A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2

[Display omitted] •A novel co-annealing method was developed for the preparation of sulfur doped g-C3N4.•The prepared SS-CN exhibits enhanced optical absorption, charge separation and surface charge transfer.•DFT calculations revealed the mechanism by which S-doping regulates band structure and char...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 281; p. 119539
Main Authors Feng, Chengyang, Tang, Lin, Deng, Yaocheng, Wang, Jiajia, Liu, Yani, Ouyang, Xilian, Yang, Haoran, Yu, Jiangfang, Wang, Jingjing
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A novel co-annealing method was developed for the preparation of sulfur doped g-C3N4.•The prepared SS-CN exhibits enhanced optical absorption, charge separation and surface charge transfer.•DFT calculations revealed the mechanism by which S-doping regulates band structure and charge distribution.•The SS-CN photocatalyst has highly enhanced capacity of H2 evolution and H2O2 production. Exfoliating g-C3N4 into 2D nanosheet to minimize the stacking layer for the improvement of charge transfer and separation is considered to be the effective measure to enhance its photocatalytic performance. However, no matter what method is used, the exfoliated g-C3N4 nanosheet shows decreased optical absorption compared to the pristine bulk-like one. In this work, a simple one-step sulfur doping method is proposed on the basis of exfoliated g-C3N4 nanosheet, which can directly regulate the band structure of g-C3N4 and enhance its optical absorption ability. The proposed sulfur doping method redshift the light absorption edge of g-C3N4 nanosheet to the level of pristine bulk-like g-C3N4, and even induce the generation of a new n→π* absorption band. In addition, the introduced sulfur doping site can form a local electron accumulation point, so that to further improve the charge separation efficiency and surface charge transfer ability of g-C3N4 nanosheets.
AbstractList [Display omitted] •A novel co-annealing method was developed for the preparation of sulfur doped g-C3N4.•The prepared SS-CN exhibits enhanced optical absorption, charge separation and surface charge transfer.•DFT calculations revealed the mechanism by which S-doping regulates band structure and charge distribution.•The SS-CN photocatalyst has highly enhanced capacity of H2 evolution and H2O2 production. Exfoliating g-C3N4 into 2D nanosheet to minimize the stacking layer for the improvement of charge transfer and separation is considered to be the effective measure to enhance its photocatalytic performance. However, no matter what method is used, the exfoliated g-C3N4 nanosheet shows decreased optical absorption compared to the pristine bulk-like one. In this work, a simple one-step sulfur doping method is proposed on the basis of exfoliated g-C3N4 nanosheet, which can directly regulate the band structure of g-C3N4 and enhance its optical absorption ability. The proposed sulfur doping method redshift the light absorption edge of g-C3N4 nanosheet to the level of pristine bulk-like g-C3N4, and even induce the generation of a new n→π* absorption band. In addition, the introduced sulfur doping site can form a local electron accumulation point, so that to further improve the charge separation efficiency and surface charge transfer ability of g-C3N4 nanosheets.
Exfoliating g-C3N4 into 2D nanosheet to minimize the stacking layer for the improvement of charge transfer and separation is considered to be the effective measure to enhance its photocatalytic performance. However, no matter what method is used, the exfoliated g-C3N4 nanosheet shows decreased optical absorption compared to the pristine bulk-like one. In this work, a simple one-step sulfur doping method is proposed on the basis of exfoliated g-C3N4 nanosheet, which can directly regulate the band structure of g-C3N4 and enhance its optical absorption ability. The proposed sulfur doping method redshift the light absorption edge of g-C3N4 nanosheet to the level of pristine bulk-like g-C3N4, and even induce the generation of a new n→π* absorption band. In addition, the introduced sulfur doping site can form a local electron accumulation point, so that to further improve the charge separation efficiency and surface charge transfer ability of g-C3N4 nanosheets.
ArticleNumber 119539
Author Wang, Jiajia
Deng, Yaocheng
Yu, Jiangfang
Tang, Lin
Wang, Jingjing
Liu, Yani
Feng, Chengyang
Yang, Haoran
Ouyang, Xilian
Author_xml – sequence: 1
  givenname: Chengyang
  surname: Feng
  fullname: Feng, Chengyang
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 2
  givenname: Lin
  orcidid: 0000-0001-6996-7955
  surname: Tang
  fullname: Tang, Lin
  email: tanglin@hnu.edu.cn
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 3
  givenname: Yaocheng
  orcidid: 0000-0003-4965-3443
  surname: Deng
  fullname: Deng, Yaocheng
  organization: College of Resources and Environment, Hunan Agricultural University, Changsha, 410028, China
– sequence: 4
  givenname: Jiajia
  surname: Wang
  fullname: Wang, Jiajia
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 5
  givenname: Yani
  surname: Liu
  fullname: Liu, Yani
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 6
  givenname: Xilian
  surname: Ouyang
  fullname: Ouyang, Xilian
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 7
  givenname: Haoran
  surname: Yang
  fullname: Yang, Haoran
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 8
  givenname: Jiangfang
  surname: Yu
  fullname: Yu, Jiangfang
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 9
  givenname: Jingjing
  surname: Wang
  fullname: Wang, Jingjing
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
BookMark eNqFUUtv1DAQtlArsX38Aw6WOGdxbCdOOCBVK6BIFb3Qs-XHZONV1g62U9T_xo_DIZw4wGlkz_eYme8KXfjgAaE3NdnXpG7fnfZqNirrPSW0fNV9w_pXaFd3glWs69gF2pGethVjgr1GVymdCCGU0W6Hft5hH55hwmmZhiVWKiWXMlisvAc1OX_EZ8hjsDgM-Fgd2FeOvfIhjQAZm3CewSeVIeEhRJxHwFNIaQVP7jhmrHQKcc4uePzD5REXjwKKeI7hHFYfM6p4BJyj8mkojVVmHkMOZSE1vWRnVqxdzG-NontPy2y2lEd6gy4HNSW4_VOv0dOnj98O99XD4-cvh7uHylDe50pwTjvNtRDlqbXVlAg2ENaLnlplaTN0RutWay6UMKKlxLRNU9cDMY3ipmPX6O2mWyb5vkDK8hSW6IulpFwIQVrRrii-oUwsJ4gwyDm6s4ovsiZyzUme5JaTXHOSW06F9v4vmnFZrduWm7jpf-QPGxnK-s8OokzGgTdgXQSTpQ3u3wK_AC0Ytew
CitedBy_id crossref_primary_10_1016_j_jtice_2021_07_034
crossref_primary_10_1039_D4EE01543F
crossref_primary_10_1016_j_colsurfa_2023_131231
crossref_primary_10_1016_j_carbon_2023_118715
crossref_primary_10_1016_j_nanoen_2022_107906
crossref_primary_10_1016_j_jcis_2023_07_059
crossref_primary_10_1016_j_ccr_2022_214846
crossref_primary_10_1016_j_apsusc_2022_154886
crossref_primary_10_1021_acsaem_2c04124
crossref_primary_10_1016_j_cej_2021_133604
crossref_primary_10_1557_s43578_021_00392_2
crossref_primary_10_1021_acs_energyfuels_2c00138
crossref_primary_10_1002_smll_202207636
crossref_primary_10_1039_D2MA00276K
crossref_primary_10_1016_j_mssp_2023_107459
crossref_primary_10_1016_j_jece_2023_109453
crossref_primary_10_1016_j_mtsust_2023_100416
crossref_primary_10_1039_D1NJ04682A
crossref_primary_10_1002_chem_202500297
crossref_primary_10_1021_acsnano_3c06212
crossref_primary_10_1016_j_cej_2022_139435
crossref_primary_10_1016_j_matchemphys_2025_130575
crossref_primary_10_1021_acsaem_4c01061
crossref_primary_10_1016_j_apsusc_2022_154755
crossref_primary_10_1016_j_apsusc_2022_155844
crossref_primary_10_1016_j_jcat_2024_115628
crossref_primary_10_1039_D2NA00909A
crossref_primary_10_1016_j_jece_2022_108747
crossref_primary_10_1016_j_jmst_2023_01_006
crossref_primary_10_1631_2023_A2200440
crossref_primary_10_1016_j_jhazmat_2022_129845
crossref_primary_10_1016_j_cej_2023_145248
crossref_primary_10_1007_s11356_022_19581_5
crossref_primary_10_1039_D3TA07371H
crossref_primary_10_1016_j_cej_2024_155450
crossref_primary_10_1016_j_apcatb_2023_122918
crossref_primary_10_1002_cey2_491
crossref_primary_10_1016_j_apsusc_2024_160634
crossref_primary_10_1002_smll_202105089
crossref_primary_10_1016_j_jece_2023_109426
crossref_primary_10_1002_advs_202304063
crossref_primary_10_1016_j_cej_2021_132531
crossref_primary_10_1055_a_2378_3919
crossref_primary_10_1002_admi_202202172
crossref_primary_10_1007_s12598_023_02583_8
crossref_primary_10_2139_ssrn_4190844
crossref_primary_10_1021_acsomega_4c06585
crossref_primary_10_1016_j_apcatb_2023_123453
crossref_primary_10_1002_adsu_202300116
crossref_primary_10_2139_ssrn_4184970
crossref_primary_10_1016_j_cej_2023_144388
crossref_primary_10_1039_D2CY01107G
crossref_primary_10_1039_D3CY01698F
crossref_primary_10_1016_j_cej_2021_134020
crossref_primary_10_1016_j_cej_2023_144708
crossref_primary_10_1016_j_apcatb_2024_123767
crossref_primary_10_1016_j_seppur_2024_129202
crossref_primary_10_1016_j_jmst_2023_02_049
crossref_primary_10_1016_j_cej_2022_138489
crossref_primary_10_1016_j_mtsust_2024_100819
crossref_primary_10_1016_j_cej_2024_151091
crossref_primary_10_1016_j_apsusc_2022_154974
crossref_primary_10_1016_j_carbon_2023_118052
crossref_primary_10_1016_j_cej_2022_140442
crossref_primary_10_1016_j_cej_2025_161862
crossref_primary_10_1016_j_apsusc_2022_154733
crossref_primary_10_1021_acsami_4c20925
crossref_primary_10_1016_j_heliyon_2022_e10683
crossref_primary_10_1002_cctc_202401141
crossref_primary_10_1007_s12613_024_2924_6
crossref_primary_10_1007_s12598_023_02555_y
crossref_primary_10_1016_j_jclepro_2022_134918
crossref_primary_10_1021_acsami_3c05137
crossref_primary_10_3390_ijerph192315707
crossref_primary_10_1016_j_vacuum_2024_113740
crossref_primary_10_1016_j_jcis_2022_07_137
crossref_primary_10_1016_j_seppur_2023_125193
crossref_primary_10_1016_j_jwpe_2025_107180
crossref_primary_10_1002_adfm_202205119
crossref_primary_10_1002_lpor_202300301
crossref_primary_10_26599_NRE_2023_9120091
crossref_primary_10_1016_j_jcis_2022_04_169
crossref_primary_10_1039_D1CC00214G
crossref_primary_10_1039_D3EE03032F
crossref_primary_10_1016_j_cej_2021_129825
crossref_primary_10_1016_j_mcat_2023_113674
crossref_primary_10_1016_j_jallcom_2021_160550
crossref_primary_10_1016_j_seppur_2022_122875
crossref_primary_10_1016_j_enmm_2024_100990
crossref_primary_10_1039_D4TA02620A
crossref_primary_10_1016_j_cej_2024_151511
crossref_primary_10_1016_j_chemosphere_2023_140488
crossref_primary_10_1039_D3NR01404E
crossref_primary_10_1039_D4TA09249J
crossref_primary_10_1515_ntrev_2022_0556
crossref_primary_10_1002_aenm_202401768
crossref_primary_10_1016_j_ces_2023_119333
crossref_primary_10_1007_s10854_023_10329_6
crossref_primary_10_1021_acs_nanolett_2c01825
crossref_primary_10_1016_j_apsusc_2022_155248
crossref_primary_10_1021_acs_analchem_2c05691
crossref_primary_10_1016_j_apcatb_2021_120695
crossref_primary_10_1016_j_ccr_2024_216218
crossref_primary_10_1016_j_apsusc_2022_155242
crossref_primary_10_1016_j_jallcom_2021_163490
crossref_primary_10_1016_j_gee_2021_08_004
crossref_primary_10_1039_D0GC04236F
crossref_primary_10_1021_acsanm_1c00341
crossref_primary_10_1039_D2CY00831A
crossref_primary_10_1016_j_jwpe_2024_105952
crossref_primary_10_1016_j_jcis_2023_03_209
crossref_primary_10_1016_j_ijhydene_2024_05_140
crossref_primary_10_1021_acssuschemeng_1c07985
crossref_primary_10_1039_D1DT02367E
crossref_primary_10_1016_j_apcatb_2022_121066
crossref_primary_10_1016_j_apcatb_2022_121185
crossref_primary_10_1016_j_jwpe_2024_105829
crossref_primary_10_1002_er_8572
crossref_primary_10_1016_j_envres_2023_116805
crossref_primary_10_1039_D2CY00474G
crossref_primary_10_1021_acs_langmuir_4c05287
crossref_primary_10_1016_j_seppur_2023_124904
crossref_primary_10_1021_acsami_4c18585
crossref_primary_10_1039_D3CY00054K
crossref_primary_10_1016_j_scitotenv_2024_170191
crossref_primary_10_1021_acs_iecr_3c01800
crossref_primary_10_1007_s11164_024_05301_w
crossref_primary_10_1016_j_cej_2024_158348
crossref_primary_10_1002_cssc_202401570
crossref_primary_10_1002_ange_202402095
crossref_primary_10_1016_j_fuel_2023_130754
crossref_primary_10_1021_acs_energyfuels_1c00688
crossref_primary_10_1021_acs_inorgchem_4c04699
crossref_primary_10_1007_s41061_023_00423_y
crossref_primary_10_1016_j_cclet_2022_03_021
crossref_primary_10_1002_smtd_202300427
crossref_primary_10_1039_D2EN00865C
crossref_primary_10_1016_j_watres_2024_121521
crossref_primary_10_1016_j_cej_2022_139035
crossref_primary_10_1016_j_cej_2024_157245
crossref_primary_10_1016_j_jcis_2021_12_006
crossref_primary_10_1021_acs_langmuir_3c01935
crossref_primary_10_2139_ssrn_4066147
crossref_primary_10_1016_j_cej_2022_136208
crossref_primary_10_1016_j_chemosphere_2023_139736
crossref_primary_10_1016_j_catcom_2023_106618
crossref_primary_10_1016_j_jhazmat_2022_128386
crossref_primary_10_1016_j_cej_2023_147150
crossref_primary_10_1039_D4NJ00161C
crossref_primary_10_1002_aenm_202104052
crossref_primary_10_3390_catal13101325
crossref_primary_10_1016_j_jphotochem_2022_114359
crossref_primary_10_1016_j_polymdegradstab_2021_109638
crossref_primary_10_1016_j_apsusc_2022_153266
crossref_primary_10_1016_j_apsusc_2021_151043
crossref_primary_10_1016_j_cej_2023_142931
crossref_primary_10_1021_acsaom_2c00167
crossref_primary_10_1016_j_apcatb_2023_122522
crossref_primary_10_1016_j_chemosphere_2023_139529
crossref_primary_10_1016_j_catcom_2023_106627
crossref_primary_10_1016_j_cej_2024_152228
crossref_primary_10_1016_j_ijhydene_2023_06_060
crossref_primary_10_1016_j_apsusc_2024_159717
crossref_primary_10_1016_j_apsusc_2022_154228
crossref_primary_10_1039_D2CY00984F
crossref_primary_10_1039_D2DT00737A
crossref_primary_10_1016_j_jece_2024_113278
crossref_primary_10_1007_s40820_023_01052_2
crossref_primary_10_1002_sus2_192
crossref_primary_10_1016_j_jcis_2022_07_169
crossref_primary_10_1016_j_jcis_2023_04_034
crossref_primary_10_1039_D4RA02395A
crossref_primary_10_1016_j_jcis_2023_10_152
crossref_primary_10_1002_adma_202200180
crossref_primary_10_1016_j_apcata_2022_118782
crossref_primary_10_1002_aenm_202303792
crossref_primary_10_1016_j_cej_2021_131710
crossref_primary_10_1039_D4NJ00296B
crossref_primary_10_1016_j_apcatb_2022_121942
crossref_primary_10_1039_D3CY00383C
crossref_primary_10_1039_D3NR00260H
crossref_primary_10_1039_D2RA05867G
crossref_primary_10_1016_j_matt_2022_05_011
crossref_primary_10_1631_jzus_A2200440
crossref_primary_10_1002_adma_202406748
crossref_primary_10_1007_s12274_022_5015_x
crossref_primary_10_1016_j_matchemphys_2022_127233
crossref_primary_10_1016_j_apcatb_2021_120839
crossref_primary_10_1016_j_cej_2023_144898
crossref_primary_10_1016_j_jechem_2022_02_031
crossref_primary_10_1039_D4QI02743D
crossref_primary_10_1039_D4SE01264J
crossref_primary_10_1021_acsami_1c24710
crossref_primary_10_1016_j_catcom_2022_106522
crossref_primary_10_1039_D2TA03580D
crossref_primary_10_1016_j_catcom_2022_106528
crossref_primary_10_1016_j_apcatb_2022_121499
crossref_primary_10_1039_D3CP00578J
crossref_primary_10_1016_j_carbon_2023_118584
crossref_primary_10_1002_anie_202402095
crossref_primary_10_1007_s10854_022_07783_z
crossref_primary_10_1016_S1872_2067_23_64498_5
crossref_primary_10_1016_j_cclet_2023_108157
crossref_primary_10_1016_j_mssp_2024_108520
crossref_primary_10_1007_s40242_025_4249_z
crossref_primary_10_1016_j_apcatb_2022_121485
crossref_primary_10_1016_j_chemosphere_2022_135477
crossref_primary_10_1039_D3TA08073K
crossref_primary_10_1016_j_chemosphere_2022_135910
crossref_primary_10_1016_j_cej_2023_146383
crossref_primary_10_1016_j_cej_2023_145053
crossref_primary_10_1016_j_cis_2023_103048
crossref_primary_10_1016_j_jmst_2021_12_018
crossref_primary_10_1016_j_colsurfa_2021_126783
crossref_primary_10_1002_cssc_202202184
crossref_primary_10_1016_j_cej_2024_153751
crossref_primary_10_1016_j_jcis_2021_11_179
crossref_primary_10_1016_j_cej_2020_128184
crossref_primary_10_1016_j_jallcom_2025_179008
crossref_primary_10_1016_j_cej_2023_146497
crossref_primary_10_1016_j_seppur_2024_127638
crossref_primary_10_1016_j_jallcom_2025_179245
crossref_primary_10_1039_D2GC02748H
crossref_primary_10_1002_qua_27306
crossref_primary_10_1016_j_ijhydene_2024_02_110
crossref_primary_10_1016_j_chemosphere_2023_140663
crossref_primary_10_1039_D1TA05752A
crossref_primary_10_1007_s11244_024_01936_6
crossref_primary_10_1016_j_jcis_2023_08_181
crossref_primary_10_1016_j_nanoen_2024_110364
crossref_primary_10_1016_j_cej_2022_138445
crossref_primary_10_3866_PKU_WHXB202305047
crossref_primary_10_1039_D3TA00196B
crossref_primary_10_1016_j_ijhydene_2023_05_237
crossref_primary_10_1016_j_cej_2021_132725
crossref_primary_10_1016_j_chemosphere_2023_138340
crossref_primary_10_1039_D4NJ05359A
crossref_primary_10_1016_j_apsusc_2021_150317
crossref_primary_10_1016_j_apsusc_2021_151525
Cites_doi 10.1039/c3ta13188b
10.1021/acsami.7b14541
10.1002/adma.201606688
10.1016/j.apcatb.2017.08.033
10.1021/ja511802c
10.1038/s41467-019-10218-9
10.1021/jacs.7b08416
10.1021/jacs.6b02692
10.1016/j.electacta.2012.03.132
10.1039/C5CC01035G
10.1039/C4TA03128H
10.1002/aenm.201702142
10.1002/adma.201501939
10.1016/j.nanoen.2017.12.039
10.1016/j.apcatb.2019.117827
10.1126/science.aaa3145
10.1002/anie.201411170
10.1038/nmat4408
10.1016/j.jhazmat.2018.04.056
10.1039/C6TA08310B
10.1021/acs.nanolett.7b01353
10.1038/nenergy.2017.87
10.1016/j.cej.2018.11.165
10.1016/j.apcatb.2019.05.002
10.1039/C8EE01316K
10.1021/ja4092903
10.1016/j.cej.2020.124474
10.1021/acsnano.8b04693
10.1016/j.cej.2018.10.130
10.1016/j.apcatb.2017.10.042
10.1016/j.apcatb.2020.119167
10.1021/acsami.7b02701
10.1002/anie.200503779
10.1002/anie.201706870
10.1016/j.apcatb.2017.11.076
10.1002/anie.201407319
10.1021/jacs.7b05362
10.1039/C0EE00418A
10.1016/j.apcatb.2018.02.031
10.1021/acsnano.5b00435
10.1002/anie.201908640
10.1002/adfm.201200922
10.1016/j.apcatb.2018.08.049
10.1038/nmat2317
10.1016/j.apcatb.2014.07.053
10.1002/adfm.201503221
10.1021/jacs.7b02290
10.1021/jacs.6b05806
10.1002/adma.200802627
10.1021/acsnano.8b06914
10.1016/j.nanoen.2016.06.042
10.1002/anie.201407938
10.1002/anie.201606102
10.1021/ja308249k
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Feb 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 2021
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2020.119539
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2020_119539
S0926337320309541
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c249t-74428b4b77249bbdb2073f039792dad25f8cbb6bb47a7c7620c65511f0c5a4c83
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 09:30:27 EDT 2025
Tue Jul 01 04:35:08 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
Sat Mar 02 16:00:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords g-C3N4
sulfur doping
Surface charge transfer
Charge separation
Band structure regulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-74428b4b77249bbdb2073f039792dad25f8cbb6bb47a7c7620c65511f0c5a4c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6996-7955
0000-0003-4965-3443
PQID 2477706768
PQPubID 2045281
ParticipantIDs proquest_journals_2477706768
crossref_primary_10_1016_j_apcatb_2020_119539
crossref_citationtrail_10_1016_j_apcatb_2020_119539
elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Campos-Martin, Blanco-Brieva, Fierro (bib0015) 2006; 45
Kattel, Liu, Chen (bib0030) 2017; 139
Shiraishi, Kanazawa, Kofuji, Sakamoto, Ichikawa, Tanaka, Hirai (bib0100) 2014; 53
Wu, Zhang, Dong, Qiu, Kong, Zhang, Li, Xu, Zhang, Ye (bib0150) 2018; 45
Miller, Suter, Telford, Picco, Payton, Russell-Pavier, Cullen, Sella, Shaffer, Nelson, Tileli, McMillan, Howard (bib0190) 2017; 17
Deng, Tang, Feng, Zeng, Wang, Lu, Liu, Yu, Chen, Zhou (bib0265) 2017; 9
Fan, Qin, Jiang (bib0235) 2019; 359
Feng, Tang, Deng, Wang, Liu, Ouyang, Chen, Yang, Yu, Wang (bib0135) 2020; 276
Zhang, Li, Lan, Lin, Savateev, Heil, Zafeiratos, Wang, Antonietti (bib0020) 2017
Zeng, Liu, Liu, Wang, Xia, Zhang, Luo, Pei (bib0170) 2018; 224
Feng, Liao, Kong, Wu, Liu, Lee, Shih (bib0230) 2018; 354
Hill, Landers, Switzer (bib0275) 2015; 14
Li, Li, Feng, Li, Hao, Zhang, Wang, Yin, Zhou, Ma, Wang (bib0060) 2019; 10
Zheng, Cao, Wang (bib0160) 2016; 55
Fukuzumi, Yamada, Karlin (bib0005) 2012; 82
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib0070) 2009; 8
Wen, Xie, Zhang, Zhang, Liu, Chen, Li (bib0145) 2017; 9
Wang, Fu, Zheng (bib0240) 2019; 254
Zhao, Zhang, Wang, Li, He, Yin (bib0045) 2013; 135
Feng, Tang, Deng, Wang, Tang, Liu, Chen, Yu, Wang, Liang (bib0065) 2020; 389
Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 53 11926-11930.
Gao, Jiao, Waclawik, Du (bib0090) 2016; 138
Zhang, Sun, Maeda, Domen, Liu, Antonietti, Fu, Wang (bib0250) 2011; 4
Niu, Zhang, Liu, Cheng (bib0200) 2012; 22
Wang, Zhang, Zhang, Liu, Wang, Sun, Zhao (bib0050) 2019; 58
She, Wu, Zhong, Xu, Yang, Vajtai, Lou, Liu, Du, Li, Ajayan (bib0185) 2016; 27
An, Zhang, Wang, Zhang, Li, Song, Miller, Miao, Wang, Guo (bib0155) 2018; 12
Tang, Feng, Deng, Zeng, Wang, Liu, Feng, Wang (bib0055) 2018; 230
Liu, Liu, Liu, Han, Zhang, Huang, Lifshitz, Lee, Zhong, Kang (bib0075) 2015; 347
Marchal, Cottineau, Méndez-Medrano, Colbeau-Justin, Keller (bib0125) 2018; 8
Deng, Feng, Tang, Zhou, Chen, Feng, Wang, Yu, Liu (bib0260) 2020; 393
Kuriki, Sekizawa, Ishitani, Maeda (bib0085) 2015; 54
Zhu, Kim, Mao, Fujitsuka, Zhang, Wang, Majima (bib0120) 2017; 139
Xia, Zhu, Yu, Cao, Jaroniec (bib0220) 2017; 5
Zhang, Huang, Fang, Zhang, Liu, Dong (bib0130) 2017; 29
Schreier, Héroguel, Steier, Ahmad, Luterbacher, Mayer, Luo, Grätzel (bib0025) 2017; 2
Lin, Li, Liang, Liu, Bi, Wu (bib0210) 2015; 163
Cheng, Wang, Dong (bib0195) 2015; 51
Jiao, Chen, Li, Sun, Gao, Yan, Wang, Zhang, Lin, Luo, Xie (bib0035) 2017; 139
Lau, Mesch, Duppel, Blum, Senker, Lotsch (bib0180) 2015; 137
Zhang, Xie, Wang, Zhang, Pan, Xie (bib0215) 2013; 135
Feng, Tang, Deng, Zeng, Wang, Liu, Chen, Yu, Wang (bib0115) 2019; 256
Xie, Tang, Kong, Lu, Natarajan, Zhu, Zhan (bib0225) 2019; 360
Liang, Li, Huang, Kang, Yang (bib0255) 2015; 25
Bellardita, García-López, Marcì, Krivtsov, García, Palmisano (bib0245) 2018; 220
Zhang, Song, Wang, Zeng (bib0140) 2018; 225
Xu, Zhang, Shi, Zhu (bib0205) 2013; 1
Feng, Deng, Tang, Zeng, Wang, Yu, Liu, Peng, Feng, Wang (bib0110) 2018; 239
Wang, Chen, Thomas, Fu, Antonietti (bib0080) 2009; 21
Kofuji, Isobe, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib0010) 2016; 138
Villa, Manzanares Palenzuela, Sofer, Matejkova, Pumera (bib0165) 2018; 12
Nail, Fields, Zhao, Wang, Greaney, Brutchey, Osterloh (bib0270) 2015; 9
Wei, Liu, Zhang, Yao, Tan, Zhu (bib0040) 2018; 11
Maeda, Kuriki, Zhang, Wang, Ishitani (bib0095) 2014; 2
Kang, Yang, Yin, Kang, Cheng (bib0175) 2015; 27
Fan (10.1016/j.apcatb.2020.119539_bib0235) 2019; 359
Feng (10.1016/j.apcatb.2020.119539_bib0115) 2019; 256
Feng (10.1016/j.apcatb.2020.119539_bib0065) 2020; 389
Feng (10.1016/j.apcatb.2020.119539_bib0110) 2018; 239
Zheng (10.1016/j.apcatb.2020.119539_bib0160) 2016; 55
Wang (10.1016/j.apcatb.2020.119539_bib0080) 2009; 21
Campos-Martin (10.1016/j.apcatb.2020.119539_bib0015) 2006; 45
Wang (10.1016/j.apcatb.2020.119539_bib0240) 2019; 254
Zhu (10.1016/j.apcatb.2020.119539_bib0120) 2017; 139
She (10.1016/j.apcatb.2020.119539_bib0185) 2016; 27
Deng (10.1016/j.apcatb.2020.119539_bib0265) 2017; 9
Kattel (10.1016/j.apcatb.2020.119539_bib0030) 2017; 139
Wang (10.1016/j.apcatb.2020.119539_bib0070) 2009; 8
Marchal (10.1016/j.apcatb.2020.119539_bib0125) 2018; 8
Li (10.1016/j.apcatb.2020.119539_bib0060) 2019; 10
Cheng (10.1016/j.apcatb.2020.119539_bib0195) 2015; 51
Xu (10.1016/j.apcatb.2020.119539_bib0205) 2013; 1
Deng (10.1016/j.apcatb.2020.119539_bib0260) 2020; 393
Jiao (10.1016/j.apcatb.2020.119539_bib0035) 2017; 139
Maeda (10.1016/j.apcatb.2020.119539_bib0095) 2014; 2
Zhang (10.1016/j.apcatb.2020.119539_bib0250) 2011; 4
Feng (10.1016/j.apcatb.2020.119539_bib0230) 2018; 354
Schreier (10.1016/j.apcatb.2020.119539_bib0025) 2017; 2
Wu (10.1016/j.apcatb.2020.119539_bib0150) 2018; 45
Xie (10.1016/j.apcatb.2020.119539_bib0225) 2019; 360
Liu (10.1016/j.apcatb.2020.119539_bib0075) 2015; 347
Kofuji (10.1016/j.apcatb.2020.119539_bib0010) 2016; 138
Zhang (10.1016/j.apcatb.2020.119539_bib0140) 2018; 225
Villa (10.1016/j.apcatb.2020.119539_bib0165) 2018; 12
Zhang (10.1016/j.apcatb.2020.119539_bib0215) 2013; 135
Kang (10.1016/j.apcatb.2020.119539_bib0175) 2015; 27
Zhao (10.1016/j.apcatb.2020.119539_bib0045) 2013; 135
Wang (10.1016/j.apcatb.2020.119539_bib0050) 2019; 58
Bellardita (10.1016/j.apcatb.2020.119539_bib0245) 2018; 220
Zhang (10.1016/j.apcatb.2020.119539_bib0130) 2017; 29
Fukuzumi (10.1016/j.apcatb.2020.119539_bib0005) 2012; 82
Lau (10.1016/j.apcatb.2020.119539_bib0180) 2015; 137
Miller (10.1016/j.apcatb.2020.119539_bib0190) 2017; 17
Wen (10.1016/j.apcatb.2020.119539_bib0145) 2017; 9
Zeng (10.1016/j.apcatb.2020.119539_bib0170) 2018; 224
Kuriki (10.1016/j.apcatb.2020.119539_bib0085) 2015; 54
Liang (10.1016/j.apcatb.2020.119539_bib0255) 2015; 25
Shiraishi (10.1016/j.apcatb.2020.119539_bib0100) 2014; 53
Wei (10.1016/j.apcatb.2020.119539_bib0040) 2018; 11
Niu (10.1016/j.apcatb.2020.119539_bib0200) 2012; 22
Xia (10.1016/j.apcatb.2020.119539_bib0220) 2017; 5
Feng (10.1016/j.apcatb.2020.119539_bib0135) 2020; 276
Nail (10.1016/j.apcatb.2020.119539_bib0270) 2015; 9
An (10.1016/j.apcatb.2020.119539_bib0155) 2018; 12
10.1016/j.apcatb.2020.119539_bib0105
Lin (10.1016/j.apcatb.2020.119539_bib0210) 2015; 163
Tang (10.1016/j.apcatb.2020.119539_bib0055) 2018; 230
Gao (10.1016/j.apcatb.2020.119539_bib0090) 2016; 138
Zhang (10.1016/j.apcatb.2020.119539_bib0020) 2017
Hill (10.1016/j.apcatb.2020.119539_bib0275) 2015; 14
References_xml – volume: 10
  start-page: 2177
  year: 2019
  ident: bib0060
  publication-title: Nat. Commun.
– volume: 224
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0170
  publication-title: Appl. Catal. B-Environ.
– volume: 2
  start-page: 15146
  year: 2014
  end-page: 15151
  ident: bib0095
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 4572
  year: 2015
  end-page: 4577
  ident: bib0175
  publication-title: Adv. Mater.
– volume: 360
  start-page: 1213
  year: 2019
  end-page: 1222
  ident: bib0225
  publication-title: Chem. Eng. J.
– volume: 347
  start-page: 970
  year: 2015
  end-page: 974
  ident: bib0075
  publication-title: Science
– volume: 135
  start-page: 18
  year: 2013
  end-page: 21
  ident: bib0215
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 42816
  year: 2017
  end-page: 42828
  ident: bib0265
  publication-title: ACS Appl. Mater. Inter.
– volume: 58
  start-page: 16644
  year: 2019
  end-page: 16650
  ident: bib0050
  publication-title: Angew. Chem. Int. Ed.
– volume: 225
  start-page: 172
  year: 2018
  end-page: 179
  ident: bib0140
  publication-title: Appl. Catal. B-Environ.
– volume: 17
  start-page: 5891
  year: 2017
  end-page: 5896
  ident: bib0190
  publication-title: Nano Lett.
– volume: 12
  start-page: 9441
  year: 2018
  end-page: 9450
  ident: bib0155
  publication-title: ACS Nano
– volume: 4
  start-page: 675
  year: 2011
  end-page: 678
  ident: bib0250
  publication-title: Energy Environ. Sci.
– volume: 135
  start-page: 15750
  year: 2013
  end-page: 15753
  ident: bib0045
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2018
  ident: bib0125
  publication-title: Adv. Energy Mater.
– volume: 45
  start-page: 109
  year: 2018
  end-page: 117
  ident: bib0150
  publication-title: Nano Energy
– volume: 139
  start-page: 7586
  year: 2017
  end-page: 7594
  ident: bib0035
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 1064
  year: 2015
  end-page: 1072
  ident: bib0180
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 13234
  year: 2017
  end-page: 13242
  ident: bib0120
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 138
  year: 2016
  end-page: 146
  ident: bib0185
  publication-title: Nano Energy
– volume: 22
  start-page: 4763
  year: 2012
  end-page: 4770
  ident: bib0200
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 10019
  year: 2016
  end-page: 10025
  ident: bib0010
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1150
  year: 2015
  end-page: 1155
  ident: bib0275
  publication-title: Nat. Mater.
– volume: 21
  start-page: 1609
  year: 2009
  ident: bib0080
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1606688
  year: 2017
  ident: bib0130
  publication-title: Adv. Mater.
– volume: 138
  start-page: 6292
  year: 2016
  end-page: 6297
  ident: bib0090
  publication-title: J. Am. Chem. Soc.
– volume: 254
  start-page: 270
  year: 2019
  end-page: 282
  ident: bib0240
  publication-title: Appl. Catal. B-Environ.
– volume: 359
  start-page: 723
  year: 2019
  end-page: 732
  ident: bib0235
  publication-title: Chem. Eng. J.
– volume: 276
  year: 2020
  ident: bib0135
  publication-title: Appl. Catal. B: Environ.
– volume: 55
  start-page: 11512
  year: 2016
  end-page: 11516
  ident: bib0160
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 2581
  year: 2018
  end-page: 2589
  ident: bib0040
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 17087
  year: 2017
  ident: bib0025
  publication-title: Nat. Energy
– volume: 12
  start-page: 12482
  year: 2018
  end-page: 12491
  ident: bib0165
  publication-title: ACS Nano
– volume: 393
  year: 2020
  ident: bib0260
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 5134
  year: 2015
  end-page: 5142
  ident: bib0270
  publication-title: ACS Nano
– volume: 139
  start-page: 9739
  year: 2017
  end-page: 9754
  ident: bib0030
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 2406
  year: 2015
  end-page: 2409
  ident: bib0085
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 3230
  year: 2017
  end-page: 3238
  ident: bib0220
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 6962
  year: 2006
  end-page: 6984
  ident: bib0015
  publication-title: Angew. Chem. Intern. Ed.
– reference: Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 53 11926-11930.
– start-page: 13445
  year: 2017
  end-page: 13449
  ident: bib0020
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 14766
  year: 2013
  end-page: 14772
  ident: bib0205
  publication-title: J. Mater. Chem. A
– volume: 354
  start-page: 63
  year: 2018
  end-page: 71
  ident: bib0230
  publication-title: J. Hazard. Mater.
– volume: 220
  start-page: 222
  year: 2018
  end-page: 233
  ident: bib0245
  publication-title: Appl. Catal. B-Environ.
– volume: 53
  start-page: 13454
  year: 2014
  end-page: 13459
  ident: bib0100
  publication-title: Angew. Chem. Int. Ed.
– volume: 239
  start-page: 525
  year: 2018
  end-page: 536
  ident: bib0110
  publication-title: Appl. Catal. B-Environ.
– volume: 25
  start-page: 6885
  year: 2015
  end-page: 6892
  ident: bib0255
  publication-title: Adv. Funct. Mater.
– volume: 230
  start-page: 102
  year: 2018
  end-page: 114
  ident: bib0055
  publication-title: Appl. Catal. B-Environ.
– volume: 389
  start-page: 124474
  year: 2020
  ident: bib0065
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: bib0070
  publication-title: Nat. Mater.
– volume: 163
  start-page: 135
  year: 2015
  end-page: 142
  ident: bib0210
  publication-title: Appl. Catal. B-Environ.
– volume: 82
  start-page: 493
  year: 2012
  end-page: 511
  ident: bib0005
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 7176
  year: 2015
  end-page: 7179
  ident: bib0195
  publication-title: Chem. Commun.
– volume: 256
  year: 2019
  ident: bib0115
  publication-title: Appl. Catal. B-Environ.
– volume: 9
  start-page: 14031
  year: 2017
  end-page: 14042
  ident: bib0145
  publication-title: ACS Appl. Mater. Inter.
– volume: 1
  start-page: 14766
  year: 2013
  ident: 10.1016/j.apcatb.2020.119539_bib0205
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13188b
– volume: 9
  start-page: 42816
  year: 2017
  ident: 10.1016/j.apcatb.2020.119539_bib0265
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b14541
– volume: 29
  start-page: 1606688
  year: 2017
  ident: 10.1016/j.apcatb.2020.119539_bib0130
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606688
– volume: 220
  start-page: 222
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0245
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.08.033
– volume: 137
  start-page: 1064
  year: 2015
  ident: 10.1016/j.apcatb.2020.119539_bib0180
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511802c
– volume: 10
  start-page: 2177
  year: 2019
  ident: 10.1016/j.apcatb.2020.119539_bib0060
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10218-9
– volume: 139
  start-page: 13234
  year: 2017
  ident: 10.1016/j.apcatb.2020.119539_bib0120
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08416
– volume: 138
  start-page: 6292
  year: 2016
  ident: 10.1016/j.apcatb.2020.119539_bib0090
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02692
– volume: 82
  start-page: 493
  year: 2012
  ident: 10.1016/j.apcatb.2020.119539_bib0005
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.03.132
– volume: 51
  start-page: 7176
  year: 2015
  ident: 10.1016/j.apcatb.2020.119539_bib0195
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01035G
– volume: 2
  start-page: 15146
  year: 2014
  ident: 10.1016/j.apcatb.2020.119539_bib0095
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03128H
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0125
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702142
– volume: 27
  start-page: 4572
  year: 2015
  ident: 10.1016/j.apcatb.2020.119539_bib0175
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501939
– volume: 45
  start-page: 109
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0150
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.039
– volume: 256
  year: 2019
  ident: 10.1016/j.apcatb.2020.119539_bib0115
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.117827
– volume: 347
  start-page: 970
  year: 2015
  ident: 10.1016/j.apcatb.2020.119539_bib0075
  publication-title: Science
  doi: 10.1126/science.aaa3145
– volume: 54
  start-page: 2406
  year: 2015
  ident: 10.1016/j.apcatb.2020.119539_bib0085
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411170
– volume: 14
  start-page: 1150
  year: 2015
  ident: 10.1016/j.apcatb.2020.119539_bib0275
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4408
– volume: 354
  start-page: 63
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0230
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.04.056
– volume: 5
  start-page: 3230
  year: 2017
  ident: 10.1016/j.apcatb.2020.119539_bib0220
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08310B
– volume: 17
  start-page: 5891
  year: 2017
  ident: 10.1016/j.apcatb.2020.119539_bib0190
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01353
– volume: 2
  start-page: 17087
  year: 2017
  ident: 10.1016/j.apcatb.2020.119539_bib0025
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.87
– volume: 359
  start-page: 723
  year: 2019
  ident: 10.1016/j.apcatb.2020.119539_bib0235
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.165
– volume: 254
  start-page: 270
  year: 2019
  ident: 10.1016/j.apcatb.2020.119539_bib0240
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.05.002
– volume: 11
  start-page: 2581
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0040
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01316K
– volume: 135
  start-page: 15750
  year: 2013
  ident: 10.1016/j.apcatb.2020.119539_bib0045
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4092903
– volume: 389
  start-page: 124474
  year: 2020
  ident: 10.1016/j.apcatb.2020.119539_bib0065
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124474
– volume: 12
  start-page: 9441
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0155
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04693
– volume: 360
  start-page: 1213
  year: 2019
  ident: 10.1016/j.apcatb.2020.119539_bib0225
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.10.130
– volume: 224
  start-page: 1
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0170
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.10.042
– volume: 276
  year: 2020
  ident: 10.1016/j.apcatb.2020.119539_bib0135
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119167
– volume: 9
  start-page: 14031
  year: 2017
  ident: 10.1016/j.apcatb.2020.119539_bib0145
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b02701
– volume: 45
  start-page: 6962
  year: 2006
  ident: 10.1016/j.apcatb.2020.119539_bib0015
  publication-title: Angew. Chem. Intern. Ed.
  doi: 10.1002/anie.200503779
– start-page: 13445
  year: 2017
  ident: 10.1016/j.apcatb.2020.119539_bib0020
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706870
– volume: 225
  start-page: 172
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0140
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.11.076
– ident: 10.1016/j.apcatb.2020.119539_bib0105
  doi: 10.1002/anie.201407319
– volume: 139
  start-page: 9739
  year: 2017
  ident: 10.1016/j.apcatb.2020.119539_bib0030
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05362
– volume: 4
  start-page: 675
  year: 2011
  ident: 10.1016/j.apcatb.2020.119539_bib0250
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00418A
– volume: 230
  start-page: 102
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0055
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.02.031
– volume: 9
  start-page: 5134
  year: 2015
  ident: 10.1016/j.apcatb.2020.119539_bib0270
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00435
– volume: 58
  start-page: 16644
  year: 2019
  ident: 10.1016/j.apcatb.2020.119539_bib0050
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908640
– volume: 22
  start-page: 4763
  year: 2012
  ident: 10.1016/j.apcatb.2020.119539_bib0200
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200922
– volume: 239
  start-page: 525
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0110
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.08.049
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.apcatb.2020.119539_bib0070
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 163
  start-page: 135
  year: 2015
  ident: 10.1016/j.apcatb.2020.119539_bib0210
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2014.07.053
– volume: 25
  start-page: 6885
  year: 2015
  ident: 10.1016/j.apcatb.2020.119539_bib0255
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503221
– volume: 139
  start-page: 7586
  year: 2017
  ident: 10.1016/j.apcatb.2020.119539_bib0035
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02290
– volume: 138
  start-page: 10019
  year: 2016
  ident: 10.1016/j.apcatb.2020.119539_bib0010
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05806
– volume: 21
  start-page: 1609
  year: 2009
  ident: 10.1016/j.apcatb.2020.119539_bib0080
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802627
– volume: 12
  start-page: 12482
  year: 2018
  ident: 10.1016/j.apcatb.2020.119539_bib0165
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06914
– volume: 27
  start-page: 138
  year: 2016
  ident: 10.1016/j.apcatb.2020.119539_bib0185
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.042
– volume: 53
  start-page: 13454
  year: 2014
  ident: 10.1016/j.apcatb.2020.119539_bib0100
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407938
– volume: 55
  start-page: 11512
  year: 2016
  ident: 10.1016/j.apcatb.2020.119539_bib0160
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606102
– volume: 393
  year: 2020
  ident: 10.1016/j.apcatb.2020.119539_bib0260
  publication-title: Chem. Eng. J.
– volume: 135
  start-page: 18
  year: 2013
  ident: 10.1016/j.apcatb.2020.119539_bib0215
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308249k
SSID ssj0002328
Score 2.6702077
Snippet [Display omitted] •A novel co-annealing method was developed for the preparation of sulfur doped g-C3N4.•The prepared SS-CN exhibits enhanced optical...
Exfoliating g-C3N4 into 2D nanosheet to minimize the stacking layer for the improvement of charge transfer and separation is considered to be the effective...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119539
SubjectTerms Absorption
Absorption spectra
Band structure regulation
Carbon nitride
Charge efficiency
Charge separation
Charge transfer
Doping
Electromagnetic absorption
Exfoliation
g-C3N4
Hydrogen peroxide
Nanosheets
Photocatalysis
Red shift
Separation
Sulfur
sulfur doping
Surface charge
Surface charge transfer
Title A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2
URI https://dx.doi.org/10.1016/j.apcatb.2020.119539
https://www.proquest.com/docview/2477706768
Volume 281
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWq9gAcqrJQ0Q8qH7ia3dhOHB9Xq1YLSMsBKvVm2Y5Di6Ik2mSRuPDL-HGdcRIKCKkSp5V2x06y4zy_Sd7MEPLGCSe1CooFazWTiguWh9Szkpcqy1Ltk0FtscnW1_L9TXqzR1ZTLgzKKkfsHzA9ovX4zXz8N-ft3d3800LzTAglOL4lSGPyupQKV_nbHw8yD2AMEY3BmKH1lD4XNV629bZ3ECVyxA6dYsvwf29PfwF13H2ujsjhSBvpcjiz52Qv1DPyZDV1a5uRZ78VFpyR48uH_DUYNt7A3Qvyc0nr5luoaLeryt2WAXVGPxfUAt5aTE2nQ09p2pT0C1uJjaS1rZvuNoSeov4cwl6kpxTILgXySCu4DDSuMMqn1nXNNqIQxSe8FI6BDJO2UfUHx4mVmQLtI1-GH3Ca9rbpm_gc6TtcHtoWQ01bnHfN4dwK-PjIX5Lrq8vPqzUbGzgwD1Fdz5SE4MZJBwxeaucKxwFQygW-SuSFLXha5t65zDmprPIAywufAYNLyoVPrfS5OCb7dVOHV5harlIN9CQvuJaJhSgzV6VOPEwvfSLyEyImvxk_VjfHJhuVmWRsX83gbYPeNoO3Twj7Naodqns8Yq-mJWH-WKUGNqBHRp5PK8iMKNEZLpVSQBey_PS_Jz4jTznKbKKQ_Jzs99tdeA08qXcX8Ua4IAfLdx_Wm3szzxRA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcigcECxUFAr4wNXsxnbi-FitWi1QlgOt1JtlOw5tFSXRJlupF34ZP44ZJ6GAkCpxipSMHSdjP79J5oOQd044qVVQLFirmVRcsDyknpW8VFmWap8M3hbrbHUuP16kFztkOcXCoFvliP0Dpke0Hs_Mx7c5b6-u5l8XmmdCKMHxL0GKwesPJCxfLGPw_vudnwdQhgjHIM1QfIqfi05etvW2d2AmcgQPnWLN8H_vT38hddx-Tp6QxyNvpEfD0J6SnVDPyN5yKtc2I49-yyw4I_vHdwFs0Gxcwd0z8uOI1s1NqGi3rcrthgF3RkUX1ALgWoxNp0NRadqU9BtbirWkta2b7jKEnqIDOti9yE8psF0K7JFW8BgoXKGZT63rmk2EIYqfeCncAykmbaPbH9wnpmYKtI-EGS5gN-1l0zfxQ9ItPB7KFkNSW-x3xWFsBRy-8Ofk_OT4bLliYwUH5sGs65mSYN046YDCS-1c4TggSrnAf4m8sAVPy9w7lzknlVUecHnhM6BwSbnwqZU-F_tkt27q8AJjy1WqgZ_kBdcysWBm5qrUiYfupU9EfkDEpDfjx_TmWGWjMpMf27UZtG1Q22bQ9gFhv1q1Q3qPe-TVNCXMH9PUwA50T8vDaQaZESY6w6VSCvhClr_8747fkr3V2edTc_ph_ekVecjR5yZ6lR-S3X6zDa-BNPXuTVwUPwFZ9BXO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+sulfur-assisted+annealing+method+of+g-C3N4+nanosheet+compensates+for+the+loss+of+light+absorption+with+further+promoted+charge+transfer+for+photocatalytic+production+of+H2+and+H2O2&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Feng%2C+Chengyang&rft.au=Tang%2C+Lin&rft.au=Deng%2C+Yaocheng&rft.au=Wang%2C+Jiajia&rft.date=2021-02-01&rft.issn=0926-3373&rft.volume=281&rft.spage=119539&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_119539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon