Selberg's orthogonality conjecture and symmetric power L-functions

Let π be a cuspidal representation of GL2(AQ) defined by a non-CM holomorphic newform of weight w≥2, and let K/Q be a totally real Galois extension with Galois group G. In this article, under Selberg's orthogonality conjecture, we show that for any irreducible character χ of G, the twisted symm...

Full description

Saved in:
Bibliographic Details
Published inJournal of number theory Vol. 238; pp. 967 - 977
Main Author Wong, Peng-Jie
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let π be a cuspidal representation of GL2(AQ) defined by a non-CM holomorphic newform of weight w≥2, and let K/Q be a totally real Galois extension with Galois group G. In this article, under Selberg's orthogonality conjecture, we show that for any irreducible character χ of G, the twisted symmetric power L-function L(s,Symmπ×χ) is a primitive function in the Selberg class, and it is automorphic subject to further the solvability of K/Q. The key new idea is to apply the work of Barnet-Lamb, Geraghty, Harris, and Taylor on the potential automorphy of Symmπ.
AbstractList Let π be a cuspidal representation of GL2(AQ) defined by a non-CM holomorphic newform of weight w≥2, and let K/Q be a totally real Galois extension with Galois group G. In this article, under Selberg's orthogonality conjecture, we show that for any irreducible character χ of G, the twisted symmetric power L-function L(s,Symmπ×χ) is a primitive function in the Selberg class, and it is automorphic subject to further the solvability of K/Q. The key new idea is to apply the work of Barnet-Lamb, Geraghty, Harris, and Taylor on the potential automorphy of Symmπ.
Author Wong, Peng-Jie
Author_xml – sequence: 1
  givenname: Peng-Jie
  surname: Wong
  fullname: Wong, Peng-Jie
  email: pengjie.wong@uleth.ca
  organization: Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
BookMark eNp9kD1PwzAURS0EEm3hB7BlY0rws2PXERNUfEmVGACJzUqc5-KotSvbBfXfk6rMTHe55-ndMyWnPngk5ApoBRTkzVANPleMMqgAKkrhhEyANrIEKdQpmVDKWMmh_jwn05SGsQBiLibk_g3XHcbVdSpCzF9hFXy7dnlfmOAHNHkXsWh9X6T9ZoM5OlNsww_GYlnanTfZBZ8uyJlt1wkv_3JGPh4f3hfP5fL16WVxtywNq5tczlthOTS1RNWoTnBGe6VUzxE4WmlYx9AIIzlnpuG8l8rauussCOS1nbeMzwgc75oYUopo9Ta6TRv3Gqg-SNCDHiXogwQNoMeNI3N7ZHB87Nth1Mk49AZ7F8d1ug_uH_oXI0VnhA
Cites_doi 10.2307/1969183
10.1353/ajm.2006.0042
10.2977/PRIMS/31
10.1215/S0012-7094-93-07225-0
10.4007/annals.2010.171.779
10.1007/s10240-008-0016-1
10.1215/00127094-3714971
10.1515/form.2005.17.3.493
10.1016/j.jnt.2018.09.010
10.1090/S0894-0347-2010-00689-3
10.4007/annals.2014.179.2.3
10.1090/S0273-0979-1994-00479-3
10.1007/s10240-008-0015-2
10.4007/annals.2011.173.3.4
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jnt.2021.11.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-1658
EndPage 977
ExternalDocumentID 10_1016_j_jnt_2021_11_001
S0022314X21003693
GrantInformation_xml – fundername: PIMS
  funderid: https://doi.org/10.13039/100009059
– fundername: University of Lethbridge
  funderid: https://doi.org/10.13039/100008740
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
186
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HF~
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
WUQ
XJT
XOL
XPP
YQT
ZCG
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c249t-7a5f31946e898b5320d888d3e13ef6c2b2ec5c6332c933d68ff4bbf15e34f7a23
IEDL.DBID .~1
ISSN 0022-314X
IngestDate Tue Jul 01 03:39:57 EDT 2025
Fri Feb 23 02:39:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Selberg's orthogonality conjecture
11M41
Symmetric power L-functions
11F66
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-7a5f31946e898b5320d888d3e13ef6c2b2ec5c6332c933d68ff4bbf15e34f7a23
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_jnt_2021_11_001
elsevier_sciencedirect_doi_10_1016_j_jnt_2021_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Journal of number theory
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Barnet-Lamb, Gee, Geraghty, Taylor (br0030) 2014; 179
Taylor (br0190) 2008; 108
Kaczorowski, Perelli (br0120) 2011; 173
Murty (br0140) 1994; 31
Clozel, Harris, Taylor (br0070) 2008; 108
Ramakrishnan (br0160) 2009
Barnet-Lamb, Geraghty, Harris, Taylor (br0040) 2011; 47
Arthur, Clozel (br0010) 1990
Conrey, Ghosh (br0090) 1993; 72
Barnet-Lamb, Gee, Geraghty (br0020) 2011; 24
Brumley (br0060) 2006; 128
Selberg (br0170) 1992
Kaczorowski (br0110) 2006
Brauer (br0050) 1947; 48
Liu, Ye (br0130) 2005; 17
Serre (br0180) 1989
Newton, Thorne (br0150) 2021
Clozel, Thorne (br0080) 2017; 166
Wong (br0200) 2019; 196
Harris, Shepherd-Barron, Taylor (br0100) 2010; 171
Harris (10.1016/j.jnt.2021.11.001_br0100) 2010; 171
Brauer (10.1016/j.jnt.2021.11.001_br0050) 1947; 48
Clozel (10.1016/j.jnt.2021.11.001_br0070) 2008; 108
Kaczorowski (10.1016/j.jnt.2021.11.001_br0110) 2006
Selberg (10.1016/j.jnt.2021.11.001_br0170) 1992
Liu (10.1016/j.jnt.2021.11.001_br0130) 2005; 17
Barnet-Lamb (10.1016/j.jnt.2021.11.001_br0020) 2011; 24
Clozel (10.1016/j.jnt.2021.11.001_br0080) 2017; 166
Conrey (10.1016/j.jnt.2021.11.001_br0090) 1993; 72
Serre (10.1016/j.jnt.2021.11.001_br0180) 1989
Taylor (10.1016/j.jnt.2021.11.001_br0190) 2008; 108
Arthur (10.1016/j.jnt.2021.11.001_br0010) 1990
Kaczorowski (10.1016/j.jnt.2021.11.001_br0120) 2011; 173
Brumley (10.1016/j.jnt.2021.11.001_br0060) 2006; 128
Barnet-Lamb (10.1016/j.jnt.2021.11.001_br0040) 2011; 47
Newton (10.1016/j.jnt.2021.11.001_br0150) 2021
Wong (10.1016/j.jnt.2021.11.001_br0200) 2019; 196
Murty (10.1016/j.jnt.2021.11.001_br0140) 1994; 31
Ramakrishnan (10.1016/j.jnt.2021.11.001_br0160) 2009
Barnet-Lamb (10.1016/j.jnt.2021.11.001_br0030) 2014; 179
References_xml – volume: 196
  start-page: 272
  year: 2019
  end-page: 290
  ident: br0200
  article-title: On the Chebotarev-Sato-Tate phenomenon
  publication-title: J. Number Theory
– start-page: 133
  year: 2006
  end-page: 209
  ident: br0110
  article-title: Axiomatic theory of
  publication-title: Analytic Number Theory - Lectures Given at the C.I.M.E
– start-page: 367
  year: 1992
  end-page: 385
  ident: br0170
  article-title: Old and new conjectures and results about a class of Dirichlet series
  publication-title: Proceedings of the Amalfi Conference on Analytic Number Theory
– volume: 173
  start-page: 1397
  year: 2011
  end-page: 1441
  ident: br0120
  article-title: On the structure of the Selberg class, VII:
  publication-title: Ann. Math.
– volume: 24
  start-page: 411
  year: 2011
  end-page: 469
  ident: br0020
  article-title: The Sato-Tate conjecture for Hilbert modular forms
  publication-title: J. Am. Math. Soc.
– volume: 47
  start-page: 29
  year: 2011
  end-page: 98
  ident: br0040
  article-title: A family of Calabi-Yau varieties and potential automorphy II
  publication-title: Publ. Res. Inst. Math. Sci.
– volume: 171
  start-page: 779
  year: 2010
  end-page: 813
  ident: br0100
  article-title: A family of Calabi-Yau varieties and potential automorphy
  publication-title: Ann. Math.
– volume: 128
  start-page: 1455
  year: 2006
  end-page: 1474
  ident: br0060
  article-title: Effective multiplicity one on
  publication-title: Am. J. Math.
– volume: 72
  start-page: 673
  year: 1993
  end-page: 693
  ident: br0090
  article-title: Selberg class of Dirichlet series: small degrees
  publication-title: Duke Math. J.
– year: 2021
  ident: br0150
  article-title: Symmetric power functoriality for holomorphic modular forms, II
  publication-title: Publ. Math. IHÉS
– volume: 17
  start-page: 493
  year: 2005
  end-page: 512
  ident: br0130
  article-title: Weighted Selberg orthogonality and uniqueness of factorization of automorphic
  publication-title: Forum Math.
– volume: 108
  start-page: 183
  year: 2008
  end-page: 239
  ident: br0190
  article-title: Automorphy for some
  publication-title: Publ. Math. IHÉS
– volume: 48
  start-page: 502
  year: 1947
  end-page: 514
  ident: br0050
  article-title: On Artin's
  publication-title: Ann. Math.
– year: 1989
  ident: br0180
  article-title: Abelian
– year: 1990
  ident: br0010
  article-title: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula
– volume: 166
  start-page: 325
  year: 2017
  end-page: 402
  ident: br0080
  article-title: Level-raising and symmetric power functoriality, III
  publication-title: Duke Math. J.
– volume: 179
  start-page: 501
  year: 2014
  end-page: 609
  ident: br0030
  article-title: Potential automorphy and change of weight
  publication-title: Ann. Math.
– volume: 31
  start-page: 1
  year: 1994
  end-page: 14
  ident: br0140
  article-title: Selberg's conjectures and Artin
  publication-title: Bull., New Ser., Am. Math. Soc.
– start-page: 237
  year: 2009
  end-page: 256
  ident: br0160
  article-title: Remarks on the symmetric powers of cusp forms on
  publication-title: Automorphic Forms and L-Functions I. Global Aspects (in Honor of Steve Gelbart)
– volume: 108
  start-page: 1
  year: 2008
  end-page: 181
  ident: br0070
  article-title: Automorphy for some
  publication-title: Publ. Math. IHÉS
– volume: 48
  start-page: 502
  year: 1947
  ident: 10.1016/j.jnt.2021.11.001_br0050
  article-title: On Artin's L-series with general group characters
  publication-title: Ann. Math.
  doi: 10.2307/1969183
– volume: 128
  start-page: 1455
  year: 2006
  ident: 10.1016/j.jnt.2021.11.001_br0060
  article-title: Effective multiplicity one on GLn and narrow zero-free regions for Rankin-Selberg L-functions
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2006.0042
– volume: 47
  start-page: 29
  year: 2011
  ident: 10.1016/j.jnt.2021.11.001_br0040
  article-title: A family of Calabi-Yau varieties and potential automorphy II
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/PRIMS/31
– volume: 72
  start-page: 673
  year: 1993
  ident: 10.1016/j.jnt.2021.11.001_br0090
  article-title: Selberg class of Dirichlet series: small degrees
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-93-07225-0
– volume: 171
  start-page: 779
  year: 2010
  ident: 10.1016/j.jnt.2021.11.001_br0100
  article-title: A family of Calabi-Yau varieties and potential automorphy
  publication-title: Ann. Math.
  doi: 10.4007/annals.2010.171.779
– year: 2021
  ident: 10.1016/j.jnt.2021.11.001_br0150
  article-title: Symmetric power functoriality for holomorphic modular forms, II
  publication-title: Publ. Math. IHÉS
– volume: 108
  start-page: 1
  year: 2008
  ident: 10.1016/j.jnt.2021.11.001_br0070
  article-title: Automorphy for some ℓ-adic lifts of automorphic mod ℓ representations
  publication-title: Publ. Math. IHÉS
  doi: 10.1007/s10240-008-0016-1
– start-page: 367
  year: 1992
  ident: 10.1016/j.jnt.2021.11.001_br0170
  article-title: Old and new conjectures and results about a class of Dirichlet series
– volume: 166
  start-page: 325
  year: 2017
  ident: 10.1016/j.jnt.2021.11.001_br0080
  article-title: Level-raising and symmetric power functoriality, III
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-3714971
– start-page: 133
  year: 2006
  ident: 10.1016/j.jnt.2021.11.001_br0110
  article-title: Axiomatic theory of L-functions: the Selberg class
– volume: 17
  start-page: 493
  year: 2005
  ident: 10.1016/j.jnt.2021.11.001_br0130
  article-title: Weighted Selberg orthogonality and uniqueness of factorization of automorphic L-functions
  publication-title: Forum Math.
  doi: 10.1515/form.2005.17.3.493
– volume: 196
  start-page: 272
  year: 2019
  ident: 10.1016/j.jnt.2021.11.001_br0200
  article-title: On the Chebotarev-Sato-Tate phenomenon
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2018.09.010
– volume: 24
  start-page: 411
  year: 2011
  ident: 10.1016/j.jnt.2021.11.001_br0020
  article-title: The Sato-Tate conjecture for Hilbert modular forms
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-2010-00689-3
– volume: 179
  start-page: 501
  year: 2014
  ident: 10.1016/j.jnt.2021.11.001_br0030
  article-title: Potential automorphy and change of weight
  publication-title: Ann. Math.
  doi: 10.4007/annals.2014.179.2.3
– volume: 31
  start-page: 1
  year: 1994
  ident: 10.1016/j.jnt.2021.11.001_br0140
  article-title: Selberg's conjectures and Artin L-functions
  publication-title: Bull., New Ser., Am. Math. Soc.
  doi: 10.1090/S0273-0979-1994-00479-3
– start-page: 237
  year: 2009
  ident: 10.1016/j.jnt.2021.11.001_br0160
  article-title: Remarks on the symmetric powers of cusp forms on GL(2)
– volume: 108
  start-page: 183
  year: 2008
  ident: 10.1016/j.jnt.2021.11.001_br0190
  article-title: Automorphy for some ℓ-adic lifts of automorphic mod ℓ representations II
  publication-title: Publ. Math. IHÉS
  doi: 10.1007/s10240-008-0015-2
– volume: 173
  start-page: 1397
  year: 2011
  ident: 10.1016/j.jnt.2021.11.001_br0120
  article-title: On the structure of the Selberg class, VII: 1<d<2
  publication-title: Ann. Math.
  doi: 10.4007/annals.2011.173.3.4
– year: 1990
  ident: 10.1016/j.jnt.2021.11.001_br0010
– year: 1989
  ident: 10.1016/j.jnt.2021.11.001_br0180
SSID ssj0011575
Score 2.2761
Snippet Let π be a cuspidal representation of GL2(AQ) defined by a non-CM holomorphic newform of weight w≥2, and let K/Q be a totally real Galois extension with Galois...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 967
SubjectTerms Selberg's orthogonality conjecture
Symmetric power L-functions
Title Selberg's orthogonality conjecture and symmetric power L-functions
URI https://dx.doi.org/10.1016/j.jnt.2021.11.001
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KXvQgPrE-yh4EQdjW7G42ybEWS331ooXewm6ykRaaFlsPXvztzuRRFPHiNWRD-GZ3Hsy33wBcWGMz4buUu0xLriKpuEmt5kboVGO6EIhS7XOoByN1P_bHDejVd2GIVln5_tKnF966etKp0OwsJhO644uhzVNjLFrQDUek-KlUQLu8_bmmeZCWjL9WDMe3685mwfGa5kSnFF6bhDyruTC_YtO3eNPfhZ0qUWTd8l_2oOHyfdh-WqusLg_g5rlUqLpcMuq-zF-rrJphjTstewPM5ClbfsxmNDgrYQuaicYeOUWzYsMdwqh_-9Ib8GomAk-wUFrxwPgZnhqlXRiFlqY6pFjDptJ5EtFOhBUu8RMtpUgiKVMdZpmyNvN8J1UWGCGPYCOf5-4YmNHS-pEyYRJq5Qn8svXQnk5fB0ZpK5pwVaMRL0rpi7jmhE1jhC4m6LCEIF5cE1SNV_zDfjG65r-Xnfxv2SlsCTJowfU6g43V27s7x-RgZVuF9Vuw2b17GAy_ADjTuUg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Yn1uQdBELY1-0pyVLFUbXuxhd7CbrKRFpoWWw9e_O3O5lEU8eI1ZEOY2Z0H8-33AVwabVImbUJtqjgVIRdUJ0ZRzVSisFzwWcH22VedoXgayVEN7qu7MA5WWcb-Iqbn0bp80iqt2ZqPx-6OL6Y2T4ywacEwHPI1WBd4fJ2MQfNzhfNwZDJyRRmOr1ejzRzkNckcnpJ5TcfkWQrD_EpO3xJOewe2y0qR3BY_sws1m-3BVm9Fs7rYh7uXgqLqakHc-GX2WpbVBJvcSTEcIDpLyOJjOnXKWTGZO1E00qUuneU77gCG7YfBfYeWogg0xk5pSX0tUzw2QtkgDIyTdUiwiU249TiaO2aG2VjGinMWh5wnKkhTYUzqSctF6mvGD6GezTJ7BEQrbmQodBAHSngMv2w8dKhVN74WyrAGXFfWiOYF90VUgcImEZoucqbDHsIB4xogKntFPxwYYWz-e9nx_5ZdwEZn0OtG3cf-8wlsMufcHPh1CvXl27s9w0phac7znfAFvwy61g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selberg%27s+orthogonality+conjecture+and+symmetric+power+L-functions&rft.jtitle=Journal+of+number+theory&rft.au=Wong%2C+Peng-Jie&rft.date=2022-09-01&rft.issn=0022-314X&rft.volume=238&rft.spage=967&rft.epage=977&rft_id=info:doi/10.1016%2Fj.jnt.2021.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jnt_2021_11_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-314X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-314X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-314X&client=summon