mitchell (10.1016/j.ejc.2024.103927_b44) 2018 Hardy (10.1016/j.ejc.2024.103927_b34) 1979 Landau (10.1016/j.ejc.2024.103927_b38) 1924 Steele (10.1016/j.ejc.2024.103927_b50) 1989; 18 Few (10.1016/j.ejc.2024.103927_b24) 1955; 2 Galant (10.1016/j.ejc.2024.103927_b28) 2022; 14 Dinitz (10.1016/j.ejc.2024.103927_b20) 2010; 43 Buchin (10.1016/j.ejc.2024.103927_b13) 2020; 64 Keil (10.1016/j.ejc.2024.103927_b37) 1992; 7 Roditty (10.1016/j.ejc.2024.103927_b47) 2012; 62 Clarkson (10.1016/j.ejc.2024.103927_b16) 1987 Ruppert (10.1016/j.ejc.2024.103927_b48) 1991 Althöfer (10.1016/j.ejc.2024.103927_b6) 1993; 9 Das (10.1016/j.ejc.2024.103927_b19) 1995 Gudmundsson (10.1016/j.ejc.2024.103927_b32) 2002; 31 Funke (10.1016/j.ejc.2024.103927_b27) 2023; vol. 265 Elkin (10.1016/j.ejc.2024.103927_b23) 2015; 62 Kargaev (10.1016/j.ejc.2024.103927_b35) 1996; 61 Barba (10.1016/j.ejc.2024.103927_b8) 2015; 6 Akitaya (10.1016/j.ejc.2024.103927_b5) 2022; 105–106 Dress (10.1016/j.ejc.2024.103927_b21) 1999; 11 Agarwal (10.1016/j.ejc.2024.103927_b2) 2017 Bose (10.1016/j.ejc.2024.103927_b12) 2021; vol. 12808 Franel (10.1016/j.ejc.2024.103927_b26) 1924 Levcopoulos (10.1016/j.ejc.2024.103927_b43) 2002; 32 Abu-Affash (10.1016/j.ejc.2024.103927_b1) 2022; 100 Le (10.1016/j.ejc.2024.103927_b41) 2023 Aichholzer (10.1016/j.ejc.2024.103927_b4) 2014; 47 Arya (10.1016/j.ejc.2024.103927_b7) 1997; 17 Bhore (10.1016/j.ejc.2024.103927_b9) 2022; 36 Bose (10.1016/j.ejc.2024.103927_b11) 2016; 616 Chang (10.1016/j.ejc.2024.103927_b15) 1990; 35 Solomon (10.1016/j.ejc.2024.103927_b49) 2014; 28 Keil (10.1016/j.ejc.2024.103927_b36) 1988; vol. 318 Dumitrescu (10.1016/j.ejc.2024.103927_b22) 2016; 8 Gottlieb (10.1016/j.ejc.2024.103927_b30) 2015 |
References_xml | – volume: 47 start-page: 910 year: 2014 end-page: 917 ident: b4 article-title: Theta-3 is connected publication-title: Comput. Geom. – volume: 14 start-page: 2150124:1 year: 2022 end-page: 2150124:12 ident: b28 article-title: A note on optimal degree-three spanners of the square lattice publication-title: Discret. Math. Algorithms Appl. – volume: 2 start-page: 141 year: 1955 end-page: 144 ident: b24 article-title: The shortest path and the shortest road through publication-title: Mathematika – volume: vol. 173 start-page: 67:1 year: 2020 end-page: 67:22 ident: b39 article-title: Light Euclidean spanners with Steiner points publication-title: Proc. 28th European Symposium on Algorithms – start-page: 215 year: 1995 end-page: 222 ident: b19 article-title: A new way to weigh malnourished Euclidean graphs publication-title: Proc. 6th ACM-SIAM Symposium on Discrete Algorithms – volume: 6 start-page: 19 year: 2015 end-page: 53 ident: b8 article-title: New and improved spanning ratios for Yao graphs publication-title: J. Comput. Geom. – volume: 616 start-page: 70 year: 2016 end-page: 93 ident: b11 article-title: Towards tight bounds on theta-graphs: More is not always better publication-title: Theoret. Comput. Sci. – start-page: 202 year: 1924 end-page: 206 ident: b38 article-title: Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel publication-title: Gött. Nachr. – volume: 9 start-page: 81 year: 1993 end-page: 100 ident: b6 article-title: On sparse spanners of weighted graphs publication-title: Discret. Comput. Geom. – volume: 62 start-page: 1073 year: 2012 end-page: 1087 ident: b47 article-title: Fully dynamic geometric spanners publication-title: Algorithmica – volume: vol. 2 year: 2018 ident: b31 article-title: Dilation and detours in geometric networks publication-title: Handbook of Approximation Algorithms and Metaheuristics – year: 2018 ident: b44 article-title: Proximity algorithms publication-title: Handbook of Discrete and Computational Geometry – volume: 100 year: 2022 ident: b1 article-title: -Greedy publication-title: Comput. Geom. – volume: 7 start-page: 297 year: 1997 end-page: 315 ident: b18 article-title: A fast algorithm for constructing sparse Euclidean spanners publication-title: Internat. J. Comput. Geom. Appl. – volume: 64 start-page: 1167 year: 2020 end-page: 1191 ident: b13 article-title: A spanner for the day after publication-title: Discret. Comput. Geom. – start-page: 1057 year: 2017 end-page: 1092 ident: b2 article-title: Range searching publication-title: Handbook of Discrete and Computational Geometry – volume: 11 start-page: 721 year: 1982 end-page: 736 ident: b52 article-title: On constructing minimum spanning trees in publication-title: SIAM J. Comput. – volume: 35 start-page: 2 year: 2006 end-page: 19 ident: b29 article-title: Deformable spanners and applications publication-title: Comput. Geom. – volume: 18 start-page: 278 year: 1989 end-page: 287 ident: b50 article-title: Worst-case growth rates of some classical problems of combinatorial optimization publication-title: SIAM J. Comput. – year: 2007 ident: b45 article-title: Geometric Spanner Networks – start-page: 198 year: 1924 end-page: 201 ident: b26 article-title: Les suites de farey et les problèmes des nombres premiers publication-title: Nachr. von Ges. Wiss. Gött. Math.-Phys. Kl. – volume: 49 start-page: 429 year: 2020 end-page: 447 ident: b25 article-title: The greedy spanner is existentially optimal publication-title: SIAM J. Comput. – volume: vol. 12808 start-page: 215 year: 2021 end-page: 228 ident: b12 article-title: Improved bounds on the spanning ratio of the theta-5-graph publication-title: Proc. 17th Symposium on Algorithms and Data Structures – volume: vol. 265 start-page: 20:1 year: 2023 end-page: 20:20 ident: b27 article-title: Efficient Yao graph construction publication-title: Proc. 21st Symposium on Experimental Algorithms – start-page: 295 year: 2023 end-page: 308 ident: b41 article-title: A unified framework for light spanners publication-title: Proc. 55th ACM Symposium on Theory of Computing – start-page: 56 year: 1987 end-page: 65 ident: b16 article-title: Approximation algorithms for shortest path motion planning publication-title: Proc. 19th ACM Symposium on Theory of Computing – volume: 7 start-page: 13 year: 1992 end-page: 28 ident: b37 article-title: Classes of graphs which approximate the complete Euclidean graph publication-title: Discret. Comput. Geom. – volume: 61 start-page: 209 year: 1996 end-page: 225 ident: b35 article-title: Approximation of real numbers by rationals: Some metric theorems publication-title: J. Number Theory – volume: 49 start-page: 583 year: 2020 end-page: 600 ident: b14 article-title: On locality-sensitive orderings and their applications publication-title: SIAM J. Comput. – start-page: 207 year: 1991 end-page: 210 ident: b48 article-title: Approximating the publication-title: Proc. 3rd Canadian Conference on Computational Geometry – volume: 28 start-page: 1173 year: 2014 end-page: 1198 ident: b49 article-title: Balancing degree, diameter, and weight in Euclidean spanners publication-title: SIAM J. Discret. Math. – start-page: FOCS19 year: 2022 end-page: 135–FOCS19–199 ident: b40 article-title: Truly optimal Euclidean spanners publication-title: SIAM J. Comput. – volume: 36 start-page: 2411 year: 2022 end-page: 2444 ident: b9 article-title: Euclidean steiner spanners: Light and sparse publication-title: SIAM J. Discret. Math. – volume: 11 start-page: 345 year: 1999 end-page: 367 ident: b21 article-title: Discrépance des suites de Farey publication-title: J. Théor. Nombres Bordx. – start-page: 23 year: 1979 end-page: 37 ident: b34 article-title: Farey series and a theorem of Minkowski publication-title: An Introduction to the Theory of Numbers – volume: 32 start-page: 144 year: 2002 end-page: 156 ident: b43 article-title: Improved algorithms for constructing fault-tolerant spanners publication-title: Algorithmica – start-page: 670 year: 2005 end-page: 671 ident: b3 article-title: Lower bound for sparse Euclidean spanners publication-title: Proc. 16th ACM-SIAM Symposium on Discrete Algorithms – volume: vol. 173 year: 2011 ident: b33 publication-title: Geometric Approximation Algorithms – volume: 12 start-page: 144 year: 1983 end-page: 156 ident: b51 article-title: The travelling salesman problem and minimum matching in the unit square publication-title: SIAM J. Comput. – volume: 43 start-page: 736 year: 2010 end-page: 783 ident: b20 article-title: Low-light trees, and tight lower bounds for Euclidean spanners publication-title: Discret. Comput. Geom. – volume: 8 start-page: 1650051:1 year: 2016 end-page: 1650051:19 ident: b22 article-title: Lattice spanners of low degree publication-title: Discret. Math. Algorithms Appl. – volume: 62 start-page: 35:1 year: 2015 end-page: 35:45 ident: b23 article-title: Optimal Euclidean spanners: Really short, thin, and lanky publication-title: J. ACM – volume: 35 start-page: 255 year: 1990 end-page: 260 ident: b15 article-title: An optimal algorithm for constructing oriented Voronoi diagrams and geographic neighborhood graphs publication-title: Inf. Process. Lett. – start-page: 540 year: 1998 end-page: 550 ident: b46 article-title: Approximating geometrical graphs via “spanners” and “banyans” publication-title: Proc. 30th ACM Symposium on the Theory of Computing – volume: vol. 318 start-page: 208 year: 1988 end-page: 213 ident: b36 article-title: Approximating the complete Euclidean graph publication-title: Proc. 1st Scandinavian Workshop on Algorithm Theory – start-page: 759 year: 2015 end-page: 772 ident: b30 article-title: A light metric spanner publication-title: Proc. 56th IEEE Symposium on Foundations of Computer Science – start-page: 53 year: 1993 end-page: 62 ident: b17 article-title: Optimally sparse spanners in 3-dimensional Euclidean space publication-title: Proc. 9th Symposium on Computational Geometry – volume: 17 start-page: 33 year: 1997 end-page: 54 ident: b7 article-title: Efficient construction of a bounded-degree spanner with low weight publication-title: Algorithmica – start-page: 2371 year: 2019 end-page: 2379 ident: b10 article-title: Greedy spanners are optimal in doubling metrics publication-title: Proc. 30th ACM-SIAM Symposium on Discrete Algorithms – volume: 105–106 year: 2022 ident: b5 article-title: On the spanning and routing ratios of the directed publication-title: Comput. Geom. – volume: 156 start-page: 465 year: 2018 end-page: 480 ident: b42 article-title: The discrepancy of Farey series publication-title: Acta Math. Hungar. – volume: 31 start-page: 1479 year: 2002 end-page: 1500 ident: b32 article-title: Fast greedy algorithms for constructing sparse geometric spanners publication-title: SIAM J. Comput. – volume: 36 start-page: 2411 issue: 3 year: 2022 ident: 10.1016/j.ejc.2024.103927_b9 article-title: Euclidean steiner spanners: Light and sparse publication-title: SIAM J. Discret. Math. doi: 10.1137/22M1502707 – volume: 2 start-page: 141 issue: 2 year: 1955 ident: 10.1016/j.ejc.2024.103927_b24 article-title: The shortest path and the shortest road through n points publication-title: Mathematika doi: 10.1112/S0025579300000784 – volume: vol. 12808 start-page: 215 year: 2021 ident: 10.1016/j.ejc.2024.103927_b12 article-title: Improved bounds on the spanning ratio of the theta-5-graph – volume: vol. 2 year: 2018 ident: 10.1016/j.ejc.2024.103927_b31 article-title: Dilation and detours in geometric networks – start-page: 1057 year: 2017 ident: 10.1016/j.ejc.2024.103927_b2 article-title: Range searching – volume: 62 start-page: 35:1 issue: 5 year: 2015 ident: 10.1016/j.ejc.2024.103927_b23 article-title: Optimal Euclidean spanners: Really short, thin, and lanky publication-title: J. ACM doi: 10.1145/2819008 – start-page: 202 year: 1924 ident: 10.1016/j.ejc.2024.103927_b38 article-title: Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel publication-title: Gött. Nachr. – volume: 18 start-page: 278 issue: 2 year: 1989 ident: 10.1016/j.ejc.2024.103927_b50 article-title: Worst-case growth rates of some classical problems of combinatorial optimization publication-title: SIAM J. Comput. doi: 10.1137/0218019 – volume: 61 start-page: 209 year: 1996 ident: 10.1016/j.ejc.2024.103927_b35 article-title: Approximation of real numbers by rationals: Some metric theorems publication-title: J. Number Theory doi: 10.1006/jnth.1996.0145 – volume: 100 year: 2022 ident: 10.1016/j.ejc.2024.103927_b1 article-title: δ-Greedy t-spanner publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2021.101807 – start-page: 759 year: 2015 ident: 10.1016/j.ejc.2024.103927_b30 article-title: A light metric spanner – volume: vol. 318 start-page: 208 year: 1988 ident: 10.1016/j.ejc.2024.103927_b36 article-title: Approximating the complete Euclidean graph – volume: vol. 173 start-page: 67:1 year: 2020 ident: 10.1016/j.ejc.2024.103927_b39 article-title: Light Euclidean spanners with Steiner points – volume: 12 start-page: 144 issue: 1 year: 1983 ident: 10.1016/j.ejc.2024.103927_b51 article-title: The travelling salesman problem and minimum matching in the unit square publication-title: SIAM J. Comput. doi: 10.1137/0212009 – volume: 17 start-page: 33 issue: 1 year: 1997 ident: 10.1016/j.ejc.2024.103927_b7 article-title: Efficient construction of a bounded-degree spanner with low weight publication-title: Algorithmica doi: 10.1007/BF02523237 – volume: 11 start-page: 721 issue: 4 year: 1982 ident: 10.1016/j.ejc.2024.103927_b52 article-title: On constructing minimum spanning trees in k-dimensional spaces and related problems publication-title: SIAM J. Comput. doi: 10.1137/0211059 – start-page: 540 year: 1998 ident: 10.1016/j.ejc.2024.103927_b46 article-title: Approximating geometrical graphs via “spanners” and “banyans” – start-page: 56 year: 1987 ident: 10.1016/j.ejc.2024.103927_b16 article-title: Approximation algorithms for shortest path motion planning – start-page: 2371 year: 2019 ident: 10.1016/j.ejc.2024.103927_b10 article-title: Greedy spanners are optimal in doubling metrics – volume: vol. 265 start-page: 20:1 year: 2023 ident: 10.1016/j.ejc.2024.103927_b27 article-title: Efficient Yao graph construction – year: 2018 ident: 10.1016/j.ejc.2024.103927_b44 article-title: Proximity algorithms – volume: 6 start-page: 19 issue: 2 year: 2015 ident: 10.1016/j.ejc.2024.103927_b8 article-title: New and improved spanning ratios for Yao graphs publication-title: J. Comput. Geom. – volume: 28 start-page: 1173 issue: 3 year: 2014 ident: 10.1016/j.ejc.2024.103927_b49 article-title: Balancing degree, diameter, and weight in Euclidean spanners publication-title: SIAM J. Discret. Math. doi: 10.1137/120901295 – volume: 49 start-page: 583 issue: 3 year: 2020 ident: 10.1016/j.ejc.2024.103927_b14 article-title: On locality-sensitive orderings and their applications publication-title: SIAM J. Comput. doi: 10.1137/19M1246493 – volume: 14 start-page: 2150124:1 issue: 3 year: 2022 ident: 10.1016/j.ejc.2024.103927_b28 article-title: A note on optimal degree-three spanners of the square lattice publication-title: Discret. Math. Algorithms Appl. doi: 10.1142/S179383092150124X – volume: 35 start-page: 2 issue: 1–2 year: 2006 ident: 10.1016/j.ejc.2024.103927_b29 article-title: Deformable spanners and applications publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2005.10.001 – start-page: FOCS19 year: 2022 ident: 10.1016/j.ejc.2024.103927_b40 article-title: Truly optimal Euclidean spanners publication-title: SIAM J. Comput. – volume: 47 start-page: 910 issue: 9 year: 2014 ident: 10.1016/j.ejc.2024.103927_b4 article-title: Theta-3 is connected publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2014.05.001 – volume: 32 start-page: 144 issue: 1 year: 2002 ident: 10.1016/j.ejc.2024.103927_b43 article-title: Improved algorithms for constructing fault-tolerant spanners publication-title: Algorithmica doi: 10.1007/s00453-001-0075-x – start-page: 670 year: 2005 ident: 10.1016/j.ejc.2024.103927_b3 article-title: Lower bound for sparse Euclidean spanners – volume: 7 start-page: 297 issue: 4 year: 1997 ident: 10.1016/j.ejc.2024.103927_b18 article-title: A fast algorithm for constructing sparse Euclidean spanners publication-title: Internat. J. Comput. Geom. Appl. doi: 10.1142/S0218195997000193 – start-page: 198 year: 1924 ident: 10.1016/j.ejc.2024.103927_b26 article-title: Les suites de farey et les problèmes des nombres premiers publication-title: Nachr. von Ges. Wiss. Gött. Math.-Phys. Kl. – start-page: 53 year: 1993 ident: 10.1016/j.ejc.2024.103927_b17 article-title: Optimally sparse spanners in 3-dimensional Euclidean space – volume: 64 start-page: 1167 issue: 4 year: 2020 ident: 10.1016/j.ejc.2024.103927_b13 article-title: A spanner for the day after publication-title: Discret. Comput. Geom. doi: 10.1007/s00454-020-00228-6 – start-page: 207 year: 1991 ident: 10.1016/j.ejc.2024.103927_b48 article-title: Approximating the d-dimensional complete Euclidean graph – volume: 616 start-page: 70 year: 2016 ident: 10.1016/j.ejc.2024.103927_b11 article-title: Towards tight bounds on theta-graphs: More is not always better publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2015.12.017 – volume: 9 start-page: 81 year: 1993 ident: 10.1016/j.ejc.2024.103927_b6 article-title: On sparse spanners of weighted graphs publication-title: Discret. Comput. Geom. doi: 10.1007/BF02189308 – volume: 11 start-page: 345 issue: 2 year: 1999 ident: 10.1016/j.ejc.2024.103927_b21 article-title: Discrépance des suites de Farey publication-title: J. Théor. Nombres Bordx. doi: 10.5802/jtnb.255 – volume: 156 start-page: 465 year: 2018 ident: 10.1016/j.ejc.2024.103927_b42 article-title: The discrepancy of Farey series publication-title: Acta Math. Hungar. doi: 10.1007/s10474-018-0868-x – start-page: 295 year: 2023 ident: 10.1016/j.ejc.2024.103927_b41 article-title: A unified framework for light spanners – year: 2007 ident: 10.1016/j.ejc.2024.103927_b45 – volume: 62 start-page: 1073 issue: 3–4 year: 2012 ident: 10.1016/j.ejc.2024.103927_b47 article-title: Fully dynamic geometric spanners publication-title: Algorithmica doi: 10.1007/s00453-011-9504-7 – start-page: 23 year: 1979 ident: 10.1016/j.ejc.2024.103927_b34 article-title: Farey series and a theorem of Minkowski – volume: 35 start-page: 255 issue: 5 year: 1990 ident: 10.1016/j.ejc.2024.103927_b15 article-title: An optimal algorithm for constructing oriented Voronoi diagrams and geographic neighborhood graphs publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(90)90054-2 – volume: 43 start-page: 736 issue: 4 year: 2010 ident: 10.1016/j.ejc.2024.103927_b20 article-title: Low-light trees, and tight lower bounds for Euclidean spanners publication-title: Discret. Comput. Geom. doi: 10.1007/s00454-009-9230-y – volume: vol. 173 year: 2011 ident: 10.1016/j.ejc.2024.103927_b33 – volume: 7 start-page: 13 year: 1992 ident: 10.1016/j.ejc.2024.103927_b37 article-title: Classes of graphs which approximate the complete Euclidean graph publication-title: Discret. Comput. Geom. doi: 10.1007/BF02187821 – volume: 8 start-page: 1650051:1 issue: 3 year: 2016 ident: 10.1016/j.ejc.2024.103927_b22 article-title: Lattice spanners of low degree publication-title: Discret. Math. Algorithms Appl. doi: 10.1142/S1793830916500518 – volume: 49 start-page: 429 issue: 2 year: 2020 ident: 10.1016/j.ejc.2024.103927_b25 article-title: The greedy spanner is existentially optimal publication-title: SIAM J. Comput. doi: 10.1137/18M1210678 – volume: 31 start-page: 1479 issue: 5 year: 2002 ident: 10.1016/j.ejc.2024.103927_b32 article-title: Fast greedy algorithms for constructing sparse geometric spanners publication-title: SIAM J. Comput. doi: 10.1137/S0097539700382947 – volume: 105–106 year: 2022 ident: 10.1016/j.ejc.2024.103927_b5 article-title: On the spanning and routing ratios of the directed Θ6-graph publication-title: Comput. Geom. – start-page: 215 year: 1995 ident: 10.1016/j.ejc.2024.103927_b19 article-title: A new way to weigh malnourished Euclidean graphs |
SSID | ssj0011533 |
Score | 2.3354096 |
Snippet | Given a set S of n points in the plane and a parameter ɛ>0, a Euclidean (1+ɛ)-spanner is a geometric graph G=(S,E) that contains, for all p,q∈S, a pq-path of... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103927 |
Title | Minimum weight Euclidean (1+ɛ)-spanners |
URI | https://dx.doi.org/10.1016/j.ejc.2024.103927 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz5OChKrHddHezeyylpVrag1rsbck-Aik2FtvizT_iL_JfuZNHUdCLp5CwA9lv4ZuZ5JsZhC4IjkTQ1Mw3XFsfZtv6XCiXuNoWNtp5uDiC2uHhiPXH5G5CJxXUKWthQFZZcH_O6RlbF08aBZqNeZI0HrJSNyY4qCAdzU6ggp2E0D__5n0t88AQz5QzCWF1-Wcz03jZKXQxDAiUngsYLPObb_rmb3o7aLsIFL12_i67qGLTPbQ1XHdZXeyj-jBJk9lq5r1l3ze97ko_J8ZGqVfH158fl75jC5istThA4173sdP3i8kHvnbp0NIPjaJCa0tpJELT4mGETchwRJvM0mZMrDDMWKJCpSEDIYG1hPGYxIpzoQPVOkTV9CW1R8iLOREmdvuNsCbK5Tc0jIkzE4ZqihU7RlflnuU8b3AhS-XXVDqAJAAkc4COESlRkT9OSToC_tvs5H9mp2gT7nJ54RmqLl9X9tyFAEtVy864hjbat4P-CK6D-6fBFyHUsBE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSD8Rnx2YMH1FRYurvtHg2BoFIuQsJt0300KZFKBOLNP-Iv8l-52wfRRC9e207Snd18M9N-Mx_AJUYRazUldVUgtWu1bd2ACVO4ag8paSJcHNne4XBAeyP8MCbjCrTLXhhLqyywP8f0DK2LK43Cm41ZkjSeslY3ygLLgjQwO16DdUw83x7t2_cVzwPZhKYUJbSPl782M5KXntgxhi1se8-ZVZb5LTh9CzjdHdguMkXnLn-ZXajodA-2wtWY1fk-1MMkTabLqfOWfeB0Okv5nCgdpU4d3Xx-XLkGLqy01vwARt3OsN1zC-kDV5p6aOH6ShAmpSYkYr7yAj9CyqcoIk2qSTPGmimqNBa-kLYEwS2tMQ1iHIsgYLIlvEOopi-pPgInDjBTsVlvhCQWpsAhfoyNGVNEEiRoDa7LNfNZPuGCl9SvCTcO4tZBPHdQDXDpFf5jm7hB4L_Njv9ndgEbvWHY5_37weMJbNo7OdfwFKqL16U-M_nAQpxn-_0FDhmwBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+weight+Euclidean+%281%2B%C9%9B%29-spanners&rft.jtitle=European+journal+of+combinatorics&rft.au=T%C3%B3th%2C+Csaba+D.&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0195-6698&rft.eissn=1095-9971&rft.volume=118&rft_id=info:doi/10.1016%2Fj.ejc.2024.103927&rft.externalDocID=S019566982400012X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6698&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6698&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6698&client=summon |