Numerical research on flow field structure and droplets distribution of kerosene-fueled rotating detonation ramjet engine
•A self-sustaining periodic propagation detonation wave is obtained in the two-phase rotating detonation ramjet flow field and flow field distributions are described in detailed.•A triangular distribution of "rich oil and poor oxygen band" is found in the flow field and the formation mecha...
Saved in:
Published in | Aerospace science and technology Vol. 155; p. 109713 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A self-sustaining periodic propagation detonation wave is obtained in the two-phase rotating detonation ramjet flow field and flow field distributions are described in detailed.•A triangular distribution of "rich oil and poor oxygen band" is found in the flow field and the formation mechanism is revealed. It is show that inconsistency in the recovery speed of air and fuel filling in rotating detonation ramjet is considered as the main reason, which is caused by the high-pressure environment after the detonation wave.•Difference of detonation flow field is analyzed under different orifice spacing. Obvious strip structures are seen when increasing the orifice spacing and n-type deflagration distributions are seen on the contact surface. Discontinuity of detonation wave is also seen, accompanied by strip-shaped deflagration behind the wave.•A detailed description of the distribution of kerosene droplets is provided and several groups are divided based on their characteristics. Obvious separation and aggregation phenomena of droplets are discovered and the formation mechanism is also described in detail.
In order to reveal the multiphase flow field structure and fuel droplets distribution under rotating detonation ramjet engine fueled by liquid kerosene, non-premixed simulations coupled with an Euler-Lagrangian approach is adopted. Supersonic air is used as oxidizer and the total pressure and total temperature at the entrance of isolation are set as 1.2 MPa and 1100 K, respectively, with a Mach number of 1.9. It is shown that a single-wave is formed and typical rotating detonation wave structures are established under two different orifice spacing conditions, namely 2 mm and 6mm. A "rich oil and poor oxygen band" is formed and attributed to the inconsistent supply of fuel and air after the passage of the detonation wave. When the orifices spacing is increased from 2 mm to 6 mm, both obvious strips after the detonation wave and “n-type” deflagration structures near the contact surface are observed. Besides, the detonation wave front becomes discontinuous, as well as from the deflagration heat release distribution. Despite of the effect of the circumferential propagation of detonation wave, kerosene droplets still propagate mainly along the downstream direction. However, Kerosene droplets distribution shows obvious difference along the detonation wave propagation direction. |
---|---|
AbstractList | •A self-sustaining periodic propagation detonation wave is obtained in the two-phase rotating detonation ramjet flow field and flow field distributions are described in detailed.•A triangular distribution of "rich oil and poor oxygen band" is found in the flow field and the formation mechanism is revealed. It is show that inconsistency in the recovery speed of air and fuel filling in rotating detonation ramjet is considered as the main reason, which is caused by the high-pressure environment after the detonation wave.•Difference of detonation flow field is analyzed under different orifice spacing. Obvious strip structures are seen when increasing the orifice spacing and n-type deflagration distributions are seen on the contact surface. Discontinuity of detonation wave is also seen, accompanied by strip-shaped deflagration behind the wave.•A detailed description of the distribution of kerosene droplets is provided and several groups are divided based on their characteristics. Obvious separation and aggregation phenomena of droplets are discovered and the formation mechanism is also described in detail.
In order to reveal the multiphase flow field structure and fuel droplets distribution under rotating detonation ramjet engine fueled by liquid kerosene, non-premixed simulations coupled with an Euler-Lagrangian approach is adopted. Supersonic air is used as oxidizer and the total pressure and total temperature at the entrance of isolation are set as 1.2 MPa and 1100 K, respectively, with a Mach number of 1.9. It is shown that a single-wave is formed and typical rotating detonation wave structures are established under two different orifice spacing conditions, namely 2 mm and 6mm. A "rich oil and poor oxygen band" is formed and attributed to the inconsistent supply of fuel and air after the passage of the detonation wave. When the orifices spacing is increased from 2 mm to 6 mm, both obvious strips after the detonation wave and “n-type” deflagration structures near the contact surface are observed. Besides, the detonation wave front becomes discontinuous, as well as from the deflagration heat release distribution. Despite of the effect of the circumferential propagation of detonation wave, kerosene droplets still propagate mainly along the downstream direction. However, Kerosene droplets distribution shows obvious difference along the detonation wave propagation direction. |
ArticleNumber | 109713 |
Author | Yitian, Wang Yu, Liu Chao, Wang Yushan, Zheng |
Author_xml | – sequence: 1 givenname: Zheng surname: Yushan fullname: Yushan, Zheng – sequence: 2 givenname: Liu surname: Yu fullname: Yu, Liu – sequence: 3 givenname: Wang surname: Chao fullname: Chao, Wang email: wangchao5ati@126.com – sequence: 4 givenname: Wang surname: Yitian fullname: Yitian, Wang |
BookMark | eNp9kMtOwzAQRb0oEm3hA9j5B1L8SONarFDFo1IFG1hbjj0uDqld2Q6of09KWbMajeae0dWZoUmIARC6oWRBCW1uu4XOZcEIq8ddCsonaEqZIJVs-OoSzXLuCCFM1myKji_DHpI3uscJMuhkPnAM2PXxGzsPvcW5pMGUIQHWwWKb4qGHkrH148G3Q_FjPDr8CSlmCFC5AXqwOMWiiw87bKHEoH9jSe87KBjCzge4QhdO9xmu_-YcvT8-vK2fq-3r02Z9v60Mq2WpxLLhrtV2RVvCmKsl4Utby9oK0FJwK5eCt84wSlsqrWhAAzRSAJWNEXUDfI7o-a8ZC-YETh2S3-t0VJSoky_VqdGXOvlSZ18jc3dmYCz25SGpbDwEA9YnMEXZ6P-hfwDgEHpr |
Cites_doi | 10.1016/j.ast.2024.109008 10.1016/j.ast.2023.108221 10.1134/S0010508214020130 10.1007/s00193-021-01014-w 10.2514/1.B37666 10.1016/j.ast.2020.105899 10.1016/j.ast.2019.105480 10.1007/s00193-021-01044-4 10.1016/j.actaastro.2022.02.015 10.1063/5.0161835 10.1016/j.combustflame.2023.113050 10.1016/j.ast.2023.108817 10.1016/j.ast.2022.107407 10.3390/en15124483 10.1016/j.dt.2020.06.028 10.1016/j.actaastro.2022.03.003 10.1016/j.actaastro.2021.12.052 10.1007/BF02671875 10.3389/fenrg.2022.951177 10.1016/j.combustflame.2010.03.014 10.1016/j.dt.2020.09.015 10.1016/j.ast.2023.108264 10.1016/j.applthermaleng.2022.118607 10.1016/j.ast.2015.04.006 10.1016/j.applthermaleng.2021.117920 10.1016/j.combustflame.2023.113097 10.1134/S0010508219050101 10.1016/j.ijhydene.2021.11.105 10.1016/j.actaastro.2023.03.013 10.1080/00102202.2018.1557643 10.1007/s00193-023-01120-x |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ast.2024.109713 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_ast_2024_109713 S1270963824008423 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c249t-7563fbad81b022f49035d494d7ea973d9573bfc211b19d76eaee697e196c746e3 |
IEDL.DBID | .~1 |
ISSN | 1270-9638 |
IngestDate | Tue Jul 01 01:22:17 EDT 2025 Sat Dec 14 16:14:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Two-phase rotating detonation Liquid kerosene droplet distribution Ramjet Combustion flow field structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-7563fbad81b022f49035d494d7ea973d9573bfc211b19d76eaee697e196c746e3 |
ParticipantIDs | crossref_primary_10_1016_j_ast_2024_109713 elsevier_sciencedirect_doi_10_1016_j_ast_2024_109713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Aerospace science and technology |
PublicationYear | 2024 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – sequence: 0 name: Elsevier Masson SAS |
References | Wang, Weng, Wu, Bai, Zheng, Xu (bib0031) 2020; 103 Harroun, Heister (bib0021) 2022 Meng, Xiao, Feng, Wu, Han, Wang, Weng, Zheng (bib0023) 2022; 122 Salvadori, Panchal, Menon (bib0037) 2024; 147 Nassini, Andreini, Bohon (bib0001) 2023; 258 Yoneyama, Ishihara, Ito, Watanabe, Itouyama, Kawasaki, Matsuoka, Kasahara (bib0008) 2022 Huang, Lin (bib0033) 2022; 47 Franzelli, Riber, Sanjosé, Poinsot (bib0041) 2010; 157 Zheng, Meng, Weng, Wu, Feng, Wu (bib0022) 2020 Pan, Zhu, Zhang (bib0007) 2023; 137 Wang, Weng, Wu, Bai, Zheng, Xu (bib0032) 2021; 17 HaochengWen, ShengXu (bib0036) 2023; 138 Li, Xu, Lv, Lv, Song (bib0003) 2023; 136 Zhong, Wu, Jin, Chen, Yang, Wang (bib0017) 2019; 95 Xu, Wu, Xiao, Ding, Xia, Li, Weng (bib0028) 2022; 212 Kubicki, Heister, Anderson (bib0013) 2020 Li, Li, Qin, Jin, Yuan (bib0026) 2024; 215 Kindracki (bib0015) 2015; 43 Prakash, Bielawski, Raman, Ahmed, Bennewitz (bib0038) 2024; 259 Noda, Matsuoka, Goto, Kawasaki, Watanabe, Itouyama, Kasahara, Matsuo (bib0004) 2023; 207 Sato, Nakata, Ishihara, Itouyama, Matsuoka, Kasahara, Kawasaki, Nakata, Eguchi, Uchiumi, Matsuo, Funaki (bib0009) 2024; 264 Bykovskii, Zhdan, Vedernikov (bib0019) 2021; 31 Frolov, Shamshin, Aksenov, Gusev, Zelensky, Evstratov, Alymov (bib0020) 2020 Bykovskii, Mitrofanov, Vedernikov (bib0018) 1997; 33 Qiu, Bai, Han, Zhang, Weng (bib0002) 2023; 35 Zhao, Shao, Zheng (bib0014) 2024; 144 Ding, Wu, Xu, Xia, Li, Weng (bib0027) 2022; 195 Knowlen, Mundt, Kurosaka (bib0006) 2023; 33 Xue, Ying, Ma, Zhou (bib0024) 2022; 10 Wolański, Balicki, Perkowski, Bilar (bib0011) 2021; 31 O'Rourke (bib0039) 1981 Bykovskii, Zhdan, Vedernikov (bib0010) 2014; 50 Anderson, Heister, Kan (bib0012) 2020; 36 Zhao, Wang, Zhu, Wang, Yan, Wang, Fan (bib0029) 2022; 193 Wang, Lin, Huang, Shi, Zhao (bib0034) 2022; 203 Pandya, Venkateswaran, Pulliam (bib0040) 2003 Wen, Wei, Fan, Xie, Wang (bib0035) 2022; 244 Weijie, Shijie, Shenghui (bib0005) 2023; 35 Wang, Zhang, Bai, Weng (bib0042) 2022 Zhou, Song, Xu, Yang, Zheng (bib0025) 2022; 15 Salvadori, Ranjan, Panchal, Menon (bib0030) 2022 Bykovskii, A.Zhdan, Vedernikov (bib0016) 2019; 55 Pan (10.1016/j.ast.2024.109713_bib0007) 2023; 137 Nassini (10.1016/j.ast.2024.109713_bib0001) 2023; 258 Yoneyama (10.1016/j.ast.2024.109713_bib0008) 2022 Bykovskii (10.1016/j.ast.2024.109713_bib0018) 1997; 33 Kubicki (10.1016/j.ast.2024.109713_bib0013) 2020 Noda (10.1016/j.ast.2024.109713_bib0004) 2023; 207 Knowlen (10.1016/j.ast.2024.109713_bib0006) 2023; 33 Kindracki (10.1016/j.ast.2024.109713_bib0015) 2015; 43 Xue (10.1016/j.ast.2024.109713_bib0024) 2022; 10 Wang (10.1016/j.ast.2024.109713_bib0031) 2020; 103 Pandya (10.1016/j.ast.2024.109713_bib0040) 2003 Harroun (10.1016/j.ast.2024.109713_bib0021) 2022 Wen (10.1016/j.ast.2024.109713_bib0035) 2022; 244 Li (10.1016/j.ast.2024.109713_bib0026) 2024; 215 Franzelli (10.1016/j.ast.2024.109713_bib0041) 2010; 157 Anderson (10.1016/j.ast.2024.109713_bib0012) 2020; 36 Frolov (10.1016/j.ast.2024.109713_bib0020) 2020 HaochengWen (10.1016/j.ast.2024.109713_bib0036) 2023; 138 Qiu (10.1016/j.ast.2024.109713_bib0002) 2023; 35 Sato (10.1016/j.ast.2024.109713_bib0009) 2024; 264 Wang (10.1016/j.ast.2024.109713_bib0032) 2021; 17 Zheng (10.1016/j.ast.2024.109713_bib0022) 2020 Zhao (10.1016/j.ast.2024.109713_bib0029) 2022; 193 Salvadori (10.1016/j.ast.2024.109713_bib0037) 2024; 147 Zhou (10.1016/j.ast.2024.109713_bib0025) 2022; 15 Li (10.1016/j.ast.2024.109713_bib0003) 2023; 136 Bykovskii (10.1016/j.ast.2024.109713_bib0016) 2019; 55 Xu (10.1016/j.ast.2024.109713_bib0028) 2022; 212 O'Rourke (10.1016/j.ast.2024.109713_bib0039) 1981 Wang (10.1016/j.ast.2024.109713_bib0034) 2022; 203 Salvadori (10.1016/j.ast.2024.109713_bib0030) 2022 Prakash (10.1016/j.ast.2024.109713_bib0038) 2024; 259 Weijie (10.1016/j.ast.2024.109713_bib0005) 2023; 35 Wolański (10.1016/j.ast.2024.109713_bib0011) 2021; 31 Bykovskii (10.1016/j.ast.2024.109713_bib0019) 2021; 31 Ding (10.1016/j.ast.2024.109713_bib0027) 2022; 195 Bykovskii (10.1016/j.ast.2024.109713_bib0010) 2014; 50 Meng (10.1016/j.ast.2024.109713_bib0023) 2022; 122 Huang (10.1016/j.ast.2024.109713_bib0033) 2022; 47 Zhao (10.1016/j.ast.2024.109713_bib0014) 2024; 144 Wang (10.1016/j.ast.2024.109713_bib0042) 2022 Zhong (10.1016/j.ast.2024.109713_bib0017) 2019; 95 |
References_xml | – volume: 212 year: 2022 ident: bib0028 article-title: Characterization of wave modes in a kerosene-fueled rotating detonation combustor with varied injection area ratios publication-title: Appl. Therm. Eng. – year: 2022 ident: bib0030 article-title: Numerical study of detonation propagation in H2-air with kerosene droplets publication-title: AIAA SCITECH 2022 Forum – volume: 55 start-page: 589 year: 2019 end-page: 598 ident: bib0016 article-title: Continuous detonation of the liquid kerosene–air mixture with addition of hydrogen or syngas publication-title: Combust Explos Shock Waves – year: 2022 ident: bib0021 article-title: Liquid fuel survey for rotating detonation rocket engines publication-title: AIAA SciTech Forum – volume: 122 start-page: 1 year: 2022 end-page: 11 ident: bib0023 article-title: Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor publication-title: Aerosp. Sci. Technol. – year: 1981 ident: bib0039 article-title: Collective Drop Effects On Vaporizing Liquid Sprays – volume: 33 start-page: 344 year: 1997 end-page: 353 ident: bib0018 article-title: Continuous detonation combustion of fuel-air mixtures publication-title: Combust Explos Shock Waves – volume: 203 start-page: 1 year: 2022 end-page: 13 ident: bib0034 article-title: Numerical study on atomization and evaporation characteristics of preheated kerosene jet in a rotating detonation scramjet combustor publication-title: Appl. Therm. Eng. – volume: 147 year: 2024 ident: bib0037 article-title: Simulation of wave mode switching in a rotating detonation engine with gaseous and liquid fuel publication-title: Aerosp. Sci. Technol. – volume: 193 start-page: 35 year: 2022 end-page: 43 ident: bib0029 article-title: Effects of the exit convergent ratio on the propagation behavior of rotating detonations utilizing liquid kerosene publication-title: Acta Astronaut. – volume: 258 year: 2023 ident: bib0001 article-title: Characterization of refill region and mixing state immediately ahead of a hydrogen-air rotating detonation using LES publication-title: Combust. Flame – year: 2020 ident: bib0013 article-title: Further experimental study of a hypergolically-ignited liquid-liquid rotating detonation rocket engine publication-title: AIAA Sci. Tech. Forum. – year: 2003 ident: bib0040 article-title: Implementation of preconditioned dual-time procedures in OVERFLOW publication-title: AIAA 2003-0072 – volume: 36 start-page: 851 year: 2020 end-page: 861 ident: bib0012 article-title: Experimental study of a hypergolically ignited liquid bipropellant rotating detonation rocket engine publication-title: J. Propul. Power – volume: 103 year: 2020 ident: bib0031 article-title: Numerical research on kerosene/air rotating detonation engines under different injection total temperatures publication-title: Aerosp. Sci. Technol. – volume: 259 year: 2024 ident: bib0038 article-title: Three-dimensional numerical simulations of a liquid RP-2/O2 based rotating detonation engine publication-title: Combust. Flame – year: 2020 ident: bib0022 article-title: Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave publication-title: Defence Technology – volume: 138 year: 2023 ident: bib0036 article-title: Numerical study on droplet evaporation and propagation stability in normal-temperature two-phase rotating detonation system publication-title: Aerosp. Sci. Technol. – volume: 195 start-page: 204 year: 2022 end-page: 214 ident: bib0027 article-title: Effects of the oxygen mass fraction on the wave propagation modes in a kerosene-fueled rotating detonation combustor publication-title: Acta Astronaut. – volume: 43 start-page: 445 year: 2015 end-page: 453 ident: bib0015 article-title: Experimental research on rotating detonation in liquid fuel-gaseous air mixtures publication-title: Aerosp. Sci. Technol. – volume: 244 start-page: 1 year: 2022 end-page: 19 ident: bib0035 article-title: On the propagation stability of droplet-laden two-phase rotating detonation waves publication-title: Combust. Flame – volume: 137 year: 2023 ident: bib0007 article-title: Effects of detonation instability and boundary layer on flame propagation behavior in millimeter-scale smooth tubes publication-title: Aerosp. Sci. Technol. – volume: 35 year: 2023 ident: bib0002 article-title: Effects of blockage ratio on the propagation characteristics of hydrogen-rich gas rotating detonation publication-title: Phys. Fluids – volume: 136 year: 2023 ident: bib0003 article-title: Numerical investigations of the nozzle performance for a rocket-based rotating detonation engine with film cooling publication-title: Aerosp. Sci. Technol. – volume: 207 start-page: 219 year: 2023 end-page: 226 ident: bib0004 article-title: Impact of mixture mass flux on hydrodynamic blockage ratio and Mach number of rotating detonation combustor publication-title: Acta Astronaut. – volume: 10 year: 2022 ident: bib0024 article-title: Experimental investigation on two-phase rotating detonation fueled by kerosene in a hollow directed combustor publication-title: Frontiers in Energy Research – volume: 50 start-page: 214 year: 2014 end-page: 222 ident: bib0010 article-title: Initiation of detonation of fuel–air mixtures in a flow-type annular combustor publication-title: Combust Explos Shock Waves – year: 2020 ident: bib0020 article-title: Rocket engine with continuously rotating liquid-film detonation publication-title: Combust. Sci. Technol. – volume: 35 year: 2023 ident: bib0005 article-title: Characteristics of ethylene–air continuous rotating detonation in the cavity-based annular combustor publication-title: Phys. Fluids – volume: 215 year: 2024 ident: bib0026 article-title: Experimental study on detonation characteristics of liquid kerosene/air rotating detonation engin publication-title: Acta Astronaut. – volume: 144 year: 2024 ident: bib0014 article-title: Stability investigation of two-phase n-decane rotating detonation waves publication-title: Aerosp. Sci. Technol. – volume: 95 start-page: 1 year: 2019 end-page: 8 ident: bib0017 article-title: Investigation of rotating detonation fueled by the pre-combustion cracked kerosene publication-title: Aerosp. Sci. Technol. – volume: 157 start-page: 1364 year: 2010 end-page: 1373 ident: bib0041 article-title: A two-step chemical scheme for kerosene–air premixed flames publication-title: Combust. Flame – year: 2022 ident: bib0008 article-title: Experimental clarification on detonation phenomena of liquid ethanol rotating detonation combustor publication-title: AIAA Sci. Tech. Forum – volume: 264 year: 2024 ident: bib0009 article-title: Combustion structure of a cylindrical rotating detonation engine with liquid ethanol and nitrous oxide publication-title: Combust. Flame – volume: 31 start-page: 807 year: 2021 end-page: 812 ident: bib0011 article-title: Experimental research of liquidfueled continuously rotating detonation chamber publication-title: Shock Waves – year: 2022 ident: bib0042 article-title: Numerical simulations of vapor kerosene/air rotating detonation engines with different slot inlet configurations publication-title: Acta Astronaut. – volume: 47 start-page: 4868 year: 2022 end-page: 4884 ident: bib0033 article-title: Analysis of coupled-waves structure and propagation characteristics in hydrogen-assisted kerosene-air two-phase rotating detonation wave publication-title: Int. J. Hydrogen Energ y – volume: 33 start-page: 237 year: 2023 end-page: 252 ident: bib0006 article-title: Experimental results for 25-mm and 51-mm rotating detonation rocket engine combustors publication-title: Shock Waves – volume: 15 year: 2022 ident: bib0025 article-title: Investigation of rotating detonation fueled by liquid kerosene publication-title: Energies – volume: 17 start-page: 1805 year: 2021 end-page: 1816 ident: bib0032 article-title: Effects of total pressures and equivalence ratios on kerosene/air rotating detonation engines using a paralleling CE/SE method publication-title: Defence Technology – volume: 31 start-page: 829 year: 2021 end-page: 839 ident: bib0019 article-title: Continuous multifront detonation of kerosene–air mixture in an annular combustor with variations of its geometry publication-title: Shock Waves – volume: 147 year: 2024 ident: 10.1016/j.ast.2024.109713_bib0037 article-title: Simulation of wave mode switching in a rotating detonation engine with gaseous and liquid fuel publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109008 – volume: 136 year: 2023 ident: 10.1016/j.ast.2024.109713_bib0003 article-title: Numerical investigations of the nozzle performance for a rocket-based rotating detonation engine with film cooling publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108221 – volume: 50 start-page: 214 issue: 2 year: 2014 ident: 10.1016/j.ast.2024.109713_bib0010 article-title: Initiation of detonation of fuel–air mixtures in a flow-type annular combustor publication-title: Combust Explos Shock Waves doi: 10.1134/S0010508214020130 – volume: 31 start-page: 807 year: 2021 ident: 10.1016/j.ast.2024.109713_bib0011 article-title: Experimental research of liquidfueled continuously rotating detonation chamber publication-title: Shock Waves doi: 10.1007/s00193-021-01014-w – volume: 36 start-page: 851 issue: 6 year: 2020 ident: 10.1016/j.ast.2024.109713_bib0012 article-title: Experimental study of a hypergolically ignited liquid bipropellant rotating detonation rocket engine publication-title: J. Propul. Power doi: 10.2514/1.B37666 – volume: 103 year: 2020 ident: 10.1016/j.ast.2024.109713_bib0031 article-title: Numerical research on kerosene/air rotating detonation engines under different injection total temperatures publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.105899 – volume: 95 start-page: 1 year: 2019 ident: 10.1016/j.ast.2024.109713_bib0017 article-title: Investigation of rotating detonation fueled by the pre-combustion cracked kerosene publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.105480 – volume: 31 start-page: 829 year: 2021 ident: 10.1016/j.ast.2024.109713_bib0019 article-title: Continuous multifront detonation of kerosene–air mixture in an annular combustor with variations of its geometry publication-title: Shock Waves doi: 10.1007/s00193-021-01044-4 – year: 2003 ident: 10.1016/j.ast.2024.109713_bib0040 article-title: Implementation of preconditioned dual-time procedures in OVERFLOW – year: 2022 ident: 10.1016/j.ast.2024.109713_bib0042 article-title: Numerical simulations of vapor kerosene/air rotating detonation engines with different slot inlet configurations publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2022.02.015 – year: 2022 ident: 10.1016/j.ast.2024.109713_bib0008 article-title: Experimental clarification on detonation phenomena of liquid ethanol rotating detonation combustor publication-title: AIAA Sci. Tech. Forum – volume: 35 year: 2023 ident: 10.1016/j.ast.2024.109713_bib0002 article-title: Effects of blockage ratio on the propagation characteristics of hydrogen-rich gas rotating detonation publication-title: Phys. Fluids doi: 10.1063/5.0161835 – volume: 264 issue: 113443 year: 2024 ident: 10.1016/j.ast.2024.109713_bib0009 article-title: Combustion structure of a cylindrical rotating detonation engine with liquid ethanol and nitrous oxide publication-title: Combust. Flame – volume: 258 year: 2023 ident: 10.1016/j.ast.2024.109713_bib0001 article-title: Characterization of refill region and mixing state immediately ahead of a hydrogen-air rotating detonation using LES publication-title: Combust. Flame doi: 10.1016/j.combustflame.2023.113050 – volume: 144 year: 2024 ident: 10.1016/j.ast.2024.109713_bib0014 article-title: Stability investigation of two-phase n-decane rotating detonation waves publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108817 – volume: 35 year: 2023 ident: 10.1016/j.ast.2024.109713_bib0005 article-title: Characteristics of ethylene–air continuous rotating detonation in the cavity-based annular combustor publication-title: Phys. Fluids – volume: 122 start-page: 1 year: 2022 ident: 10.1016/j.ast.2024.109713_bib0023 article-title: Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107407 – volume: 15 issue: 12 year: 2022 ident: 10.1016/j.ast.2024.109713_bib0025 article-title: Investigation of rotating detonation fueled by liquid kerosene publication-title: Energies doi: 10.3390/en15124483 – year: 2022 ident: 10.1016/j.ast.2024.109713_bib0030 article-title: Numerical study of detonation propagation in H2-air with kerosene droplets – volume: 244 start-page: 1 issue: 112271 year: 2022 ident: 10.1016/j.ast.2024.109713_bib0035 article-title: On the propagation stability of droplet-laden two-phase rotating detonation waves publication-title: Combust. Flame – year: 2020 ident: 10.1016/j.ast.2024.109713_bib0022 article-title: Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave publication-title: Defence Technology doi: 10.1016/j.dt.2020.06.028 – volume: 195 start-page: 204 year: 2022 ident: 10.1016/j.ast.2024.109713_bib0027 article-title: Effects of the oxygen mass fraction on the wave propagation modes in a kerosene-fueled rotating detonation combustor publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2022.03.003 – volume: 193 start-page: 35 year: 2022 ident: 10.1016/j.ast.2024.109713_bib0029 article-title: Effects of the exit convergent ratio on the propagation behavior of rotating detonations utilizing liquid kerosene publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2021.12.052 – volume: 33 start-page: 344 issue: 3 year: 1997 ident: 10.1016/j.ast.2024.109713_bib0018 article-title: Continuous detonation combustion of fuel-air mixtures publication-title: Combust Explos Shock Waves doi: 10.1007/BF02671875 – volume: 215 issue: 124–134 year: 2024 ident: 10.1016/j.ast.2024.109713_bib0026 article-title: Experimental study on detonation characteristics of liquid kerosene/air rotating detonation engin publication-title: Acta Astronaut. – volume: 10 year: 2022 ident: 10.1016/j.ast.2024.109713_bib0024 article-title: Experimental investigation on two-phase rotating detonation fueled by kerosene in a hollow directed combustor publication-title: Frontiers in Energy Research doi: 10.3389/fenrg.2022.951177 – year: 2022 ident: 10.1016/j.ast.2024.109713_bib0021 article-title: Liquid fuel survey for rotating detonation rocket engines publication-title: AIAA SciTech Forum – year: 2020 ident: 10.1016/j.ast.2024.109713_bib0013 article-title: Further experimental study of a hypergolically-ignited liquid-liquid rotating detonation rocket engine publication-title: AIAA Sci. Tech. Forum. – volume: 157 start-page: 1364 year: 2010 ident: 10.1016/j.ast.2024.109713_bib0041 article-title: A two-step chemical scheme for kerosene–air premixed flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2010.03.014 – volume: 17 start-page: 1805 year: 2021 ident: 10.1016/j.ast.2024.109713_bib0032 article-title: Effects of total pressures and equivalence ratios on kerosene/air rotating detonation engines using a paralleling CE/SE method publication-title: Defence Technology doi: 10.1016/j.dt.2020.09.015 – year: 1981 ident: 10.1016/j.ast.2024.109713_bib0039 – volume: 138 year: 2023 ident: 10.1016/j.ast.2024.109713_bib0036 article-title: Numerical study on droplet evaporation and propagation stability in normal-temperature two-phase rotating detonation system publication-title: Aerosp. Sci. Technol. – volume: 137 year: 2023 ident: 10.1016/j.ast.2024.109713_bib0007 article-title: Effects of detonation instability and boundary layer on flame propagation behavior in millimeter-scale smooth tubes publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108264 – volume: 212 year: 2022 ident: 10.1016/j.ast.2024.109713_bib0028 article-title: Characterization of wave modes in a kerosene-fueled rotating detonation combustor with varied injection area ratios publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118607 – volume: 43 start-page: 445 year: 2015 ident: 10.1016/j.ast.2024.109713_bib0015 article-title: Experimental research on rotating detonation in liquid fuel-gaseous air mixtures publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2015.04.006 – volume: 203 start-page: 1 year: 2022 ident: 10.1016/j.ast.2024.109713_bib0034 article-title: Numerical study on atomization and evaporation characteristics of preheated kerosene jet in a rotating detonation scramjet combustor publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117920 – volume: 259 year: 2024 ident: 10.1016/j.ast.2024.109713_bib0038 article-title: Three-dimensional numerical simulations of a liquid RP-2/O2 based rotating detonation engine publication-title: Combust. Flame doi: 10.1016/j.combustflame.2023.113097 – volume: 55 start-page: 589 issue: 5 year: 2019 ident: 10.1016/j.ast.2024.109713_bib0016 article-title: Continuous detonation of the liquid kerosene–air mixture with addition of hydrogen or syngas publication-title: Combust Explos Shock Waves doi: 10.1134/S0010508219050101 – volume: 47 start-page: 4868 year: 2022 ident: 10.1016/j.ast.2024.109713_bib0033 article-title: Analysis of coupled-waves structure and propagation characteristics in hydrogen-assisted kerosene-air two-phase rotating detonation wave publication-title: Int. J. Hydrogen Energ y doi: 10.1016/j.ijhydene.2021.11.105 – volume: 207 start-page: 219 year: 2023 ident: 10.1016/j.ast.2024.109713_bib0004 article-title: Impact of mixture mass flux on hydrodynamic blockage ratio and Mach number of rotating detonation combustor publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2023.03.013 – year: 2020 ident: 10.1016/j.ast.2024.109713_bib0020 article-title: Rocket engine with continuously rotating liquid-film detonation publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2018.1557643 – volume: 33 start-page: 237 year: 2023 ident: 10.1016/j.ast.2024.109713_bib0006 article-title: Experimental results for 25-mm and 51-mm rotating detonation rocket engine combustors publication-title: Shock Waves doi: 10.1007/s00193-023-01120-x |
SSID | ssj0002942 |
Score | 2.3825378 |
Snippet | •A self-sustaining periodic propagation detonation wave is obtained in the two-phase rotating detonation ramjet flow field and flow field distributions are... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 109713 |
SubjectTerms | Combustion flow field structure Liquid kerosene droplet distribution Ramjet Two-phase rotating detonation |
Title | Numerical research on flow field structure and droplets distribution of kerosene-fueled rotating detonation ramjet engine |
URI | https://dx.doi.org/10.1016/j.ast.2024.109713 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIYWmtR3HY1VRFRBdoFK3yInP0FKSKk2FWPjt2E4iigQLYyJbOp0vd-fcd98hdBmykAALbdtvrD1qe3QFo-BxBb7qmfy053gKHsbBaELvpmzaQIO6F8bCKivfX_p0562rN51Km53lbNZ5tDVTaz4WBRmarMB2sFNurfz68xvm0RNugI5d7NnVdWXTYbzkysIpe9QROXbJ77FpI94M99BulSjifinLPmpAeoB2NugDD9HHeF3WWxa44ux5wVmK9SJ7xw6Zhkt22HUOWKYKq9yixYsVVpYttxp0hTONX8HIY5yep9cmCimcZ7ZAnz5jBUVW_i7EuXybQ4HBCXCEJsObp8HIq0YpeIm5XxUeZwHRsVQmSTVBW1PhE6aooIqDFJwowTiJdWJug3FXKB6ABAgEB_N9JpwGQI5RM81SOEHYpIhSESl9yRMaxGEMPlNCJ0pIThIpWuiqVmK0LBkzohpKNo-MxiOr8ajUeAvRWs3Rj2OPjEf_e9vp_7adoW37VKJRzlHTnAFcmJyiiNvOaNpoq397Pxp_AZgHzY0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB0FOJQeKmhBpQU6h_ZSyU3wrr3eA4eKDwVCcmkicXPX3jFNSm2UOEJc-qf6BzvrDzWV2gsSV1u7Gr8dzcx6374BeB8FkaAgctd-k8yT7o6uDiR5ylLP-lyf-pVOwXAU9ify8jq47sCv9i6Mo1U2sb-O6VW0bp50GzS7d9Np94s7M3Xu41iQEVcFDbNyQA_3vG9bHF-c8iJ_8P3zs_FJ32taC3gp7zdKTwWhyBJjuWjjJJZJ3ROBlVpaRUYrYXWgRJKlvDtKjrRVIRmiUCtif02VDEnwvGuwITlcuLYJn37-4ZX4uurY46zznHntUWpFKjMLx9_0ZaUceST-nQxXEtz5FrxoKlP8XH_8NnQofwnPV_QKX8HDaFkf8NxiIxL0DYscs9viHisqHNZytMs5ockt2rmjp5cLtE6et-mshUWG34nt4SjrZUtOexbnhWME5DdoqSzq_5M4Nz9mVCJVBuzA5EkA3oX1vMjpNSDXpMYKY3pGpTJMooR6gdVZarVRIjV6Dz62IMZ3tURH3HLXZjEjHjvE4xrxPZAtzPFffhZzCvn_sDePG_YOnvXHw6v46mI0eAub7k1NhdmHdV4POuCCpkwOKwdC-PrUHvsbTz8I4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+research+on+flow+field+structure+and+droplets+distribution+of+kerosene-fueled+rotating+detonation+ramjet+engine&rft.jtitle=Aerospace+science+and+technology&rft.au=Yushan%2C+Zheng&rft.au=Yu%2C+Liu&rft.au=Chao%2C+Wang&rft.au=Yitian%2C+Wang&rft.date=2024-12-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.volume=155&rft_id=info:doi/10.1016%2Fj.ast.2024.109713&rft.externalDocID=S1270963824008423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |