A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2
[Display omitted] •A novel co-annealing method was developed for the preparation of sulfur doped g-C3N4.•The prepared SS-CN exhibits enhanced optical absorption, charge separation and surface charge transfer.•DFT calculations revealed the mechanism by which S-doping regulates band structure and char...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 281; p. 119539 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A novel co-annealing method was developed for the preparation of sulfur doped g-C3N4.•The prepared SS-CN exhibits enhanced optical absorption, charge separation and surface charge transfer.•DFT calculations revealed the mechanism by which S-doping regulates band structure and charge distribution.•The SS-CN photocatalyst has highly enhanced capacity of H2 evolution and H2O2 production.
Exfoliating g-C3N4 into 2D nanosheet to minimize the stacking layer for the improvement of charge transfer and separation is considered to be the effective measure to enhance its photocatalytic performance. However, no matter what method is used, the exfoliated g-C3N4 nanosheet shows decreased optical absorption compared to the pristine bulk-like one. In this work, a simple one-step sulfur doping method is proposed on the basis of exfoliated g-C3N4 nanosheet, which can directly regulate the band structure of g-C3N4 and enhance its optical absorption ability. The proposed sulfur doping method redshift the light absorption edge of g-C3N4 nanosheet to the level of pristine bulk-like g-C3N4, and even induce the generation of a new n→π* absorption band. In addition, the introduced sulfur doping site can form a local electron accumulation point, so that to further improve the charge separation efficiency and surface charge transfer ability of g-C3N4 nanosheets. |
---|---|
AbstractList | [Display omitted]
•A novel co-annealing method was developed for the preparation of sulfur doped g-C3N4.•The prepared SS-CN exhibits enhanced optical absorption, charge separation and surface charge transfer.•DFT calculations revealed the mechanism by which S-doping regulates band structure and charge distribution.•The SS-CN photocatalyst has highly enhanced capacity of H2 evolution and H2O2 production.
Exfoliating g-C3N4 into 2D nanosheet to minimize the stacking layer for the improvement of charge transfer and separation is considered to be the effective measure to enhance its photocatalytic performance. However, no matter what method is used, the exfoliated g-C3N4 nanosheet shows decreased optical absorption compared to the pristine bulk-like one. In this work, a simple one-step sulfur doping method is proposed on the basis of exfoliated g-C3N4 nanosheet, which can directly regulate the band structure of g-C3N4 and enhance its optical absorption ability. The proposed sulfur doping method redshift the light absorption edge of g-C3N4 nanosheet to the level of pristine bulk-like g-C3N4, and even induce the generation of a new n→π* absorption band. In addition, the introduced sulfur doping site can form a local electron accumulation point, so that to further improve the charge separation efficiency and surface charge transfer ability of g-C3N4 nanosheets. Exfoliating g-C3N4 into 2D nanosheet to minimize the stacking layer for the improvement of charge transfer and separation is considered to be the effective measure to enhance its photocatalytic performance. However, no matter what method is used, the exfoliated g-C3N4 nanosheet shows decreased optical absorption compared to the pristine bulk-like one. In this work, a simple one-step sulfur doping method is proposed on the basis of exfoliated g-C3N4 nanosheet, which can directly regulate the band structure of g-C3N4 and enhance its optical absorption ability. The proposed sulfur doping method redshift the light absorption edge of g-C3N4 nanosheet to the level of pristine bulk-like g-C3N4, and even induce the generation of a new n→π* absorption band. In addition, the introduced sulfur doping site can form a local electron accumulation point, so that to further improve the charge separation efficiency and surface charge transfer ability of g-C3N4 nanosheets. |
ArticleNumber | 119539 |
Author | Wang, Jiajia Deng, Yaocheng Yu, Jiangfang Tang, Lin Wang, Jingjing Liu, Yani Feng, Chengyang Yang, Haoran Ouyang, Xilian |
Author_xml | – sequence: 1 givenname: Chengyang surname: Feng fullname: Feng, Chengyang organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 2 givenname: Lin orcidid: 0000-0001-6996-7955 surname: Tang fullname: Tang, Lin email: tanglin@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 3 givenname: Yaocheng orcidid: 0000-0003-4965-3443 surname: Deng fullname: Deng, Yaocheng organization: College of Resources and Environment, Hunan Agricultural University, Changsha, 410028, China – sequence: 4 givenname: Jiajia surname: Wang fullname: Wang, Jiajia organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 5 givenname: Yani surname: Liu fullname: Liu, Yani organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 6 givenname: Xilian surname: Ouyang fullname: Ouyang, Xilian organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 7 givenname: Haoran surname: Yang fullname: Yang, Haoran organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 8 givenname: Jiangfang surname: Yu fullname: Yu, Jiangfang organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 9 givenname: Jingjing surname: Wang fullname: Wang, Jingjing organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China |
BookMark | eNqFUUtv1DAQtlArsX38Aw6WOGdxbCdOOCBVK6BIFb3Qs-XHZONV1g62U9T_xo_DIZw4wGlkz_eYme8KXfjgAaE3NdnXpG7fnfZqNirrPSW0fNV9w_pXaFd3glWs69gF2pGethVjgr1GVymdCCGU0W6Hft5hH55hwmmZhiVWKiWXMlisvAc1OX_EZ8hjsDgM-Fgd2FeOvfIhjQAZm3CewSeVIeEhRJxHwFNIaQVP7jhmrHQKcc4uePzD5REXjwKKeI7hHFYfM6p4BJyj8mkojVVmHkMOZSE1vWRnVqxdzG-NontPy2y2lEd6gy4HNSW4_VOv0dOnj98O99XD4-cvh7uHylDe50pwTjvNtRDlqbXVlAg2ENaLnlplaTN0RutWay6UMKKlxLRNU9cDMY3ipmPX6O2mWyb5vkDK8hSW6IulpFwIQVrRrii-oUwsJ4gwyDm6s4ovsiZyzUme5JaTXHOSW06F9v4vmnFZrduWm7jpf-QPGxnK-s8OokzGgTdgXQSTpQ3u3wK_AC0Ytew |
CitedBy_id | crossref_primary_10_1016_j_jtice_2021_07_034 crossref_primary_10_1039_D4EE01543F crossref_primary_10_1016_j_colsurfa_2023_131231 crossref_primary_10_1016_j_carbon_2023_118715 crossref_primary_10_1016_j_nanoen_2022_107906 crossref_primary_10_1016_j_jcis_2023_07_059 crossref_primary_10_1016_j_ccr_2022_214846 crossref_primary_10_1016_j_apsusc_2022_154886 crossref_primary_10_1021_acsaem_2c04124 crossref_primary_10_1016_j_cej_2021_133604 crossref_primary_10_1557_s43578_021_00392_2 crossref_primary_10_1021_acs_energyfuels_2c00138 crossref_primary_10_1002_smll_202207636 crossref_primary_10_1039_D2MA00276K crossref_primary_10_1016_j_mssp_2023_107459 crossref_primary_10_1016_j_jece_2023_109453 crossref_primary_10_1016_j_mtsust_2023_100416 crossref_primary_10_1039_D1NJ04682A crossref_primary_10_1002_chem_202500297 crossref_primary_10_1021_acsnano_3c06212 crossref_primary_10_1016_j_cej_2022_139435 crossref_primary_10_1016_j_matchemphys_2025_130575 crossref_primary_10_1021_acsaem_4c01061 crossref_primary_10_1016_j_apsusc_2022_154755 crossref_primary_10_1016_j_apsusc_2022_155844 crossref_primary_10_1016_j_jcat_2024_115628 crossref_primary_10_1039_D2NA00909A crossref_primary_10_1016_j_jece_2022_108747 crossref_primary_10_1016_j_jmst_2023_01_006 crossref_primary_10_1631_2023_A2200440 crossref_primary_10_1016_j_jhazmat_2022_129845 crossref_primary_10_1016_j_cej_2023_145248 crossref_primary_10_1007_s11356_022_19581_5 crossref_primary_10_1039_D3TA07371H crossref_primary_10_1016_j_cej_2024_155450 crossref_primary_10_1016_j_apcatb_2023_122918 crossref_primary_10_1002_cey2_491 crossref_primary_10_1016_j_apsusc_2024_160634 crossref_primary_10_1002_smll_202105089 crossref_primary_10_1016_j_jece_2023_109426 crossref_primary_10_1002_advs_202304063 crossref_primary_10_1016_j_cej_2021_132531 crossref_primary_10_1055_a_2378_3919 crossref_primary_10_1002_admi_202202172 crossref_primary_10_1007_s12598_023_02583_8 crossref_primary_10_2139_ssrn_4190844 crossref_primary_10_1021_acsomega_4c06585 crossref_primary_10_1016_j_apcatb_2023_123453 crossref_primary_10_1002_adsu_202300116 crossref_primary_10_2139_ssrn_4184970 crossref_primary_10_1016_j_cej_2023_144388 crossref_primary_10_1039_D2CY01107G crossref_primary_10_1039_D3CY01698F crossref_primary_10_1016_j_cej_2021_134020 crossref_primary_10_1016_j_cej_2023_144708 crossref_primary_10_1016_j_apcatb_2024_123767 crossref_primary_10_1016_j_seppur_2024_129202 crossref_primary_10_1016_j_jmst_2023_02_049 crossref_primary_10_1016_j_cej_2022_138489 crossref_primary_10_1016_j_mtsust_2024_100819 crossref_primary_10_1016_j_cej_2024_151091 crossref_primary_10_1016_j_apsusc_2022_154974 crossref_primary_10_1016_j_carbon_2023_118052 crossref_primary_10_1016_j_cej_2022_140442 crossref_primary_10_1016_j_cej_2025_161862 crossref_primary_10_1016_j_apsusc_2022_154733 crossref_primary_10_1021_acsami_4c20925 crossref_primary_10_1016_j_heliyon_2022_e10683 crossref_primary_10_1002_cctc_202401141 crossref_primary_10_1007_s12613_024_2924_6 crossref_primary_10_1007_s12598_023_02555_y crossref_primary_10_1016_j_jclepro_2022_134918 crossref_primary_10_1021_acsami_3c05137 crossref_primary_10_3390_ijerph192315707 crossref_primary_10_1016_j_vacuum_2024_113740 crossref_primary_10_1016_j_jcis_2022_07_137 crossref_primary_10_1016_j_seppur_2023_125193 crossref_primary_10_1016_j_jwpe_2025_107180 crossref_primary_10_1002_adfm_202205119 crossref_primary_10_1002_lpor_202300301 crossref_primary_10_26599_NRE_2023_9120091 crossref_primary_10_1016_j_jcis_2022_04_169 crossref_primary_10_1039_D1CC00214G crossref_primary_10_1039_D3EE03032F crossref_primary_10_1016_j_cej_2021_129825 crossref_primary_10_1016_j_mcat_2023_113674 crossref_primary_10_1016_j_jallcom_2021_160550 crossref_primary_10_1016_j_seppur_2022_122875 crossref_primary_10_1016_j_enmm_2024_100990 crossref_primary_10_1039_D4TA02620A crossref_primary_10_1016_j_cej_2024_151511 crossref_primary_10_1016_j_chemosphere_2023_140488 crossref_primary_10_1039_D3NR01404E crossref_primary_10_1039_D4TA09249J crossref_primary_10_1515_ntrev_2022_0556 crossref_primary_10_1002_aenm_202401768 crossref_primary_10_1016_j_ces_2023_119333 crossref_primary_10_1007_s10854_023_10329_6 crossref_primary_10_1021_acs_nanolett_2c01825 crossref_primary_10_1016_j_apsusc_2022_155248 crossref_primary_10_1021_acs_analchem_2c05691 crossref_primary_10_1016_j_apcatb_2021_120695 crossref_primary_10_1016_j_ccr_2024_216218 crossref_primary_10_1016_j_apsusc_2022_155242 crossref_primary_10_1016_j_jallcom_2021_163490 crossref_primary_10_1016_j_gee_2021_08_004 crossref_primary_10_1039_D0GC04236F crossref_primary_10_1021_acsanm_1c00341 crossref_primary_10_1039_D2CY00831A crossref_primary_10_1016_j_jwpe_2024_105952 crossref_primary_10_1016_j_jcis_2023_03_209 crossref_primary_10_1016_j_ijhydene_2024_05_140 crossref_primary_10_1021_acssuschemeng_1c07985 crossref_primary_10_1039_D1DT02367E crossref_primary_10_1016_j_apcatb_2022_121066 crossref_primary_10_1016_j_apcatb_2022_121185 crossref_primary_10_1016_j_jwpe_2024_105829 crossref_primary_10_1002_er_8572 crossref_primary_10_1016_j_envres_2023_116805 crossref_primary_10_1039_D2CY00474G crossref_primary_10_1021_acs_langmuir_4c05287 crossref_primary_10_1016_j_seppur_2023_124904 crossref_primary_10_1021_acsami_4c18585 crossref_primary_10_1039_D3CY00054K crossref_primary_10_1016_j_scitotenv_2024_170191 crossref_primary_10_1021_acs_iecr_3c01800 crossref_primary_10_1007_s11164_024_05301_w crossref_primary_10_1016_j_cej_2024_158348 crossref_primary_10_1002_cssc_202401570 crossref_primary_10_1002_ange_202402095 crossref_primary_10_1016_j_fuel_2023_130754 crossref_primary_10_1021_acs_energyfuels_1c00688 crossref_primary_10_1021_acs_inorgchem_4c04699 crossref_primary_10_1007_s41061_023_00423_y crossref_primary_10_1016_j_cclet_2022_03_021 crossref_primary_10_1002_smtd_202300427 crossref_primary_10_1039_D2EN00865C crossref_primary_10_1016_j_watres_2024_121521 crossref_primary_10_1016_j_cej_2022_139035 crossref_primary_10_1016_j_cej_2024_157245 crossref_primary_10_1016_j_jcis_2021_12_006 crossref_primary_10_1021_acs_langmuir_3c01935 crossref_primary_10_2139_ssrn_4066147 crossref_primary_10_1016_j_cej_2022_136208 crossref_primary_10_1016_j_chemosphere_2023_139736 crossref_primary_10_1016_j_catcom_2023_106618 crossref_primary_10_1016_j_jhazmat_2022_128386 crossref_primary_10_1016_j_cej_2023_147150 crossref_primary_10_1039_D4NJ00161C crossref_primary_10_1002_aenm_202104052 crossref_primary_10_3390_catal13101325 crossref_primary_10_1016_j_jphotochem_2022_114359 crossref_primary_10_1016_j_polymdegradstab_2021_109638 crossref_primary_10_1016_j_apsusc_2022_153266 crossref_primary_10_1016_j_apsusc_2021_151043 crossref_primary_10_1016_j_cej_2023_142931 crossref_primary_10_1021_acsaom_2c00167 crossref_primary_10_1016_j_apcatb_2023_122522 crossref_primary_10_1016_j_chemosphere_2023_139529 crossref_primary_10_1016_j_catcom_2023_106627 crossref_primary_10_1016_j_cej_2024_152228 crossref_primary_10_1016_j_ijhydene_2023_06_060 crossref_primary_10_1016_j_apsusc_2024_159717 crossref_primary_10_1016_j_apsusc_2022_154228 crossref_primary_10_1039_D2CY00984F crossref_primary_10_1039_D2DT00737A crossref_primary_10_1016_j_jece_2024_113278 crossref_primary_10_1007_s40820_023_01052_2 crossref_primary_10_1002_sus2_192 crossref_primary_10_1016_j_jcis_2022_07_169 crossref_primary_10_1016_j_jcis_2023_04_034 crossref_primary_10_1039_D4RA02395A crossref_primary_10_1016_j_jcis_2023_10_152 crossref_primary_10_1002_adma_202200180 crossref_primary_10_1016_j_apcata_2022_118782 crossref_primary_10_1002_aenm_202303792 crossref_primary_10_1016_j_cej_2021_131710 crossref_primary_10_1039_D4NJ00296B crossref_primary_10_1016_j_apcatb_2022_121942 crossref_primary_10_1039_D3CY00383C crossref_primary_10_1039_D3NR00260H crossref_primary_10_1039_D2RA05867G crossref_primary_10_1016_j_matt_2022_05_011 crossref_primary_10_1631_jzus_A2200440 crossref_primary_10_1002_adma_202406748 crossref_primary_10_1007_s12274_022_5015_x crossref_primary_10_1016_j_matchemphys_2022_127233 crossref_primary_10_1016_j_apcatb_2021_120839 crossref_primary_10_1016_j_cej_2023_144898 crossref_primary_10_1016_j_jechem_2022_02_031 crossref_primary_10_1039_D4QI02743D crossref_primary_10_1039_D4SE01264J crossref_primary_10_1021_acsami_1c24710 crossref_primary_10_1016_j_catcom_2022_106522 crossref_primary_10_1039_D2TA03580D crossref_primary_10_1016_j_catcom_2022_106528 crossref_primary_10_1016_j_apcatb_2022_121499 crossref_primary_10_1039_D3CP00578J crossref_primary_10_1016_j_carbon_2023_118584 crossref_primary_10_1002_anie_202402095 crossref_primary_10_1007_s10854_022_07783_z crossref_primary_10_1016_S1872_2067_23_64498_5 crossref_primary_10_1016_j_cclet_2023_108157 crossref_primary_10_1016_j_mssp_2024_108520 crossref_primary_10_1007_s40242_025_4249_z crossref_primary_10_1016_j_apcatb_2022_121485 crossref_primary_10_1016_j_chemosphere_2022_135477 crossref_primary_10_1039_D3TA08073K crossref_primary_10_1016_j_chemosphere_2022_135910 crossref_primary_10_1016_j_cej_2023_146383 crossref_primary_10_1016_j_cej_2023_145053 crossref_primary_10_1016_j_cis_2023_103048 crossref_primary_10_1016_j_jmst_2021_12_018 crossref_primary_10_1016_j_colsurfa_2021_126783 crossref_primary_10_1002_cssc_202202184 crossref_primary_10_1016_j_cej_2024_153751 crossref_primary_10_1016_j_jcis_2021_11_179 crossref_primary_10_1016_j_cej_2020_128184 crossref_primary_10_1016_j_jallcom_2025_179008 crossref_primary_10_1016_j_cej_2023_146497 crossref_primary_10_1016_j_seppur_2024_127638 crossref_primary_10_1016_j_jallcom_2025_179245 crossref_primary_10_1039_D2GC02748H crossref_primary_10_1002_qua_27306 crossref_primary_10_1016_j_ijhydene_2024_02_110 crossref_primary_10_1016_j_chemosphere_2023_140663 crossref_primary_10_1039_D1TA05752A crossref_primary_10_1007_s11244_024_01936_6 crossref_primary_10_1016_j_jcis_2023_08_181 crossref_primary_10_1016_j_nanoen_2024_110364 crossref_primary_10_1016_j_cej_2022_138445 crossref_primary_10_3866_PKU_WHXB202305047 crossref_primary_10_1039_D3TA00196B crossref_primary_10_1016_j_ijhydene_2023_05_237 crossref_primary_10_1016_j_cej_2021_132725 crossref_primary_10_1016_j_chemosphere_2023_138340 crossref_primary_10_1039_D4NJ05359A crossref_primary_10_1016_j_apsusc_2021_150317 crossref_primary_10_1016_j_apsusc_2021_151525 |
Cites_doi | 10.1039/c3ta13188b 10.1021/acsami.7b14541 10.1002/adma.201606688 10.1016/j.apcatb.2017.08.033 10.1021/ja511802c 10.1038/s41467-019-10218-9 10.1021/jacs.7b08416 10.1021/jacs.6b02692 10.1016/j.electacta.2012.03.132 10.1039/C5CC01035G 10.1039/C4TA03128H 10.1002/aenm.201702142 10.1002/adma.201501939 10.1016/j.nanoen.2017.12.039 10.1016/j.apcatb.2019.117827 10.1126/science.aaa3145 10.1002/anie.201411170 10.1038/nmat4408 10.1016/j.jhazmat.2018.04.056 10.1039/C6TA08310B 10.1021/acs.nanolett.7b01353 10.1038/nenergy.2017.87 10.1016/j.cej.2018.11.165 10.1016/j.apcatb.2019.05.002 10.1039/C8EE01316K 10.1021/ja4092903 10.1016/j.cej.2020.124474 10.1021/acsnano.8b04693 10.1016/j.cej.2018.10.130 10.1016/j.apcatb.2017.10.042 10.1016/j.apcatb.2020.119167 10.1021/acsami.7b02701 10.1002/anie.200503779 10.1002/anie.201706870 10.1016/j.apcatb.2017.11.076 10.1002/anie.201407319 10.1021/jacs.7b05362 10.1039/C0EE00418A 10.1016/j.apcatb.2018.02.031 10.1021/acsnano.5b00435 10.1002/anie.201908640 10.1002/adfm.201200922 10.1016/j.apcatb.2018.08.049 10.1038/nmat2317 10.1016/j.apcatb.2014.07.053 10.1002/adfm.201503221 10.1021/jacs.7b02290 10.1021/jacs.6b05806 10.1002/adma.200802627 10.1021/acsnano.8b06914 10.1016/j.nanoen.2016.06.042 10.1002/anie.201407938 10.1002/anie.201606102 10.1021/ja308249k |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Feb 2021 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Feb 2021 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.119539 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_119539 S0926337320309541 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c249t-74428b4b77249bbdb2073f039792dad25f8cbb6bb47a7c7620c65511f0c5a4c83 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 09:30:27 EDT 2025 Tue Jul 01 04:35:08 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 Sat Mar 02 16:00:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | g-C3N4 sulfur doping Surface charge transfer Charge separation Band structure regulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-74428b4b77249bbdb2073f039792dad25f8cbb6bb47a7c7620c65511f0c5a4c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6996-7955 0000-0003-4965-3443 |
PQID | 2477706768 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2477706768 crossref_primary_10_1016_j_apcatb_2020_119539 crossref_citationtrail_10_1016_j_apcatb_2020_119539 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119539 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Campos-Martin, Blanco-Brieva, Fierro (bib0015) 2006; 45 Kattel, Liu, Chen (bib0030) 2017; 139 Shiraishi, Kanazawa, Kofuji, Sakamoto, Ichikawa, Tanaka, Hirai (bib0100) 2014; 53 Wu, Zhang, Dong, Qiu, Kong, Zhang, Li, Xu, Zhang, Ye (bib0150) 2018; 45 Miller, Suter, Telford, Picco, Payton, Russell-Pavier, Cullen, Sella, Shaffer, Nelson, Tileli, McMillan, Howard (bib0190) 2017; 17 Deng, Tang, Feng, Zeng, Wang, Lu, Liu, Yu, Chen, Zhou (bib0265) 2017; 9 Fan, Qin, Jiang (bib0235) 2019; 359 Feng, Tang, Deng, Wang, Liu, Ouyang, Chen, Yang, Yu, Wang (bib0135) 2020; 276 Zhang, Li, Lan, Lin, Savateev, Heil, Zafeiratos, Wang, Antonietti (bib0020) 2017 Zeng, Liu, Liu, Wang, Xia, Zhang, Luo, Pei (bib0170) 2018; 224 Feng, Liao, Kong, Wu, Liu, Lee, Shih (bib0230) 2018; 354 Hill, Landers, Switzer (bib0275) 2015; 14 Li, Li, Feng, Li, Hao, Zhang, Wang, Yin, Zhou, Ma, Wang (bib0060) 2019; 10 Zheng, Cao, Wang (bib0160) 2016; 55 Fukuzumi, Yamada, Karlin (bib0005) 2012; 82 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib0070) 2009; 8 Wen, Xie, Zhang, Zhang, Liu, Chen, Li (bib0145) 2017; 9 Wang, Fu, Zheng (bib0240) 2019; 254 Zhao, Zhang, Wang, Li, He, Yin (bib0045) 2013; 135 Feng, Tang, Deng, Wang, Tang, Liu, Chen, Yu, Wang, Liang (bib0065) 2020; 389 Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 53 11926-11930. Gao, Jiao, Waclawik, Du (bib0090) 2016; 138 Zhang, Sun, Maeda, Domen, Liu, Antonietti, Fu, Wang (bib0250) 2011; 4 Niu, Zhang, Liu, Cheng (bib0200) 2012; 22 Wang, Zhang, Zhang, Liu, Wang, Sun, Zhao (bib0050) 2019; 58 She, Wu, Zhong, Xu, Yang, Vajtai, Lou, Liu, Du, Li, Ajayan (bib0185) 2016; 27 An, Zhang, Wang, Zhang, Li, Song, Miller, Miao, Wang, Guo (bib0155) 2018; 12 Tang, Feng, Deng, Zeng, Wang, Liu, Feng, Wang (bib0055) 2018; 230 Liu, Liu, Liu, Han, Zhang, Huang, Lifshitz, Lee, Zhong, Kang (bib0075) 2015; 347 Marchal, Cottineau, Méndez-Medrano, Colbeau-Justin, Keller (bib0125) 2018; 8 Deng, Feng, Tang, Zhou, Chen, Feng, Wang, Yu, Liu (bib0260) 2020; 393 Kuriki, Sekizawa, Ishitani, Maeda (bib0085) 2015; 54 Zhu, Kim, Mao, Fujitsuka, Zhang, Wang, Majima (bib0120) 2017; 139 Xia, Zhu, Yu, Cao, Jaroniec (bib0220) 2017; 5 Zhang, Huang, Fang, Zhang, Liu, Dong (bib0130) 2017; 29 Schreier, Héroguel, Steier, Ahmad, Luterbacher, Mayer, Luo, Grätzel (bib0025) 2017; 2 Lin, Li, Liang, Liu, Bi, Wu (bib0210) 2015; 163 Cheng, Wang, Dong (bib0195) 2015; 51 Jiao, Chen, Li, Sun, Gao, Yan, Wang, Zhang, Lin, Luo, Xie (bib0035) 2017; 139 Lau, Mesch, Duppel, Blum, Senker, Lotsch (bib0180) 2015; 137 Zhang, Xie, Wang, Zhang, Pan, Xie (bib0215) 2013; 135 Feng, Tang, Deng, Zeng, Wang, Liu, Chen, Yu, Wang (bib0115) 2019; 256 Xie, Tang, Kong, Lu, Natarajan, Zhu, Zhan (bib0225) 2019; 360 Liang, Li, Huang, Kang, Yang (bib0255) 2015; 25 Bellardita, García-López, Marcì, Krivtsov, García, Palmisano (bib0245) 2018; 220 Zhang, Song, Wang, Zeng (bib0140) 2018; 225 Xu, Zhang, Shi, Zhu (bib0205) 2013; 1 Feng, Deng, Tang, Zeng, Wang, Yu, Liu, Peng, Feng, Wang (bib0110) 2018; 239 Wang, Chen, Thomas, Fu, Antonietti (bib0080) 2009; 21 Kofuji, Isobe, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib0010) 2016; 138 Villa, Manzanares Palenzuela, Sofer, Matejkova, Pumera (bib0165) 2018; 12 Nail, Fields, Zhao, Wang, Greaney, Brutchey, Osterloh (bib0270) 2015; 9 Wei, Liu, Zhang, Yao, Tan, Zhu (bib0040) 2018; 11 Maeda, Kuriki, Zhang, Wang, Ishitani (bib0095) 2014; 2 Kang, Yang, Yin, Kang, Cheng (bib0175) 2015; 27 Fan (10.1016/j.apcatb.2020.119539_bib0235) 2019; 359 Feng (10.1016/j.apcatb.2020.119539_bib0115) 2019; 256 Feng (10.1016/j.apcatb.2020.119539_bib0065) 2020; 389 Feng (10.1016/j.apcatb.2020.119539_bib0110) 2018; 239 Zheng (10.1016/j.apcatb.2020.119539_bib0160) 2016; 55 Wang (10.1016/j.apcatb.2020.119539_bib0080) 2009; 21 Campos-Martin (10.1016/j.apcatb.2020.119539_bib0015) 2006; 45 Wang (10.1016/j.apcatb.2020.119539_bib0240) 2019; 254 Zhu (10.1016/j.apcatb.2020.119539_bib0120) 2017; 139 She (10.1016/j.apcatb.2020.119539_bib0185) 2016; 27 Deng (10.1016/j.apcatb.2020.119539_bib0265) 2017; 9 Kattel (10.1016/j.apcatb.2020.119539_bib0030) 2017; 139 Wang (10.1016/j.apcatb.2020.119539_bib0070) 2009; 8 Marchal (10.1016/j.apcatb.2020.119539_bib0125) 2018; 8 Li (10.1016/j.apcatb.2020.119539_bib0060) 2019; 10 Cheng (10.1016/j.apcatb.2020.119539_bib0195) 2015; 51 Xu (10.1016/j.apcatb.2020.119539_bib0205) 2013; 1 Deng (10.1016/j.apcatb.2020.119539_bib0260) 2020; 393 Jiao (10.1016/j.apcatb.2020.119539_bib0035) 2017; 139 Maeda (10.1016/j.apcatb.2020.119539_bib0095) 2014; 2 Zhang (10.1016/j.apcatb.2020.119539_bib0250) 2011; 4 Feng (10.1016/j.apcatb.2020.119539_bib0230) 2018; 354 Schreier (10.1016/j.apcatb.2020.119539_bib0025) 2017; 2 Wu (10.1016/j.apcatb.2020.119539_bib0150) 2018; 45 Xie (10.1016/j.apcatb.2020.119539_bib0225) 2019; 360 Liu (10.1016/j.apcatb.2020.119539_bib0075) 2015; 347 Kofuji (10.1016/j.apcatb.2020.119539_bib0010) 2016; 138 Zhang (10.1016/j.apcatb.2020.119539_bib0140) 2018; 225 Villa (10.1016/j.apcatb.2020.119539_bib0165) 2018; 12 Zhang (10.1016/j.apcatb.2020.119539_bib0215) 2013; 135 Kang (10.1016/j.apcatb.2020.119539_bib0175) 2015; 27 Zhao (10.1016/j.apcatb.2020.119539_bib0045) 2013; 135 Wang (10.1016/j.apcatb.2020.119539_bib0050) 2019; 58 Bellardita (10.1016/j.apcatb.2020.119539_bib0245) 2018; 220 Zhang (10.1016/j.apcatb.2020.119539_bib0130) 2017; 29 Fukuzumi (10.1016/j.apcatb.2020.119539_bib0005) 2012; 82 Lau (10.1016/j.apcatb.2020.119539_bib0180) 2015; 137 Miller (10.1016/j.apcatb.2020.119539_bib0190) 2017; 17 Wen (10.1016/j.apcatb.2020.119539_bib0145) 2017; 9 Zeng (10.1016/j.apcatb.2020.119539_bib0170) 2018; 224 Kuriki (10.1016/j.apcatb.2020.119539_bib0085) 2015; 54 Liang (10.1016/j.apcatb.2020.119539_bib0255) 2015; 25 Shiraishi (10.1016/j.apcatb.2020.119539_bib0100) 2014; 53 Wei (10.1016/j.apcatb.2020.119539_bib0040) 2018; 11 Niu (10.1016/j.apcatb.2020.119539_bib0200) 2012; 22 Xia (10.1016/j.apcatb.2020.119539_bib0220) 2017; 5 Feng (10.1016/j.apcatb.2020.119539_bib0135) 2020; 276 Nail (10.1016/j.apcatb.2020.119539_bib0270) 2015; 9 An (10.1016/j.apcatb.2020.119539_bib0155) 2018; 12 10.1016/j.apcatb.2020.119539_bib0105 Lin (10.1016/j.apcatb.2020.119539_bib0210) 2015; 163 Tang (10.1016/j.apcatb.2020.119539_bib0055) 2018; 230 Gao (10.1016/j.apcatb.2020.119539_bib0090) 2016; 138 Zhang (10.1016/j.apcatb.2020.119539_bib0020) 2017 Hill (10.1016/j.apcatb.2020.119539_bib0275) 2015; 14 |
References_xml | – volume: 10 start-page: 2177 year: 2019 ident: bib0060 publication-title: Nat. Commun. – volume: 224 start-page: 1 year: 2018 end-page: 9 ident: bib0170 publication-title: Appl. Catal. B-Environ. – volume: 2 start-page: 15146 year: 2014 end-page: 15151 ident: bib0095 publication-title: J. Mater. Chem. A – volume: 27 start-page: 4572 year: 2015 end-page: 4577 ident: bib0175 publication-title: Adv. Mater. – volume: 360 start-page: 1213 year: 2019 end-page: 1222 ident: bib0225 publication-title: Chem. Eng. J. – volume: 347 start-page: 970 year: 2015 end-page: 974 ident: bib0075 publication-title: Science – volume: 135 start-page: 18 year: 2013 end-page: 21 ident: bib0215 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 42816 year: 2017 end-page: 42828 ident: bib0265 publication-title: ACS Appl. Mater. Inter. – volume: 58 start-page: 16644 year: 2019 end-page: 16650 ident: bib0050 publication-title: Angew. Chem. Int. Ed. – volume: 225 start-page: 172 year: 2018 end-page: 179 ident: bib0140 publication-title: Appl. Catal. B-Environ. – volume: 17 start-page: 5891 year: 2017 end-page: 5896 ident: bib0190 publication-title: Nano Lett. – volume: 12 start-page: 9441 year: 2018 end-page: 9450 ident: bib0155 publication-title: ACS Nano – volume: 4 start-page: 675 year: 2011 end-page: 678 ident: bib0250 publication-title: Energy Environ. Sci. – volume: 135 start-page: 15750 year: 2013 end-page: 15753 ident: bib0045 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2018 ident: bib0125 publication-title: Adv. Energy Mater. – volume: 45 start-page: 109 year: 2018 end-page: 117 ident: bib0150 publication-title: Nano Energy – volume: 139 start-page: 7586 year: 2017 end-page: 7594 ident: bib0035 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 1064 year: 2015 end-page: 1072 ident: bib0180 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 13234 year: 2017 end-page: 13242 ident: bib0120 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 138 year: 2016 end-page: 146 ident: bib0185 publication-title: Nano Energy – volume: 22 start-page: 4763 year: 2012 end-page: 4770 ident: bib0200 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 10019 year: 2016 end-page: 10025 ident: bib0010 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1150 year: 2015 end-page: 1155 ident: bib0275 publication-title: Nat. Mater. – volume: 21 start-page: 1609 year: 2009 ident: bib0080 publication-title: Adv. Mater. – volume: 29 start-page: 1606688 year: 2017 ident: bib0130 publication-title: Adv. Mater. – volume: 138 start-page: 6292 year: 2016 end-page: 6297 ident: bib0090 publication-title: J. Am. Chem. Soc. – volume: 254 start-page: 270 year: 2019 end-page: 282 ident: bib0240 publication-title: Appl. Catal. B-Environ. – volume: 359 start-page: 723 year: 2019 end-page: 732 ident: bib0235 publication-title: Chem. Eng. J. – volume: 276 year: 2020 ident: bib0135 publication-title: Appl. Catal. B: Environ. – volume: 55 start-page: 11512 year: 2016 end-page: 11516 ident: bib0160 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 2581 year: 2018 end-page: 2589 ident: bib0040 publication-title: Energy Environ. Sci. – volume: 2 start-page: 17087 year: 2017 ident: bib0025 publication-title: Nat. Energy – volume: 12 start-page: 12482 year: 2018 end-page: 12491 ident: bib0165 publication-title: ACS Nano – volume: 393 year: 2020 ident: bib0260 publication-title: Chem. Eng. J. – volume: 9 start-page: 5134 year: 2015 end-page: 5142 ident: bib0270 publication-title: ACS Nano – volume: 139 start-page: 9739 year: 2017 end-page: 9754 ident: bib0030 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 2406 year: 2015 end-page: 2409 ident: bib0085 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 3230 year: 2017 end-page: 3238 ident: bib0220 publication-title: J. Mater. Chem. A – volume: 45 start-page: 6962 year: 2006 end-page: 6984 ident: bib0015 publication-title: Angew. Chem. Intern. Ed. – reference: Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 53 11926-11930. – start-page: 13445 year: 2017 end-page: 13449 ident: bib0020 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 14766 year: 2013 end-page: 14772 ident: bib0205 publication-title: J. Mater. Chem. A – volume: 354 start-page: 63 year: 2018 end-page: 71 ident: bib0230 publication-title: J. Hazard. Mater. – volume: 220 start-page: 222 year: 2018 end-page: 233 ident: bib0245 publication-title: Appl. Catal. B-Environ. – volume: 53 start-page: 13454 year: 2014 end-page: 13459 ident: bib0100 publication-title: Angew. Chem. Int. Ed. – volume: 239 start-page: 525 year: 2018 end-page: 536 ident: bib0110 publication-title: Appl. Catal. B-Environ. – volume: 25 start-page: 6885 year: 2015 end-page: 6892 ident: bib0255 publication-title: Adv. Funct. Mater. – volume: 230 start-page: 102 year: 2018 end-page: 114 ident: bib0055 publication-title: Appl. Catal. B-Environ. – volume: 389 start-page: 124474 year: 2020 ident: bib0065 publication-title: Chem. Eng. J. – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bib0070 publication-title: Nat. Mater. – volume: 163 start-page: 135 year: 2015 end-page: 142 ident: bib0210 publication-title: Appl. Catal. B-Environ. – volume: 82 start-page: 493 year: 2012 end-page: 511 ident: bib0005 publication-title: Electrochim. Acta – volume: 51 start-page: 7176 year: 2015 end-page: 7179 ident: bib0195 publication-title: Chem. Commun. – volume: 256 year: 2019 ident: bib0115 publication-title: Appl. Catal. B-Environ. – volume: 9 start-page: 14031 year: 2017 end-page: 14042 ident: bib0145 publication-title: ACS Appl. Mater. Inter. – volume: 1 start-page: 14766 year: 2013 ident: 10.1016/j.apcatb.2020.119539_bib0205 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13188b – volume: 9 start-page: 42816 year: 2017 ident: 10.1016/j.apcatb.2020.119539_bib0265 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b14541 – volume: 29 start-page: 1606688 year: 2017 ident: 10.1016/j.apcatb.2020.119539_bib0130 publication-title: Adv. Mater. doi: 10.1002/adma.201606688 – volume: 220 start-page: 222 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0245 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.08.033 – volume: 137 start-page: 1064 year: 2015 ident: 10.1016/j.apcatb.2020.119539_bib0180 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511802c – volume: 10 start-page: 2177 year: 2019 ident: 10.1016/j.apcatb.2020.119539_bib0060 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10218-9 – volume: 139 start-page: 13234 year: 2017 ident: 10.1016/j.apcatb.2020.119539_bib0120 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08416 – volume: 138 start-page: 6292 year: 2016 ident: 10.1016/j.apcatb.2020.119539_bib0090 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02692 – volume: 82 start-page: 493 year: 2012 ident: 10.1016/j.apcatb.2020.119539_bib0005 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.132 – volume: 51 start-page: 7176 year: 2015 ident: 10.1016/j.apcatb.2020.119539_bib0195 publication-title: Chem. Commun. doi: 10.1039/C5CC01035G – volume: 2 start-page: 15146 year: 2014 ident: 10.1016/j.apcatb.2020.119539_bib0095 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03128H – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0125 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702142 – volume: 27 start-page: 4572 year: 2015 ident: 10.1016/j.apcatb.2020.119539_bib0175 publication-title: Adv. Mater. doi: 10.1002/adma.201501939 – volume: 45 start-page: 109 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0150 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.039 – volume: 256 year: 2019 ident: 10.1016/j.apcatb.2020.119539_bib0115 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.117827 – volume: 347 start-page: 970 year: 2015 ident: 10.1016/j.apcatb.2020.119539_bib0075 publication-title: Science doi: 10.1126/science.aaa3145 – volume: 54 start-page: 2406 year: 2015 ident: 10.1016/j.apcatb.2020.119539_bib0085 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411170 – volume: 14 start-page: 1150 year: 2015 ident: 10.1016/j.apcatb.2020.119539_bib0275 publication-title: Nat. Mater. doi: 10.1038/nmat4408 – volume: 354 start-page: 63 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0230 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.04.056 – volume: 5 start-page: 3230 year: 2017 ident: 10.1016/j.apcatb.2020.119539_bib0220 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08310B – volume: 17 start-page: 5891 year: 2017 ident: 10.1016/j.apcatb.2020.119539_bib0190 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01353 – volume: 2 start-page: 17087 year: 2017 ident: 10.1016/j.apcatb.2020.119539_bib0025 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.87 – volume: 359 start-page: 723 year: 2019 ident: 10.1016/j.apcatb.2020.119539_bib0235 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.165 – volume: 254 start-page: 270 year: 2019 ident: 10.1016/j.apcatb.2020.119539_bib0240 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.05.002 – volume: 11 start-page: 2581 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0040 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01316K – volume: 135 start-page: 15750 year: 2013 ident: 10.1016/j.apcatb.2020.119539_bib0045 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4092903 – volume: 389 start-page: 124474 year: 2020 ident: 10.1016/j.apcatb.2020.119539_bib0065 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124474 – volume: 12 start-page: 9441 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0155 publication-title: ACS Nano doi: 10.1021/acsnano.8b04693 – volume: 360 start-page: 1213 year: 2019 ident: 10.1016/j.apcatb.2020.119539_bib0225 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.130 – volume: 224 start-page: 1 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0170 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.10.042 – volume: 276 year: 2020 ident: 10.1016/j.apcatb.2020.119539_bib0135 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119167 – volume: 9 start-page: 14031 year: 2017 ident: 10.1016/j.apcatb.2020.119539_bib0145 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b02701 – volume: 45 start-page: 6962 year: 2006 ident: 10.1016/j.apcatb.2020.119539_bib0015 publication-title: Angew. Chem. Intern. Ed. doi: 10.1002/anie.200503779 – start-page: 13445 year: 2017 ident: 10.1016/j.apcatb.2020.119539_bib0020 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706870 – volume: 225 start-page: 172 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0140 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.11.076 – ident: 10.1016/j.apcatb.2020.119539_bib0105 doi: 10.1002/anie.201407319 – volume: 139 start-page: 9739 year: 2017 ident: 10.1016/j.apcatb.2020.119539_bib0030 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05362 – volume: 4 start-page: 675 year: 2011 ident: 10.1016/j.apcatb.2020.119539_bib0250 publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00418A – volume: 230 start-page: 102 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0055 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.02.031 – volume: 9 start-page: 5134 year: 2015 ident: 10.1016/j.apcatb.2020.119539_bib0270 publication-title: ACS Nano doi: 10.1021/acsnano.5b00435 – volume: 58 start-page: 16644 year: 2019 ident: 10.1016/j.apcatb.2020.119539_bib0050 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908640 – volume: 22 start-page: 4763 year: 2012 ident: 10.1016/j.apcatb.2020.119539_bib0200 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200922 – volume: 239 start-page: 525 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0110 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.08.049 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.apcatb.2020.119539_bib0070 publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 163 start-page: 135 year: 2015 ident: 10.1016/j.apcatb.2020.119539_bib0210 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2014.07.053 – volume: 25 start-page: 6885 year: 2015 ident: 10.1016/j.apcatb.2020.119539_bib0255 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503221 – volume: 139 start-page: 7586 year: 2017 ident: 10.1016/j.apcatb.2020.119539_bib0035 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02290 – volume: 138 start-page: 10019 year: 2016 ident: 10.1016/j.apcatb.2020.119539_bib0010 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05806 – volume: 21 start-page: 1609 year: 2009 ident: 10.1016/j.apcatb.2020.119539_bib0080 publication-title: Adv. Mater. doi: 10.1002/adma.200802627 – volume: 12 start-page: 12482 year: 2018 ident: 10.1016/j.apcatb.2020.119539_bib0165 publication-title: ACS Nano doi: 10.1021/acsnano.8b06914 – volume: 27 start-page: 138 year: 2016 ident: 10.1016/j.apcatb.2020.119539_bib0185 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.042 – volume: 53 start-page: 13454 year: 2014 ident: 10.1016/j.apcatb.2020.119539_bib0100 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407938 – volume: 55 start-page: 11512 year: 2016 ident: 10.1016/j.apcatb.2020.119539_bib0160 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606102 – volume: 393 year: 2020 ident: 10.1016/j.apcatb.2020.119539_bib0260 publication-title: Chem. Eng. J. – volume: 135 start-page: 18 year: 2013 ident: 10.1016/j.apcatb.2020.119539_bib0215 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308249k |
SSID | ssj0002328 |
Score | 2.6702077 |
Snippet | [Display omitted]
•A novel co-annealing method was developed for the preparation of sulfur doped g-C3N4.•The prepared SS-CN exhibits enhanced optical... Exfoliating g-C3N4 into 2D nanosheet to minimize the stacking layer for the improvement of charge transfer and separation is considered to be the effective... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119539 |
SubjectTerms | Absorption Absorption spectra Band structure regulation Carbon nitride Charge efficiency Charge separation Charge transfer Doping Electromagnetic absorption Exfoliation g-C3N4 Hydrogen peroxide Nanosheets Photocatalysis Red shift Separation Sulfur sulfur doping Surface charge Surface charge transfer |
Title | A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2 |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.119539 https://www.proquest.com/docview/2477706768 |
Volume | 281 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWq9gAcqrJQ0Q8qH7ia3dhOHB9Xq1YLSMsBKvVm2Y5Di6Ik2mSRuPDL-HGdcRIKCKkSp5V2x06y4zy_Sd7MEPLGCSe1CooFazWTiguWh9Szkpcqy1Ltk0FtscnW1_L9TXqzR1ZTLgzKKkfsHzA9ovX4zXz8N-ft3d3800LzTAglOL4lSGPyupQKV_nbHw8yD2AMEY3BmKH1lD4XNV629bZ3ECVyxA6dYsvwf29PfwF13H2ujsjhSBvpcjiz52Qv1DPyZDV1a5uRZ78VFpyR48uH_DUYNt7A3Qvyc0nr5luoaLeryt2WAXVGPxfUAt5aTE2nQ09p2pT0C1uJjaS1rZvuNoSeov4cwl6kpxTILgXySCu4DDSuMMqn1nXNNqIQxSe8FI6BDJO2UfUHx4mVmQLtI1-GH3Ca9rbpm_gc6TtcHtoWQ01bnHfN4dwK-PjIX5Lrq8vPqzUbGzgwD1Fdz5SE4MZJBwxeaucKxwFQygW-SuSFLXha5t65zDmprPIAywufAYNLyoVPrfS5OCb7dVOHV5harlIN9CQvuJaJhSgzV6VOPEwvfSLyEyImvxk_VjfHJhuVmWRsX83gbYPeNoO3Twj7Naodqns8Yq-mJWH-WKUGNqBHRp5PK8iMKNEZLpVSQBey_PS_Jz4jTznKbKKQ_Jzs99tdeA08qXcX8Ua4IAfLdx_Wm3szzxRA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcigcECxUFAr4wNXsxnbi-FitWi1QlgOt1JtlOw5tFSXRJlupF34ZP44ZJ6GAkCpxipSMHSdjP79J5oOQd044qVVQLFirmVRcsDyknpW8VFmWap8M3hbrbHUuP16kFztkOcXCoFvliP0Dpke0Hs_Mx7c5b6-u5l8XmmdCKMHxL0GKwesPJCxfLGPw_vudnwdQhgjHIM1QfIqfi05etvW2d2AmcgQPnWLN8H_vT38hddx-Tp6QxyNvpEfD0J6SnVDPyN5yKtc2I49-yyw4I_vHdwFs0Gxcwd0z8uOI1s1NqGi3rcrthgF3RkUX1ALgWoxNp0NRadqU9BtbirWkta2b7jKEnqIDOti9yE8psF0K7JFW8BgoXKGZT63rmk2EIYqfeCncAykmbaPbH9wnpmYKtI-EGS5gN-1l0zfxQ9ItPB7KFkNSW-x3xWFsBRy-8Ofk_OT4bLliYwUH5sGs65mSYN046YDCS-1c4TggSrnAf4m8sAVPy9w7lzknlVUecHnhM6BwSbnwqZU-F_tkt27q8AJjy1WqgZ_kBdcysWBm5qrUiYfupU9EfkDEpDfjx_TmWGWjMpMf27UZtG1Q22bQ9gFhv1q1Q3qPe-TVNCXMH9PUwA50T8vDaQaZESY6w6VSCvhClr_8747fkr3V2edTc_ph_ekVecjR5yZ6lR-S3X6zDa-BNPXuTVwUPwFZ9BXO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+sulfur-assisted+annealing+method+of+g-C3N4+nanosheet+compensates+for+the+loss+of+light+absorption+with+further+promoted+charge+transfer+for+photocatalytic+production+of+H2+and+H2O2&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Feng%2C+Chengyang&rft.au=Tang%2C+Lin&rft.au=Deng%2C+Yaocheng&rft.au=Wang%2C+Jiajia&rft.date=2021-02-01&rft.issn=0926-3373&rft.volume=281&rft.spage=119539&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_119539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |