Numerical research on flow field structure and droplets distribution of kerosene-fueled rotating detonation ramjet engine

•A self-sustaining periodic propagation detonation wave is obtained in the two-phase rotating detonation ramjet flow field and flow field distributions are described in detailed.•A triangular distribution of "rich oil and poor oxygen band" is found in the flow field and the formation mecha...

Full description

Saved in:
Bibliographic Details
Published inAerospace science and technology Vol. 155; p. 109713
Main Authors Yushan, Zheng, Yu, Liu, Chao, Wang, Yitian, Wang
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A self-sustaining periodic propagation detonation wave is obtained in the two-phase rotating detonation ramjet flow field and flow field distributions are described in detailed.•A triangular distribution of "rich oil and poor oxygen band" is found in the flow field and the formation mechanism is revealed. It is show that inconsistency in the recovery speed of air and fuel filling in rotating detonation ramjet is considered as the main reason, which is caused by the high-pressure environment after the detonation wave.•Difference of detonation flow field is analyzed under different orifice spacing. Obvious strip structures are seen when increasing the orifice spacing and n-type deflagration distributions are seen on the contact surface. Discontinuity of detonation wave is also seen, accompanied by strip-shaped deflagration behind the wave.•A detailed description of the distribution of kerosene droplets is provided and several groups are divided based on their characteristics. Obvious separation and aggregation phenomena of droplets are discovered and the formation mechanism is also described in detail. In order to reveal the multiphase flow field structure and fuel droplets distribution under rotating detonation ramjet engine fueled by liquid kerosene, non-premixed simulations coupled with an Euler-Lagrangian approach is adopted. Supersonic air is used as oxidizer and the total pressure and total temperature at the entrance of isolation are set as 1.2 MPa and 1100 K, respectively, with a Mach number of 1.9. It is shown that a single-wave is formed and typical rotating detonation wave structures are established under two different orifice spacing conditions, namely 2 mm and 6mm. A "rich oil and poor oxygen band" is formed and attributed to the inconsistent supply of fuel and air after the passage of the detonation wave. When the orifices spacing is increased from 2 mm to 6 mm, both obvious strips after the detonation wave and “n-type” deflagration structures near the contact surface are observed. Besides, the detonation wave front becomes discontinuous, as well as from the deflagration heat release distribution. Despite of the effect of the circumferential propagation of detonation wave, kerosene droplets still propagate mainly along the downstream direction. However, Kerosene droplets distribution shows obvious difference along the detonation wave propagation direction.
AbstractList •A self-sustaining periodic propagation detonation wave is obtained in the two-phase rotating detonation ramjet flow field and flow field distributions are described in detailed.•A triangular distribution of "rich oil and poor oxygen band" is found in the flow field and the formation mechanism is revealed. It is show that inconsistency in the recovery speed of air and fuel filling in rotating detonation ramjet is considered as the main reason, which is caused by the high-pressure environment after the detonation wave.•Difference of detonation flow field is analyzed under different orifice spacing. Obvious strip structures are seen when increasing the orifice spacing and n-type deflagration distributions are seen on the contact surface. Discontinuity of detonation wave is also seen, accompanied by strip-shaped deflagration behind the wave.•A detailed description of the distribution of kerosene droplets is provided and several groups are divided based on their characteristics. Obvious separation and aggregation phenomena of droplets are discovered and the formation mechanism is also described in detail. In order to reveal the multiphase flow field structure and fuel droplets distribution under rotating detonation ramjet engine fueled by liquid kerosene, non-premixed simulations coupled with an Euler-Lagrangian approach is adopted. Supersonic air is used as oxidizer and the total pressure and total temperature at the entrance of isolation are set as 1.2 MPa and 1100 K, respectively, with a Mach number of 1.9. It is shown that a single-wave is formed and typical rotating detonation wave structures are established under two different orifice spacing conditions, namely 2 mm and 6mm. A "rich oil and poor oxygen band" is formed and attributed to the inconsistent supply of fuel and air after the passage of the detonation wave. When the orifices spacing is increased from 2 mm to 6 mm, both obvious strips after the detonation wave and “n-type” deflagration structures near the contact surface are observed. Besides, the detonation wave front becomes discontinuous, as well as from the deflagration heat release distribution. Despite of the effect of the circumferential propagation of detonation wave, kerosene droplets still propagate mainly along the downstream direction. However, Kerosene droplets distribution shows obvious difference along the detonation wave propagation direction.
ArticleNumber 109713
Author Yitian, Wang
Yu, Liu
Chao, Wang
Yushan, Zheng
Author_xml – sequence: 1
  givenname: Zheng
  surname: Yushan
  fullname: Yushan, Zheng
– sequence: 2
  givenname: Liu
  surname: Yu
  fullname: Yu, Liu
– sequence: 3
  givenname: Wang
  surname: Chao
  fullname: Chao, Wang
  email: wangchao5ati@126.com
– sequence: 4
  givenname: Wang
  surname: Yitian
  fullname: Yitian, Wang
BookMark eNp9kMtOwzAQRb0oEm3hA9j5B1L8SONarFDFo1IFG1hbjj0uDqld2Q6of09KWbMajeae0dWZoUmIARC6oWRBCW1uu4XOZcEIq8ddCsonaEqZIJVs-OoSzXLuCCFM1myKji_DHpI3uscJMuhkPnAM2PXxGzsPvcW5pMGUIQHWwWKb4qGHkrH148G3Q_FjPDr8CSlmCFC5AXqwOMWiiw87bKHEoH9jSe87KBjCzge4QhdO9xmu_-YcvT8-vK2fq-3r02Z9v60Mq2WpxLLhrtV2RVvCmKsl4Utby9oK0FJwK5eCt84wSlsqrWhAAzRSAJWNEXUDfI7o-a8ZC-YETh2S3-t0VJSoky_VqdGXOvlSZ18jc3dmYCz25SGpbDwEA9YnMEXZ6P-hfwDgEHpr
Cites_doi 10.1016/j.ast.2024.109008
10.1016/j.ast.2023.108221
10.1134/S0010508214020130
10.1007/s00193-021-01014-w
10.2514/1.B37666
10.1016/j.ast.2020.105899
10.1016/j.ast.2019.105480
10.1007/s00193-021-01044-4
10.1016/j.actaastro.2022.02.015
10.1063/5.0161835
10.1016/j.combustflame.2023.113050
10.1016/j.ast.2023.108817
10.1016/j.ast.2022.107407
10.3390/en15124483
10.1016/j.dt.2020.06.028
10.1016/j.actaastro.2022.03.003
10.1016/j.actaastro.2021.12.052
10.1007/BF02671875
10.3389/fenrg.2022.951177
10.1016/j.combustflame.2010.03.014
10.1016/j.dt.2020.09.015
10.1016/j.ast.2023.108264
10.1016/j.applthermaleng.2022.118607
10.1016/j.ast.2015.04.006
10.1016/j.applthermaleng.2021.117920
10.1016/j.combustflame.2023.113097
10.1134/S0010508219050101
10.1016/j.ijhydene.2021.11.105
10.1016/j.actaastro.2023.03.013
10.1080/00102202.2018.1557643
10.1007/s00193-023-01120-x
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.ast.2024.109713
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ast_2024_109713
S1270963824008423
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c249t-7563fbad81b022f49035d494d7ea973d9573bfc211b19d76eaee697e196c746e3
IEDL.DBID .~1
ISSN 1270-9638
IngestDate Tue Jul 01 01:22:17 EDT 2025
Sat Dec 14 16:14:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Two-phase rotating detonation
Liquid kerosene droplet distribution
Ramjet
Combustion flow field structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-7563fbad81b022f49035d494d7ea973d9573bfc211b19d76eaee697e196c746e3
ParticipantIDs crossref_primary_10_1016_j_ast_2024_109713
elsevier_sciencedirect_doi_10_1016_j_ast_2024_109713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Aerospace science and technology
PublicationYear 2024
Publisher Elsevier Masson SAS
Publisher_xml – sequence: 0
  name: Elsevier Masson SAS
References Wang, Weng, Wu, Bai, Zheng, Xu (bib0031) 2020; 103
Harroun, Heister (bib0021) 2022
Meng, Xiao, Feng, Wu, Han, Wang, Weng, Zheng (bib0023) 2022; 122
Salvadori, Panchal, Menon (bib0037) 2024; 147
Nassini, Andreini, Bohon (bib0001) 2023; 258
Yoneyama, Ishihara, Ito, Watanabe, Itouyama, Kawasaki, Matsuoka, Kasahara (bib0008) 2022
Huang, Lin (bib0033) 2022; 47
Franzelli, Riber, Sanjosé, Poinsot (bib0041) 2010; 157
Zheng, Meng, Weng, Wu, Feng, Wu (bib0022) 2020
Pan, Zhu, Zhang (bib0007) 2023; 137
Wang, Weng, Wu, Bai, Zheng, Xu (bib0032) 2021; 17
HaochengWen, ShengXu (bib0036) 2023; 138
Li, Xu, Lv, Lv, Song (bib0003) 2023; 136
Zhong, Wu, Jin, Chen, Yang, Wang (bib0017) 2019; 95
Xu, Wu, Xiao, Ding, Xia, Li, Weng (bib0028) 2022; 212
Kubicki, Heister, Anderson (bib0013) 2020
Li, Li, Qin, Jin, Yuan (bib0026) 2024; 215
Kindracki (bib0015) 2015; 43
Prakash, Bielawski, Raman, Ahmed, Bennewitz (bib0038) 2024; 259
Noda, Matsuoka, Goto, Kawasaki, Watanabe, Itouyama, Kasahara, Matsuo (bib0004) 2023; 207
Sato, Nakata, Ishihara, Itouyama, Matsuoka, Kasahara, Kawasaki, Nakata, Eguchi, Uchiumi, Matsuo, Funaki (bib0009) 2024; 264
Bykovskii, Zhdan, Vedernikov (bib0019) 2021; 31
Frolov, Shamshin, Aksenov, Gusev, Zelensky, Evstratov, Alymov (bib0020) 2020
Bykovskii, Mitrofanov, Vedernikov (bib0018) 1997; 33
Qiu, Bai, Han, Zhang, Weng (bib0002) 2023; 35
Zhao, Shao, Zheng (bib0014) 2024; 144
Ding, Wu, Xu, Xia, Li, Weng (bib0027) 2022; 195
Knowlen, Mundt, Kurosaka (bib0006) 2023; 33
Xue, Ying, Ma, Zhou (bib0024) 2022; 10
Wolański, Balicki, Perkowski, Bilar (bib0011) 2021; 31
O'Rourke (bib0039) 1981
Bykovskii, Zhdan, Vedernikov (bib0010) 2014; 50
Anderson, Heister, Kan (bib0012) 2020; 36
Zhao, Wang, Zhu, Wang, Yan, Wang, Fan (bib0029) 2022; 193
Wang, Lin, Huang, Shi, Zhao (bib0034) 2022; 203
Pandya, Venkateswaran, Pulliam (bib0040) 2003
Wen, Wei, Fan, Xie, Wang (bib0035) 2022; 244
Weijie, Shijie, Shenghui (bib0005) 2023; 35
Wang, Zhang, Bai, Weng (bib0042) 2022
Zhou, Song, Xu, Yang, Zheng (bib0025) 2022; 15
Salvadori, Ranjan, Panchal, Menon (bib0030) 2022
Bykovskii, A.Zhdan, Vedernikov (bib0016) 2019; 55
Pan (10.1016/j.ast.2024.109713_bib0007) 2023; 137
Nassini (10.1016/j.ast.2024.109713_bib0001) 2023; 258
Yoneyama (10.1016/j.ast.2024.109713_bib0008) 2022
Bykovskii (10.1016/j.ast.2024.109713_bib0018) 1997; 33
Kubicki (10.1016/j.ast.2024.109713_bib0013) 2020
Noda (10.1016/j.ast.2024.109713_bib0004) 2023; 207
Knowlen (10.1016/j.ast.2024.109713_bib0006) 2023; 33
Kindracki (10.1016/j.ast.2024.109713_bib0015) 2015; 43
Xue (10.1016/j.ast.2024.109713_bib0024) 2022; 10
Wang (10.1016/j.ast.2024.109713_bib0031) 2020; 103
Pandya (10.1016/j.ast.2024.109713_bib0040) 2003
Harroun (10.1016/j.ast.2024.109713_bib0021) 2022
Wen (10.1016/j.ast.2024.109713_bib0035) 2022; 244
Li (10.1016/j.ast.2024.109713_bib0026) 2024; 215
Franzelli (10.1016/j.ast.2024.109713_bib0041) 2010; 157
Anderson (10.1016/j.ast.2024.109713_bib0012) 2020; 36
Frolov (10.1016/j.ast.2024.109713_bib0020) 2020
HaochengWen (10.1016/j.ast.2024.109713_bib0036) 2023; 138
Qiu (10.1016/j.ast.2024.109713_bib0002) 2023; 35
Sato (10.1016/j.ast.2024.109713_bib0009) 2024; 264
Wang (10.1016/j.ast.2024.109713_bib0032) 2021; 17
Zheng (10.1016/j.ast.2024.109713_bib0022) 2020
Zhao (10.1016/j.ast.2024.109713_bib0029) 2022; 193
Salvadori (10.1016/j.ast.2024.109713_bib0037) 2024; 147
Zhou (10.1016/j.ast.2024.109713_bib0025) 2022; 15
Li (10.1016/j.ast.2024.109713_bib0003) 2023; 136
Bykovskii (10.1016/j.ast.2024.109713_bib0016) 2019; 55
Xu (10.1016/j.ast.2024.109713_bib0028) 2022; 212
O'Rourke (10.1016/j.ast.2024.109713_bib0039) 1981
Wang (10.1016/j.ast.2024.109713_bib0034) 2022; 203
Salvadori (10.1016/j.ast.2024.109713_bib0030) 2022
Prakash (10.1016/j.ast.2024.109713_bib0038) 2024; 259
Weijie (10.1016/j.ast.2024.109713_bib0005) 2023; 35
Wolański (10.1016/j.ast.2024.109713_bib0011) 2021; 31
Bykovskii (10.1016/j.ast.2024.109713_bib0019) 2021; 31
Ding (10.1016/j.ast.2024.109713_bib0027) 2022; 195
Bykovskii (10.1016/j.ast.2024.109713_bib0010) 2014; 50
Meng (10.1016/j.ast.2024.109713_bib0023) 2022; 122
Huang (10.1016/j.ast.2024.109713_bib0033) 2022; 47
Zhao (10.1016/j.ast.2024.109713_bib0014) 2024; 144
Wang (10.1016/j.ast.2024.109713_bib0042) 2022
Zhong (10.1016/j.ast.2024.109713_bib0017) 2019; 95
References_xml – volume: 212
  year: 2022
  ident: bib0028
  article-title: Characterization of wave modes in a kerosene-fueled rotating detonation combustor with varied injection area ratios
  publication-title: Appl. Therm. Eng.
– year: 2022
  ident: bib0030
  article-title: Numerical study of detonation propagation in H2-air with kerosene droplets
  publication-title: AIAA SCITECH 2022 Forum
– volume: 55
  start-page: 589
  year: 2019
  end-page: 598
  ident: bib0016
  article-title: Continuous detonation of the liquid kerosene–air mixture with addition of hydrogen or syngas
  publication-title: Combust Explos Shock Waves
– year: 2022
  ident: bib0021
  article-title: Liquid fuel survey for rotating detonation rocket engines
  publication-title: AIAA SciTech Forum
– volume: 122
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib0023
  article-title: Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor
  publication-title: Aerosp. Sci. Technol.
– year: 1981
  ident: bib0039
  article-title: Collective Drop Effects On Vaporizing Liquid Sprays
– volume: 33
  start-page: 344
  year: 1997
  end-page: 353
  ident: bib0018
  article-title: Continuous detonation combustion of fuel-air mixtures
  publication-title: Combust Explos Shock Waves
– volume: 203
  start-page: 1
  year: 2022
  end-page: 13
  ident: bib0034
  article-title: Numerical study on atomization and evaporation characteristics of preheated kerosene jet in a rotating detonation scramjet combustor
  publication-title: Appl. Therm. Eng.
– volume: 147
  year: 2024
  ident: bib0037
  article-title: Simulation of wave mode switching in a rotating detonation engine with gaseous and liquid fuel
  publication-title: Aerosp. Sci. Technol.
– volume: 193
  start-page: 35
  year: 2022
  end-page: 43
  ident: bib0029
  article-title: Effects of the exit convergent ratio on the propagation behavior of rotating detonations utilizing liquid kerosene
  publication-title: Acta Astronaut.
– volume: 258
  year: 2023
  ident: bib0001
  article-title: Characterization of refill region and mixing state immediately ahead of a hydrogen-air rotating detonation using LES
  publication-title: Combust. Flame
– year: 2020
  ident: bib0013
  article-title: Further experimental study of a hypergolically-ignited liquid-liquid rotating detonation rocket engine
  publication-title: AIAA Sci. Tech. Forum.
– year: 2003
  ident: bib0040
  article-title: Implementation of preconditioned dual-time procedures in OVERFLOW
  publication-title: AIAA 2003-0072
– volume: 36
  start-page: 851
  year: 2020
  end-page: 861
  ident: bib0012
  article-title: Experimental study of a hypergolically ignited liquid bipropellant rotating detonation rocket engine
  publication-title: J. Propul. Power
– volume: 103
  year: 2020
  ident: bib0031
  article-title: Numerical research on kerosene/air rotating detonation engines under different injection total temperatures
  publication-title: Aerosp. Sci. Technol.
– volume: 259
  year: 2024
  ident: bib0038
  article-title: Three-dimensional numerical simulations of a liquid RP-2/O2 based rotating detonation engine
  publication-title: Combust. Flame
– year: 2020
  ident: bib0022
  article-title: Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave
  publication-title: Defence Technology
– volume: 138
  year: 2023
  ident: bib0036
  article-title: Numerical study on droplet evaporation and propagation stability in normal-temperature two-phase rotating detonation system
  publication-title: Aerosp. Sci. Technol.
– volume: 195
  start-page: 204
  year: 2022
  end-page: 214
  ident: bib0027
  article-title: Effects of the oxygen mass fraction on the wave propagation modes in a kerosene-fueled rotating detonation combustor
  publication-title: Acta Astronaut.
– volume: 43
  start-page: 445
  year: 2015
  end-page: 453
  ident: bib0015
  article-title: Experimental research on rotating detonation in liquid fuel-gaseous air mixtures
  publication-title: Aerosp. Sci. Technol.
– volume: 244
  start-page: 1
  year: 2022
  end-page: 19
  ident: bib0035
  article-title: On the propagation stability of droplet-laden two-phase rotating detonation waves
  publication-title: Combust. Flame
– volume: 137
  year: 2023
  ident: bib0007
  article-title: Effects of detonation instability and boundary layer on flame propagation behavior in millimeter-scale smooth tubes
  publication-title: Aerosp. Sci. Technol.
– volume: 35
  year: 2023
  ident: bib0002
  article-title: Effects of blockage ratio on the propagation characteristics of hydrogen-rich gas rotating detonation
  publication-title: Phys. Fluids
– volume: 136
  year: 2023
  ident: bib0003
  article-title: Numerical investigations of the nozzle performance for a rocket-based rotating detonation engine with film cooling
  publication-title: Aerosp. Sci. Technol.
– volume: 207
  start-page: 219
  year: 2023
  end-page: 226
  ident: bib0004
  article-title: Impact of mixture mass flux on hydrodynamic blockage ratio and Mach number of rotating detonation combustor
  publication-title: Acta Astronaut.
– volume: 10
  year: 2022
  ident: bib0024
  article-title: Experimental investigation on two-phase rotating detonation fueled by kerosene in a hollow directed combustor
  publication-title: Frontiers in Energy Research
– volume: 50
  start-page: 214
  year: 2014
  end-page: 222
  ident: bib0010
  article-title: Initiation of detonation of fuel–air mixtures in a flow-type annular combustor
  publication-title: Combust Explos Shock Waves
– year: 2020
  ident: bib0020
  article-title: Rocket engine with continuously rotating liquid-film detonation
  publication-title: Combust. Sci. Technol.
– volume: 35
  year: 2023
  ident: bib0005
  article-title: Characteristics of ethylene–air continuous rotating detonation in the cavity-based annular combustor
  publication-title: Phys. Fluids
– volume: 215
  year: 2024
  ident: bib0026
  article-title: Experimental study on detonation characteristics of liquid kerosene/air rotating detonation engin
  publication-title: Acta Astronaut.
– volume: 144
  year: 2024
  ident: bib0014
  article-title: Stability investigation of two-phase n-decane rotating detonation waves
  publication-title: Aerosp. Sci. Technol.
– volume: 95
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib0017
  article-title: Investigation of rotating detonation fueled by the pre-combustion cracked kerosene
  publication-title: Aerosp. Sci. Technol.
– volume: 157
  start-page: 1364
  year: 2010
  end-page: 1373
  ident: bib0041
  article-title: A two-step chemical scheme for kerosene–air premixed flames
  publication-title: Combust. Flame
– year: 2022
  ident: bib0008
  article-title: Experimental clarification on detonation phenomena of liquid ethanol rotating detonation combustor
  publication-title: AIAA Sci. Tech. Forum
– volume: 264
  year: 2024
  ident: bib0009
  article-title: Combustion structure of a cylindrical rotating detonation engine with liquid ethanol and nitrous oxide
  publication-title: Combust. Flame
– volume: 31
  start-page: 807
  year: 2021
  end-page: 812
  ident: bib0011
  article-title: Experimental research of liquidfueled continuously rotating detonation chamber
  publication-title: Shock Waves
– year: 2022
  ident: bib0042
  article-title: Numerical simulations of vapor kerosene/air rotating detonation engines with different slot inlet configurations
  publication-title: Acta Astronaut.
– volume: 47
  start-page: 4868
  year: 2022
  end-page: 4884
  ident: bib0033
  article-title: Analysis of coupled-waves structure and propagation characteristics in hydrogen-assisted kerosene-air two-phase rotating detonation wave
  publication-title: Int. J. Hydrogen Energ y
– volume: 33
  start-page: 237
  year: 2023
  end-page: 252
  ident: bib0006
  article-title: Experimental results for 25-mm and 51-mm rotating detonation rocket engine combustors
  publication-title: Shock Waves
– volume: 15
  year: 2022
  ident: bib0025
  article-title: Investigation of rotating detonation fueled by liquid kerosene
  publication-title: Energies
– volume: 17
  start-page: 1805
  year: 2021
  end-page: 1816
  ident: bib0032
  article-title: Effects of total pressures and equivalence ratios on kerosene/air rotating detonation engines using a paralleling CE/SE method
  publication-title: Defence Technology
– volume: 31
  start-page: 829
  year: 2021
  end-page: 839
  ident: bib0019
  article-title: Continuous multifront detonation of kerosene–air mixture in an annular combustor with variations of its geometry
  publication-title: Shock Waves
– volume: 147
  year: 2024
  ident: 10.1016/j.ast.2024.109713_bib0037
  article-title: Simulation of wave mode switching in a rotating detonation engine with gaseous and liquid fuel
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.109008
– volume: 136
  year: 2023
  ident: 10.1016/j.ast.2024.109713_bib0003
  article-title: Numerical investigations of the nozzle performance for a rocket-based rotating detonation engine with film cooling
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108221
– volume: 50
  start-page: 214
  issue: 2
  year: 2014
  ident: 10.1016/j.ast.2024.109713_bib0010
  article-title: Initiation of detonation of fuel–air mixtures in a flow-type annular combustor
  publication-title: Combust Explos Shock Waves
  doi: 10.1134/S0010508214020130
– volume: 31
  start-page: 807
  year: 2021
  ident: 10.1016/j.ast.2024.109713_bib0011
  article-title: Experimental research of liquidfueled continuously rotating detonation chamber
  publication-title: Shock Waves
  doi: 10.1007/s00193-021-01014-w
– volume: 36
  start-page: 851
  issue: 6
  year: 2020
  ident: 10.1016/j.ast.2024.109713_bib0012
  article-title: Experimental study of a hypergolically ignited liquid bipropellant rotating detonation rocket engine
  publication-title: J. Propul. Power
  doi: 10.2514/1.B37666
– volume: 103
  year: 2020
  ident: 10.1016/j.ast.2024.109713_bib0031
  article-title: Numerical research on kerosene/air rotating detonation engines under different injection total temperatures
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105899
– volume: 95
  start-page: 1
  year: 2019
  ident: 10.1016/j.ast.2024.109713_bib0017
  article-title: Investigation of rotating detonation fueled by the pre-combustion cracked kerosene
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105480
– volume: 31
  start-page: 829
  year: 2021
  ident: 10.1016/j.ast.2024.109713_bib0019
  article-title: Continuous multifront detonation of kerosene–air mixture in an annular combustor with variations of its geometry
  publication-title: Shock Waves
  doi: 10.1007/s00193-021-01044-4
– year: 2003
  ident: 10.1016/j.ast.2024.109713_bib0040
  article-title: Implementation of preconditioned dual-time procedures in OVERFLOW
– year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0042
  article-title: Numerical simulations of vapor kerosene/air rotating detonation engines with different slot inlet configurations
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2022.02.015
– year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0008
  article-title: Experimental clarification on detonation phenomena of liquid ethanol rotating detonation combustor
  publication-title: AIAA Sci. Tech. Forum
– volume: 35
  year: 2023
  ident: 10.1016/j.ast.2024.109713_bib0002
  article-title: Effects of blockage ratio on the propagation characteristics of hydrogen-rich gas rotating detonation
  publication-title: Phys. Fluids
  doi: 10.1063/5.0161835
– volume: 264
  issue: 113443
  year: 2024
  ident: 10.1016/j.ast.2024.109713_bib0009
  article-title: Combustion structure of a cylindrical rotating detonation engine with liquid ethanol and nitrous oxide
  publication-title: Combust. Flame
– volume: 258
  year: 2023
  ident: 10.1016/j.ast.2024.109713_bib0001
  article-title: Characterization of refill region and mixing state immediately ahead of a hydrogen-air rotating detonation using LES
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2023.113050
– volume: 144
  year: 2024
  ident: 10.1016/j.ast.2024.109713_bib0014
  article-title: Stability investigation of two-phase n-decane rotating detonation waves
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108817
– volume: 35
  year: 2023
  ident: 10.1016/j.ast.2024.109713_bib0005
  article-title: Characteristics of ethylene–air continuous rotating detonation in the cavity-based annular combustor
  publication-title: Phys. Fluids
– volume: 122
  start-page: 1
  year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0023
  article-title: Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107407
– volume: 15
  issue: 12
  year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0025
  article-title: Investigation of rotating detonation fueled by liquid kerosene
  publication-title: Energies
  doi: 10.3390/en15124483
– year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0030
  article-title: Numerical study of detonation propagation in H2-air with kerosene droplets
– volume: 244
  start-page: 1
  issue: 112271
  year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0035
  article-title: On the propagation stability of droplet-laden two-phase rotating detonation waves
  publication-title: Combust. Flame
– year: 2020
  ident: 10.1016/j.ast.2024.109713_bib0022
  article-title: Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave
  publication-title: Defence Technology
  doi: 10.1016/j.dt.2020.06.028
– volume: 195
  start-page: 204
  year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0027
  article-title: Effects of the oxygen mass fraction on the wave propagation modes in a kerosene-fueled rotating detonation combustor
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2022.03.003
– volume: 193
  start-page: 35
  year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0029
  article-title: Effects of the exit convergent ratio on the propagation behavior of rotating detonations utilizing liquid kerosene
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2021.12.052
– volume: 33
  start-page: 344
  issue: 3
  year: 1997
  ident: 10.1016/j.ast.2024.109713_bib0018
  article-title: Continuous detonation combustion of fuel-air mixtures
  publication-title: Combust Explos Shock Waves
  doi: 10.1007/BF02671875
– volume: 215
  issue: 124–134
  year: 2024
  ident: 10.1016/j.ast.2024.109713_bib0026
  article-title: Experimental study on detonation characteristics of liquid kerosene/air rotating detonation engin
  publication-title: Acta Astronaut.
– volume: 10
  year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0024
  article-title: Experimental investigation on two-phase rotating detonation fueled by kerosene in a hollow directed combustor
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2022.951177
– year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0021
  article-title: Liquid fuel survey for rotating detonation rocket engines
  publication-title: AIAA SciTech Forum
– year: 2020
  ident: 10.1016/j.ast.2024.109713_bib0013
  article-title: Further experimental study of a hypergolically-ignited liquid-liquid rotating detonation rocket engine
  publication-title: AIAA Sci. Tech. Forum.
– volume: 157
  start-page: 1364
  year: 2010
  ident: 10.1016/j.ast.2024.109713_bib0041
  article-title: A two-step chemical scheme for kerosene–air premixed flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2010.03.014
– volume: 17
  start-page: 1805
  year: 2021
  ident: 10.1016/j.ast.2024.109713_bib0032
  article-title: Effects of total pressures and equivalence ratios on kerosene/air rotating detonation engines using a paralleling CE/SE method
  publication-title: Defence Technology
  doi: 10.1016/j.dt.2020.09.015
– year: 1981
  ident: 10.1016/j.ast.2024.109713_bib0039
– volume: 138
  year: 2023
  ident: 10.1016/j.ast.2024.109713_bib0036
  article-title: Numerical study on droplet evaporation and propagation stability in normal-temperature two-phase rotating detonation system
  publication-title: Aerosp. Sci. Technol.
– volume: 137
  year: 2023
  ident: 10.1016/j.ast.2024.109713_bib0007
  article-title: Effects of detonation instability and boundary layer on flame propagation behavior in millimeter-scale smooth tubes
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108264
– volume: 212
  year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0028
  article-title: Characterization of wave modes in a kerosene-fueled rotating detonation combustor with varied injection area ratios
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118607
– volume: 43
  start-page: 445
  year: 2015
  ident: 10.1016/j.ast.2024.109713_bib0015
  article-title: Experimental research on rotating detonation in liquid fuel-gaseous air mixtures
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.04.006
– volume: 203
  start-page: 1
  year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0034
  article-title: Numerical study on atomization and evaporation characteristics of preheated kerosene jet in a rotating detonation scramjet combustor
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117920
– volume: 259
  year: 2024
  ident: 10.1016/j.ast.2024.109713_bib0038
  article-title: Three-dimensional numerical simulations of a liquid RP-2/O2 based rotating detonation engine
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2023.113097
– volume: 55
  start-page: 589
  issue: 5
  year: 2019
  ident: 10.1016/j.ast.2024.109713_bib0016
  article-title: Continuous detonation of the liquid kerosene–air mixture with addition of hydrogen or syngas
  publication-title: Combust Explos Shock Waves
  doi: 10.1134/S0010508219050101
– volume: 47
  start-page: 4868
  year: 2022
  ident: 10.1016/j.ast.2024.109713_bib0033
  article-title: Analysis of coupled-waves structure and propagation characteristics in hydrogen-assisted kerosene-air two-phase rotating detonation wave
  publication-title: Int. J. Hydrogen Energ y
  doi: 10.1016/j.ijhydene.2021.11.105
– volume: 207
  start-page: 219
  year: 2023
  ident: 10.1016/j.ast.2024.109713_bib0004
  article-title: Impact of mixture mass flux on hydrodynamic blockage ratio and Mach number of rotating detonation combustor
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2023.03.013
– year: 2020
  ident: 10.1016/j.ast.2024.109713_bib0020
  article-title: Rocket engine with continuously rotating liquid-film detonation
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2018.1557643
– volume: 33
  start-page: 237
  year: 2023
  ident: 10.1016/j.ast.2024.109713_bib0006
  article-title: Experimental results for 25-mm and 51-mm rotating detonation rocket engine combustors
  publication-title: Shock Waves
  doi: 10.1007/s00193-023-01120-x
SSID ssj0002942
Score 2.3825378
Snippet •A self-sustaining periodic propagation detonation wave is obtained in the two-phase rotating detonation ramjet flow field and flow field distributions are...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109713
SubjectTerms Combustion flow field structure
Liquid kerosene droplet distribution
Ramjet
Two-phase rotating detonation
Title Numerical research on flow field structure and droplets distribution of kerosene-fueled rotating detonation ramjet engine
URI https://dx.doi.org/10.1016/j.ast.2024.109713
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIYWmtR3HY1VRFRBdoFK3yInP0FKSKk2FWPjt2E4iigQLYyJbOp0vd-fcd98hdBmykAALbdtvrD1qe3QFo-BxBb7qmfy053gKHsbBaELvpmzaQIO6F8bCKivfX_p0562rN51Km53lbNZ5tDVTaz4WBRmarMB2sFNurfz68xvm0RNugI5d7NnVdWXTYbzkysIpe9QROXbJ77FpI94M99BulSjifinLPmpAeoB2NugDD9HHeF3WWxa44ux5wVmK9SJ7xw6Zhkt22HUOWKYKq9yixYsVVpYttxp0hTONX8HIY5yep9cmCimcZ7ZAnz5jBUVW_i7EuXybQ4HBCXCEJsObp8HIq0YpeIm5XxUeZwHRsVQmSTVBW1PhE6aooIqDFJwowTiJdWJug3FXKB6ABAgEB_N9JpwGQI5RM81SOEHYpIhSESl9yRMaxGEMPlNCJ0pIThIpWuiqVmK0LBkzohpKNo-MxiOr8ajUeAvRWs3Rj2OPjEf_e9vp_7adoW37VKJRzlHTnAFcmJyiiNvOaNpoq397Pxp_AZgHzY0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB0FOJQeKmhBpQU6h_ZSyU3wrr3eA4eKDwVCcmkicXPX3jFNSm2UOEJc-qf6BzvrDzWV2gsSV1u7Gr8dzcx6374BeB8FkaAgctd-k8yT7o6uDiR5ylLP-lyf-pVOwXAU9ify8jq47sCv9i6Mo1U2sb-O6VW0bp50GzS7d9Np94s7M3Xu41iQEVcFDbNyQA_3vG9bHF-c8iJ_8P3zs_FJ32taC3gp7zdKTwWhyBJjuWjjJJZJ3ROBlVpaRUYrYXWgRJKlvDtKjrRVIRmiUCtif02VDEnwvGuwITlcuLYJn37-4ZX4uurY46zznHntUWpFKjMLx9_0ZaUceST-nQxXEtz5FrxoKlP8XH_8NnQofwnPV_QKX8HDaFkf8NxiIxL0DYscs9viHisqHNZytMs5ockt2rmjp5cLtE6et-mshUWG34nt4SjrZUtOexbnhWME5DdoqSzq_5M4Nz9mVCJVBuzA5EkA3oX1vMjpNSDXpMYKY3pGpTJMooR6gdVZarVRIjV6Dz62IMZ3tURH3HLXZjEjHjvE4xrxPZAtzPFffhZzCvn_sDePG_YOnvXHw6v46mI0eAub7k1NhdmHdV4POuCCpkwOKwdC-PrUHvsbTz8I4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+research+on+flow+field+structure+and+droplets+distribution+of+kerosene-fueled+rotating+detonation+ramjet+engine&rft.jtitle=Aerospace+science+and+technology&rft.au=Yushan%2C+Zheng&rft.au=Yu%2C+Liu&rft.au=Chao%2C+Wang&rft.au=Yitian%2C+Wang&rft.date=2024-12-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.volume=155&rft_id=info:doi/10.1016%2Fj.ast.2024.109713&rft.externalDocID=S1270963824008423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon