The effect analysis of the oscillating heat flux boundary conditions to the melting performance by SPH method
The increasing demand for energy recovery and renewable energy inspires the wide applications of latent heat thermal energy storage employed with phase change material, and the inhomogeneous heat flux boundary conditions of the system change the heat transfer properties and phase change performance....
Saved in:
Published in | Journal of energy storage Vol. 107; p. 114930 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-152X |
DOI | 10.1016/j.est.2024.114930 |
Cover
Loading…
Abstract | The increasing demand for energy recovery and renewable energy inspires the wide applications of latent heat thermal energy storage employed with phase change material, and the inhomogeneous heat flux boundary conditions of the system change the heat transfer properties and phase change performance. This study focuses on the phase change process inside a square domain under oscillating heat flux boundary conditions and conducts a parameter study of different coefficients. The Smoothed Particle Hydrodynamics method is adopted to model the heat and mass transfer process and the oscillating heat flux boundary condition. After the validation of the proposed method, the melting process inside the square domain is displayed. The distribution of temperature and velocity change during several periods are discussed, and the liquid fraction change is found to be consistent with the periodic change of heat flux. A parametric study is then conducted to analyze the effect of the several parameters. Results reveal that the oscillating heat flux leads to an increased melting speed up to 140 % compared to the constant heat flux, and a larger frequency of periodic heat flux leads to a longer melting time and smaller maximum temperature. Comparatively, the change in the initial phase of heat flux only affects the early stage of the melting process, and the melting time change is more sensitive to the frequency than the initial phase where the variation can be up to 51 % and 27 %, respectively. Besides, a larger Rayleigh number leads to a larger velocity magnitude and smaller temperature, and the maximum temperature distribution is more concentrated on the upper domain which decreases the melting speed. Comprehensively, the parameters with Ra = 2 × 104, ω = π, φ0 = 0 is found to have the best performance in melting speed and thermal energy storage in this study.
•The charging process with inhomogeneous heat flux boundary condition in LHTES system is simulated by SPH method.•The melting time of PCM is accelerate with a periodic heat flux compared with constant heat flux.•The effects of the frequency and the initial phase of the periodic heat flux on thermal performance are analyzed.•A large Rayleigh number leads to a larger magnitude of velocity and a smaller magnitude of temperature during melting. |
---|---|
AbstractList | The increasing demand for energy recovery and renewable energy inspires the wide applications of latent heat thermal energy storage employed with phase change material, and the inhomogeneous heat flux boundary conditions of the system change the heat transfer properties and phase change performance. This study focuses on the phase change process inside a square domain under oscillating heat flux boundary conditions and conducts a parameter study of different coefficients. The Smoothed Particle Hydrodynamics method is adopted to model the heat and mass transfer process and the oscillating heat flux boundary condition. After the validation of the proposed method, the melting process inside the square domain is displayed. The distribution of temperature and velocity change during several periods are discussed, and the liquid fraction change is found to be consistent with the periodic change of heat flux. A parametric study is then conducted to analyze the effect of the several parameters. Results reveal that the oscillating heat flux leads to an increased melting speed up to 140 % compared to the constant heat flux, and a larger frequency of periodic heat flux leads to a longer melting time and smaller maximum temperature. Comparatively, the change in the initial phase of heat flux only affects the early stage of the melting process, and the melting time change is more sensitive to the frequency than the initial phase where the variation can be up to 51 % and 27 %, respectively. Besides, a larger Rayleigh number leads to a larger velocity magnitude and smaller temperature, and the maximum temperature distribution is more concentrated on the upper domain which decreases the melting speed. Comprehensively, the parameters with Ra = 2 × 104, ω = π, φ0 = 0 is found to have the best performance in melting speed and thermal energy storage in this study.
•The charging process with inhomogeneous heat flux boundary condition in LHTES system is simulated by SPH method.•The melting time of PCM is accelerate with a periodic heat flux compared with constant heat flux.•The effects of the frequency and the initial phase of the periodic heat flux on thermal performance are analyzed.•A large Rayleigh number leads to a larger magnitude of velocity and a smaller magnitude of temperature during melting. |
ArticleNumber | 114930 |
Author | Liu, Hongmei Liu, Xuedong Wang, Jianqiang |
Author_xml | – sequence: 1 givenname: Jianqiang surname: Wang fullname: Wang, Jianqiang email: wangjq121@cczu.edu.cn organization: School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, China – sequence: 2 givenname: Xuedong surname: Liu fullname: Liu, Xuedong organization: School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, China – sequence: 3 givenname: Hongmei surname: Liu fullname: Liu, Hongmei organization: School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, China |
BookMark | eNp9kM1KAzEUhbOoYK19AHd5gRmTzGR-cCVFbaGgYAV3ITO5sSkzSUlSsW9v2rp2deHecy7nfDdoYp0FhO4oySmh1f0uhxBzRliZU1q2BZmgKSs4yyhnn9doHsKOkCTklLbVFI2bLWDQGvqIpZXDMZiAncYxrV3ozTDIaOwX3oKMWA-HH9y5g1XSH3HvrDLROBtwdGfDCMNZvAevnR-l7QF3R_z-tkynuHXqFl1pOQSY_80Z-nh-2iyW2fr1ZbV4XGc9K9uYcSCqqdpSdX1ba9kAqWpJUkZQvKsbgFID65omVdCcUMllQUsCsm5aXhaVLmaIXv723oXgQYu9N2MKLSgRJ0xiJxImccIkLpiS5-HigRTs24AXqT6kCsr4REcoZ_5x_wJ6t3XP |
Cites_doi | 10.1016/j.renene.2023.119270 10.1016/j.ijthermalsci.2021.106917 10.1016/j.solener.2022.12.035 10.1016/j.rser.2023.113724 10.1016/j.camwa.2023.03.003 10.1115/1.3246666 10.1016/j.applthermaleng.2020.115206 10.1002/fld.1650030305 10.1016/j.icheatmasstransfer.2020.104519 10.1006/jcph.1997.5776 10.1016/j.est.2024.112439 10.1016/j.ijheatmasstransfer.2019.118970 10.1016/j.enganabound.2022.12.017 10.1016/j.est.2023.106825 10.1016/j.applthermaleng.2019.114423 10.1016/j.ijheatmasstransfer.2018.08.135 10.1016/j.ijmecsci.2019.105243 10.1016/j.ijthermalsci.2016.10.017 10.1080/10407780590896853 10.1016/j.apenergy.2011.01.016 10.1016/j.energy.2023.129530 10.1016/j.aej.2022.12.030 10.1016/j.jcp.2004.11.039 10.1016/j.icheatmasstransfer.2023.106832 10.1016/j.solener.2021.08.051 10.1016/j.ijthermalsci.2023.108404 10.1016/j.ijheatmasstransfer.2019.05.054 10.1016/j.est.2023.108750 10.1016/j.jcp.2009.05.032 10.1016/j.jcp.2022.111809 10.1016/j.est.2022.106184 10.1016/j.cma.2018.06.033 10.1063/5.0057583 10.1016/j.apenergy.2017.01.091 10.1016/j.ijheatmasstransfer.2022.123458 10.1115/1.3246884 10.1016/j.apt.2019.12.010 10.1007/s10973-019-09192-7 10.1016/j.egypro.2015.11.846 10.1002/est2.425 10.1016/j.apenergy.2016.12.123 10.1016/j.ijrefrig.2016.07.002 10.1016/j.apenergy.2020.114572 10.1016/j.ijheatmasstransfer.2015.04.109 10.1016/j.est.2017.12.005 10.1038/s41467-023-40988-2 10.1016/j.commatsci.2022.111288 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.est.2024.114930 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_est_2024_114930 S2352152X2404516X |
GroupedDBID | --M 0R~ 457 4G. 7-5 AACTN AAEDT AAEDW AAHCO AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AFJKZ AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSR SST SSZ T5K ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION EJD SSH |
ID | FETCH-LOGICAL-c249t-5e0d8694dbc97fa8e067a0feced5b78ee4fe2b88119f501a5a3140ea7895436f3 |
IEDL.DBID | AIKHN |
ISSN | 2352-152X |
IngestDate | Tue Jul 01 00:52:38 EDT 2025 Sat Jan 18 16:10:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Smoothed particle hydrodynamics Phase change material Inhomogeneous heat flux boundary Latent heat thermal energy storage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-5e0d8694dbc97fa8e067a0feced5b78ee4fe2b88119f501a5a3140ea7895436f3 |
ParticipantIDs | crossref_primary_10_1016_j_est_2024_114930 elsevier_sciencedirect_doi_10_1016_j_est_2024_114930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-30 |
PublicationDateYYYYMMDD | 2025-01-30 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Journal of energy storage |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Taghilou, Talati (bb0245) 2016; 70 Zhou, Xu, Huang (bb0020) 2023; 14 Gau, Viskanta (bb0235) 1986; 108 Li, Yang, Wang, Huo, Rao (bb0100) 2024; 95 Wang (bb0190) 2023; 145 Wang, Zhang (bb0215) 2020; 113 Kalabin, Kanashina, Zubkov (bb0230) 2005; 47 Monaghan, Huppert, Worster (bb0155) 2005; 206 He, Liu, Li, Tao (bb0145) 2019; 129 Lüthi, Afrasiabi, Bambach (bb0170) 2023; 139 Yan, Teng, Abed, Deifalla, Youshanlouei, Abdulghani, Moria (bb0080) 2023; 58 Shittu, Li, Xuan, Xiao, Zhao, Ma, Akhlaghi (bb0075) 2020; 173 Sadeghi, Babayan, Chamkha (bb0120) 2020; 147 Wang, Hu, Zhang, Pan (bb0210) 2019; 139 Xu, Stansby, Laurence (bb0225) 2009; 228 Eslami, Khosravi, Fallah Kohan (bb0025) 2021; 47 Huang, Stonehouse, Abeykoon (bb0040) 2023; 200 Ye, Wang, Wang (bb0060) 2017; 190 Morris, Fox, Zhu (bb0220) 1997; 136 Asker, Genceli, Ezan (bb0125) 2023; 5 Izadi, Alshuraiaan, Hajjar, Sheremet, Ben Hamida (bb0135) 2023; 192 Zhang, Li, Yan (bb0255) 2024; 286 De Vahl Davis (bb0200) 1983; 3 Alhuyi Nazari, Maleki, Assad, Rosen, Haghighi, Sharabaty, Chen (bb0035) 2021; 228 Zhou, Yang, Xu (bb0045) 2011; 88 Ghalambaz, Mehryan, Hajjar, Veismoradi (bb0110) 2020; 31 Dong, Hao, Yu (bb0180) 2022; 16 Saleem, Marafie, Al-Farhany, Hussam, Sheard (bb0130) 2023; 69 Samanta, Chattopadhyay, Guha (bb0150) 2022; 206 Lan, Zhang, Tian, Su, Qiu (bb0185) 2023; 474 Rocha, Trevizoli, de Oliveira (bb0005) 2023; 250 Riahi, Saman, Bruno, Belusko, Tay (bb0105) 2017; 191 Huang, Li, Xie, Gao, Yang, Li (bb0250) 2024 Russell, Souto-Iglesias, Zohdi (bb0160) 2018; 341 Alptekin, Ezan (bb0070) 2020; 164 Zhang, Huo, Wang, Shi (bb0140) 2023; 187 Mazzeo, Oliveti, De Simone, Arcuri (bb0050) 2015; 88 Long, Huang (bb0165) 2023; 147 Chabot, Gosselin (bb0085) 2017; 112 Kant, Shukla, Sharma, Biwole (bb0090) 2018; 15 Bouzennada, Mechighel, Filali, Kolsi (bb0095) 2020; 141 Zhang, Wang, Li (bb0240) 2021; 165 Kimura, Bejan (bb0205) 1984; 106 Li, Wen, Cai, Yu, Liu (bb0015) 2023; 65 Tunçbilek, Arıcı, Krajčík, Li, Nižetić, Papadopoulos (bb0065) 2023; 218 Cai, Zhang, Ji (bb0010) 2023; 72 Zhang, Mancin, Pu (bb0030) 2023; 62 Klimeš, Charvát, Mastani Joybari, Zálešák, Haghighat, Panchabikesan, El Mankibi, Yuan (bb0195) 2020; 263 Mazzeo, Oliveti, Arcuri (bb0055) 2015; 82 Hajjar, Mehryan, Ghalambaz (bb0115) 2020; 166 Zhuang, Wu, Zhang, Dong (bb0175) 2022; 12 Alhuyi Nazari (10.1016/j.est.2024.114930_bb0035) 2021; 228 Shittu (10.1016/j.est.2024.114930_bb0075) 2020; 173 Li (10.1016/j.est.2024.114930_bb0100) 2024; 95 Zhou (10.1016/j.est.2024.114930_bb0045) 2011; 88 Eslami (10.1016/j.est.2024.114930_bb0025) 2021; 47 Alptekin (10.1016/j.est.2024.114930_bb0070) 2020; 164 Wang (10.1016/j.est.2024.114930_bb0215) 2020; 113 Saleem (10.1016/j.est.2024.114930_bb0130) 2023; 69 Morris (10.1016/j.est.2024.114930_bb0220) 1997; 136 Gau (10.1016/j.est.2024.114930_bb0235) 1986; 108 Riahi (10.1016/j.est.2024.114930_bb0105) 2017; 191 Hajjar (10.1016/j.est.2024.114930_bb0115) 2020; 166 De Vahl Davis (10.1016/j.est.2024.114930_bb0200) 1983; 3 Zhang (10.1016/j.est.2024.114930_bb0255) 2024; 286 Asker (10.1016/j.est.2024.114930_bb0125) 2023; 5 Zhuang (10.1016/j.est.2024.114930_bb0175) 2022; 12 Zhang (10.1016/j.est.2024.114930_bb0140) 2023; 187 Xu (10.1016/j.est.2024.114930_bb0225) 2009; 228 Lüthi (10.1016/j.est.2024.114930_bb0170) 2023; 139 Chabot (10.1016/j.est.2024.114930_bb0085) 2017; 112 Izadi (10.1016/j.est.2024.114930_bb0135) 2023; 192 Wang (10.1016/j.est.2024.114930_bb0210) 2019; 139 Cai (10.1016/j.est.2024.114930_bb0010) 2023; 72 Kant (10.1016/j.est.2024.114930_bb0090) 2018; 15 Zhang (10.1016/j.est.2024.114930_bb0240) 2021; 165 Long (10.1016/j.est.2024.114930_bb0165) 2023; 147 Yan (10.1016/j.est.2024.114930_bb0080) 2023; 58 Monaghan (10.1016/j.est.2024.114930_bb0155) 2005; 206 Rocha (10.1016/j.est.2024.114930_bb0005) 2023; 250 Zhou (10.1016/j.est.2024.114930_bb0020) 2023; 14 Mazzeo (10.1016/j.est.2024.114930_bb0055) 2015; 82 Bouzennada (10.1016/j.est.2024.114930_bb0095) 2020; 141 Zhang (10.1016/j.est.2024.114930_bb0030) 2023; 62 Sadeghi (10.1016/j.est.2024.114930_bb0120) 2020; 147 Kimura (10.1016/j.est.2024.114930_bb0205) 1984; 106 Samanta (10.1016/j.est.2024.114930_bb0150) 2022; 206 Ghalambaz (10.1016/j.est.2024.114930_bb0110) 2020; 31 Lan (10.1016/j.est.2024.114930_bb0185) 2023; 474 Taghilou (10.1016/j.est.2024.114930_bb0245) 2016; 70 Ye (10.1016/j.est.2024.114930_bb0060) 2017; 190 Kalabin (10.1016/j.est.2024.114930_bb0230) 2005; 47 He (10.1016/j.est.2024.114930_bb0145) 2019; 129 Wang (10.1016/j.est.2024.114930_bb0190) 2023; 145 Huang (10.1016/j.est.2024.114930_bb0250) 2024 Tunçbilek (10.1016/j.est.2024.114930_bb0065) 2023; 218 Huang (10.1016/j.est.2024.114930_bb0040) 2023; 200 Russell (10.1016/j.est.2024.114930_bb0160) 2018; 341 Dong (10.1016/j.est.2024.114930_bb0180) 2022; 16 Li (10.1016/j.est.2024.114930_bb0015) 2023; 65 Klimeš (10.1016/j.est.2024.114930_bb0195) 2020; 263 Mazzeo (10.1016/j.est.2024.114930_bb0050) 2015; 88 |
References_xml | – volume: 190 start-page: 213 year: 2017 end-page: 221 ident: bb0060 article-title: Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions publication-title: Appl. Energy – volume: 47 start-page: 621 year: 2005 end-page: 631 ident: bb0230 article-title: Natural-convective heat transfer in a square cavity with time-varying side-wall temperature publication-title: Numer. Heat Transf. A Appl. – volume: 14 start-page: 5449 year: 2023 ident: bb0020 article-title: Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials publication-title: Nat. Commun. – volume: 47 year: 2021 ident: bb0025 article-title: Effects of fin parameters on performance of latent heat thermal energy storage systems: a comprehensive review publication-title: Sustain Energy Technol Assess – volume: 286 year: 2024 ident: bb0255 article-title: Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: energy, exergy, and economic analysis publication-title: Energy – volume: 129 start-page: 160 year: 2019 end-page: 197 ident: bb0145 article-title: Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review publication-title: Int. J. Heat Mass Transf. – volume: 3 start-page: 249 year: 1983 end-page: 264 ident: bb0200 article-title: Natural convection of air in a square cavity: a bench mark numerical solution publication-title: Int. J. Numer. Methods Fluids – volume: 58 year: 2023 ident: bb0080 article-title: Computational fluid dynamics simulation of a designed envelop contenting phase change material and imposed solar heat flux and ambient air publication-title: J. Energy Storage – volume: 263 year: 2020 ident: bb0195 article-title: Computer modelling and experimental investigation of phase change hysteresis of PCMs: the state-of-the-art review publication-title: Appl. Energy – volume: 474 year: 2023 ident: bb0185 article-title: An enhanced implicit viscosity ISPH method for simulating free-surface flow coupled with solid-liquid phase change publication-title: J. Comput. Phys. – volume: 113 year: 2020 ident: bb0215 article-title: Coupled solid-liquid phase change and thermal flow simulation by particle method publication-title: International Communications in Heat and Mass Transfer – volume: 16 start-page: 588 year: 2022 end-page: 629 ident: bb0180 article-title: Two-dimensional smoothed particle hydrodynamics (SPH) simulation of multiphase melting flows and associated interface behavior publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 192 year: 2023 ident: bb0135 article-title: Free convection of nanofluids in a porous sensible heat storage unit: combined effect of time periodic heating and external magnetic field publication-title: Int. J. Therm. Sci. – volume: 206 start-page: 684 year: 2005 end-page: 705 ident: bb0155 article-title: Solidification using smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 165 year: 2021 ident: bb0240 article-title: Lattice Boltzmann simulation of natural convection melting in a cubic cavity with an internal cylindrical heat source publication-title: Int. J. Therm. Sci. – volume: 145 year: 2023 ident: bb0190 article-title: Numerical investigation of melting process with natural convection inside multi-tube horizontal cylinder by SPH method publication-title: International Communications in Heat and Mass Transfer – volume: 228 start-page: 725 year: 2021 end-page: 743 ident: bb0035 article-title: A review of nanomaterial incorporated phase change materials for solar thermal energy storage publication-title: Sol. Energy – volume: 15 start-page: 274 year: 2018 end-page: 282 ident: bb0090 article-title: Melting and solidification behaviour of phase change materials with cyclic heating and cooling publication-title: J. Energy Storage – year: 2024 ident: bb0250 article-title: Phase change heat storage and enhanced heat transfer based on metal foam under unsteady rotation conditions publication-title: Energy – volume: 139 start-page: 948 year: 2019 end-page: 962 ident: bb0210 article-title: Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics publication-title: Int. J. Heat Mass Transf. – volume: 136 start-page: 214 year: 1997 end-page: 226 ident: bb0220 article-title: Modeling low Reynolds number incompressible flows using SPH publication-title: J. Comput. Phys. – volume: 147 year: 2020 ident: bb0120 article-title: Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition publication-title: Int. J. Heat Mass Transf. – volume: 88 start-page: 2113 year: 2011 end-page: 2121 ident: bb0045 article-title: Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves publication-title: Appl. Energy – volume: 65 year: 2023 ident: bb0015 article-title: Phase change material for passive cooling in building envelopes: a comprehensive review publication-title: J. Build. Eng. – volume: 250 start-page: 248 year: 2023 end-page: 284 ident: bb0005 article-title: A timeline of the phase-change problem for latent thermal energy storage systems: a review of theoretical approaches from the 1970’s to 2022 publication-title: Sol. Energy – volume: 70 start-page: 157 year: 2016 end-page: 170 ident: bb0245 article-title: Numerical investigation on the natural convection effects in the melting process of PCM in a finned container using lattice Boltzmann method publication-title: Int. J. Refrig. – volume: 187 year: 2023 ident: bb0140 article-title: Review of the modeling approaches of phase change processes publication-title: Renew. Sust. Energ. Rev. – volume: 218 year: 2023 ident: bb0065 article-title: Enhancing building wall thermal performance with phase change material and insulation: a comparative and synergistic assessment publication-title: Renew. Energy – volume: 82 start-page: 472 year: 2015 end-page: 479 ident: bb0055 article-title: Multiple bi-phase interfaces in a PCM layer subject to periodic boundary conditions characteristic of building external walls publication-title: Energy Procedia – volume: 173 year: 2020 ident: bb0075 article-title: Transient and non-uniform heat flux effect on solar thermoelectric generator with phase change material publication-title: Appl. Therm. Eng. – volume: 191 start-page: 276 year: 2017 end-page: 286 ident: bb0105 article-title: Impact of periodic flow reversal of heat transfer fluid on the melting and solidification processes in a latent heat shell and tube storage system publication-title: Appl. Energy – volume: 12 year: 2022 ident: bb0175 article-title: A weakly compressible smoothed particle hydrodynamics framework for melting multiphase flow publication-title: AIP Adv. – volume: 228 start-page: 6703 year: 2009 end-page: 6725 ident: bb0225 article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach publication-title: J. Comput. Phys. – volume: 166 year: 2020 ident: bb0115 article-title: Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension publication-title: Int. J. Mech. Sci. – volume: 341 start-page: 163 year: 2018 end-page: 187 ident: bb0160 article-title: Numerical simulation of laser fusion additive manufacturing processes using the SPH method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 139 start-page: 7 year: 2023 end-page: 27 ident: bb0170 article-title: An adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturing publication-title: Comput. Math. Appl. – volume: 206 year: 2022 ident: bb0150 article-title: A review on the application of lattice Boltzmann method for melting and solidification problems publication-title: Comput. Mater. Sci. – volume: 147 start-page: 320 year: 2023 end-page: 335 ident: bb0165 article-title: An improved high order smoothed particle hydrodynamics method for numerical simulations of selective laser melting process publication-title: Eng. Anal. Bound. Elem. – volume: 72 year: 2023 ident: bb0010 article-title: Recent advances in phase change materials-based battery thermal management systems for electric vehicles publication-title: J. Energy Storage – volume: 200 year: 2023 ident: bb0040 article-title: Encapsulation methods for phase change materials – a critical review publication-title: Int. J. Heat Mass Transf. – volume: 31 start-page: 954 year: 2020 end-page: 966 ident: bb0110 article-title: Unsteady natural convection flow of a suspension comprising nano-encapsulated phase change materials (NEPCMs) in a porous medium publication-title: Adv. Powder Technol. – volume: 62 year: 2023 ident: bb0030 article-title: A review and prospective of fin design to improve heat transfer performance of latent thermal energy storage publication-title: J. Energy Storage – volume: 88 start-page: 844 year: 2015 end-page: 861 ident: bb0050 article-title: Analytical model for solidification and melting in a finite PCM in steady periodic regime publication-title: Int. J. Heat Mass Transf. – volume: 106 start-page: 98 year: 1984 end-page: 103 ident: bb0205 article-title: The boundary layer natural convection regime in a rectangular cavity with uniform heat flux from the side publication-title: J. Heat Transf. – volume: 95 year: 2024 ident: bb0100 article-title: Investigation on the dynamic response characteristics of phase change energy storage system based on the harmonic heat source publication-title: J. Energy Storage – volume: 69 start-page: 177 year: 2023 end-page: 191 ident: bb0130 article-title: Natural convection heat transfer in a nanofluid filled l-shaped enclosure with time-periodic temperature boundary and magnetic field publication-title: Alex. Eng. J. – volume: 141 start-page: 1769 year: 2020 end-page: 1784 ident: bb0095 article-title: Study of the usability of sinusoidal function heat flux based on enthalpy-porosity technique for PCM-related applications publication-title: J. Therm. Anal. Calorim. – volume: 108 start-page: 174 year: 1986 end-page: 181 ident: bb0235 article-title: Melting and solidification of a pure metal on a vertical wall publication-title: J. Heat Transf. – volume: 164 year: 2020 ident: bb0070 article-title: Performance investigations on a sensible heat thermal energy storage tank with a solar collector under variable climatic conditions publication-title: Appl. Therm. Eng. – volume: 112 start-page: 345 year: 2017 end-page: 357 ident: bb0085 article-title: Solid-liquid phase change around a tube with periodic heating and cooling: scale analysis, numerical simulations and correlations publication-title: Int. J. Therm. Sci. – volume: 5 year: 2023 ident: bb0125 article-title: Numerical simulation of thermal energy storage system inside a spherical capsule under periodic boundary conditions publication-title: Energy Storage – volume: 218 year: 2023 ident: 10.1016/j.est.2024.114930_bb0065 article-title: Enhancing building wall thermal performance with phase change material and insulation: a comparative and synergistic assessment publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119270 – volume: 165 year: 2021 ident: 10.1016/j.est.2024.114930_bb0240 article-title: Lattice Boltzmann simulation of natural convection melting in a cubic cavity with an internal cylindrical heat source publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.106917 – volume: 250 start-page: 248 year: 2023 ident: 10.1016/j.est.2024.114930_bb0005 article-title: A timeline of the phase-change problem for latent thermal energy storage systems: a review of theoretical approaches from the 1970’s to 2022 publication-title: Sol. Energy doi: 10.1016/j.solener.2022.12.035 – volume: 187 year: 2023 ident: 10.1016/j.est.2024.114930_bb0140 article-title: Review of the modeling approaches of phase change processes publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2023.113724 – volume: 139 start-page: 7 year: 2023 ident: 10.1016/j.est.2024.114930_bb0170 article-title: An adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturing publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2023.03.003 – volume: 16 start-page: 588 year: 2022 ident: 10.1016/j.est.2024.114930_bb0180 article-title: Two-dimensional smoothed particle hydrodynamics (SPH) simulation of multiphase melting flows and associated interface behavior publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 106 start-page: 98 year: 1984 ident: 10.1016/j.est.2024.114930_bb0205 article-title: The boundary layer natural convection regime in a rectangular cavity with uniform heat flux from the side publication-title: J. Heat Transf. doi: 10.1115/1.3246666 – volume: 173 year: 2020 ident: 10.1016/j.est.2024.114930_bb0075 article-title: Transient and non-uniform heat flux effect on solar thermoelectric generator with phase change material publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115206 – volume: 3 start-page: 249 year: 1983 ident: 10.1016/j.est.2024.114930_bb0200 article-title: Natural convection of air in a square cavity: a bench mark numerical solution publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1650030305 – volume: 113 year: 2020 ident: 10.1016/j.est.2024.114930_bb0215 article-title: Coupled solid-liquid phase change and thermal flow simulation by particle method publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104519 – volume: 136 start-page: 214 year: 1997 ident: 10.1016/j.est.2024.114930_bb0220 article-title: Modeling low Reynolds number incompressible flows using SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5776 – volume: 95 year: 2024 ident: 10.1016/j.est.2024.114930_bb0100 article-title: Investigation on the dynamic response characteristics of phase change energy storage system based on the harmonic heat source publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112439 – volume: 147 year: 2020 ident: 10.1016/j.est.2024.114930_bb0120 article-title: Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118970 – volume: 147 start-page: 320 year: 2023 ident: 10.1016/j.est.2024.114930_bb0165 article-title: An improved high order smoothed particle hydrodynamics method for numerical simulations of selective laser melting process publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2022.12.017 – volume: 62 year: 2023 ident: 10.1016/j.est.2024.114930_bb0030 article-title: A review and prospective of fin design to improve heat transfer performance of latent thermal energy storage publication-title: J. Energy Storage doi: 10.1016/j.est.2023.106825 – volume: 164 year: 2020 ident: 10.1016/j.est.2024.114930_bb0070 article-title: Performance investigations on a sensible heat thermal energy storage tank with a solar collector under variable climatic conditions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114423 – volume: 129 start-page: 160 year: 2019 ident: 10.1016/j.est.2024.114930_bb0145 article-title: Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.08.135 – volume: 166 year: 2020 ident: 10.1016/j.est.2024.114930_bb0115 article-title: Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.105243 – volume: 112 start-page: 345 year: 2017 ident: 10.1016/j.est.2024.114930_bb0085 article-title: Solid-liquid phase change around a tube with periodic heating and cooling: scale analysis, numerical simulations and correlations publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.10.017 – volume: 47 start-page: 621 year: 2005 ident: 10.1016/j.est.2024.114930_bb0230 article-title: Natural-convective heat transfer in a square cavity with time-varying side-wall temperature publication-title: Numer. Heat Transf. A Appl. doi: 10.1080/10407780590896853 – volume: 65 year: 2023 ident: 10.1016/j.est.2024.114930_bb0015 article-title: Phase change material for passive cooling in building envelopes: a comprehensive review publication-title: J. Build. Eng. – volume: 88 start-page: 2113 year: 2011 ident: 10.1016/j.est.2024.114930_bb0045 article-title: Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.016 – volume: 286 year: 2024 ident: 10.1016/j.est.2024.114930_bb0255 article-title: Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: energy, exergy, and economic analysis publication-title: Energy doi: 10.1016/j.energy.2023.129530 – volume: 69 start-page: 177 year: 2023 ident: 10.1016/j.est.2024.114930_bb0130 article-title: Natural convection heat transfer in a nanofluid filled l-shaped enclosure with time-periodic temperature boundary and magnetic field publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.12.030 – volume: 206 start-page: 684 year: 2005 ident: 10.1016/j.est.2024.114930_bb0155 article-title: Solidification using smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.11.039 – volume: 145 year: 2023 ident: 10.1016/j.est.2024.114930_bb0190 article-title: Numerical investigation of melting process with natural convection inside multi-tube horizontal cylinder by SPH method publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2023.106832 – volume: 228 start-page: 725 year: 2021 ident: 10.1016/j.est.2024.114930_bb0035 article-title: A review of nanomaterial incorporated phase change materials for solar thermal energy storage publication-title: Sol. Energy doi: 10.1016/j.solener.2021.08.051 – volume: 47 year: 2021 ident: 10.1016/j.est.2024.114930_bb0025 article-title: Effects of fin parameters on performance of latent heat thermal energy storage systems: a comprehensive review publication-title: Sustain Energy Technol Assess – volume: 192 year: 2023 ident: 10.1016/j.est.2024.114930_bb0135 article-title: Free convection of nanofluids in a porous sensible heat storage unit: combined effect of time periodic heating and external magnetic field publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2023.108404 – volume: 139 start-page: 948 year: 2019 ident: 10.1016/j.est.2024.114930_bb0210 article-title: Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.05.054 – volume: 72 year: 2023 ident: 10.1016/j.est.2024.114930_bb0010 article-title: Recent advances in phase change materials-based battery thermal management systems for electric vehicles publication-title: J. Energy Storage doi: 10.1016/j.est.2023.108750 – volume: 228 start-page: 6703 year: 2009 ident: 10.1016/j.est.2024.114930_bb0225 article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.05.032 – volume: 474 year: 2023 ident: 10.1016/j.est.2024.114930_bb0185 article-title: An enhanced implicit viscosity ISPH method for simulating free-surface flow coupled with solid-liquid phase change publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111809 – volume: 58 year: 2023 ident: 10.1016/j.est.2024.114930_bb0080 article-title: Computational fluid dynamics simulation of a designed envelop contenting phase change material and imposed solar heat flux and ambient air publication-title: J. Energy Storage doi: 10.1016/j.est.2022.106184 – volume: 341 start-page: 163 year: 2018 ident: 10.1016/j.est.2024.114930_bb0160 article-title: Numerical simulation of laser fusion additive manufacturing processes using the SPH method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.06.033 – volume: 12 year: 2022 ident: 10.1016/j.est.2024.114930_bb0175 article-title: A weakly compressible smoothed particle hydrodynamics framework for melting multiphase flow publication-title: AIP Adv. doi: 10.1063/5.0057583 – volume: 191 start-page: 276 year: 2017 ident: 10.1016/j.est.2024.114930_bb0105 article-title: Impact of periodic flow reversal of heat transfer fluid on the melting and solidification processes in a latent heat shell and tube storage system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.091 – volume: 200 year: 2023 ident: 10.1016/j.est.2024.114930_bb0040 article-title: Encapsulation methods for phase change materials – a critical review publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.123458 – volume: 108 start-page: 174 year: 1986 ident: 10.1016/j.est.2024.114930_bb0235 article-title: Melting and solidification of a pure metal on a vertical wall publication-title: J. Heat Transf. doi: 10.1115/1.3246884 – volume: 31 start-page: 954 year: 2020 ident: 10.1016/j.est.2024.114930_bb0110 article-title: Unsteady natural convection flow of a suspension comprising nano-encapsulated phase change materials (NEPCMs) in a porous medium publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2019.12.010 – volume: 141 start-page: 1769 year: 2020 ident: 10.1016/j.est.2024.114930_bb0095 article-title: Study of the usability of sinusoidal function heat flux based on enthalpy-porosity technique for PCM-related applications publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-09192-7 – volume: 82 start-page: 472 year: 2015 ident: 10.1016/j.est.2024.114930_bb0055 article-title: Multiple bi-phase interfaces in a PCM layer subject to periodic boundary conditions characteristic of building external walls publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.846 – volume: 5 year: 2023 ident: 10.1016/j.est.2024.114930_bb0125 article-title: Numerical simulation of thermal energy storage system inside a spherical capsule under periodic boundary conditions publication-title: Energy Storage doi: 10.1002/est2.425 – volume: 190 start-page: 213 year: 2017 ident: 10.1016/j.est.2024.114930_bb0060 article-title: Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.123 – volume: 70 start-page: 157 year: 2016 ident: 10.1016/j.est.2024.114930_bb0245 article-title: Numerical investigation on the natural convection effects in the melting process of PCM in a finned container using lattice Boltzmann method publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2016.07.002 – volume: 263 year: 2020 ident: 10.1016/j.est.2024.114930_bb0195 article-title: Computer modelling and experimental investigation of phase change hysteresis of PCMs: the state-of-the-art review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114572 – year: 2024 ident: 10.1016/j.est.2024.114930_bb0250 article-title: Phase change heat storage and enhanced heat transfer based on metal foam under unsteady rotation conditions publication-title: Energy – volume: 88 start-page: 844 year: 2015 ident: 10.1016/j.est.2024.114930_bb0050 article-title: Analytical model for solidification and melting in a finite PCM in steady periodic regime publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.04.109 – volume: 15 start-page: 274 year: 2018 ident: 10.1016/j.est.2024.114930_bb0090 article-title: Melting and solidification behaviour of phase change materials with cyclic heating and cooling publication-title: J. Energy Storage doi: 10.1016/j.est.2017.12.005 – volume: 14 start-page: 5449 year: 2023 ident: 10.1016/j.est.2024.114930_bb0020 article-title: Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials publication-title: Nat. Commun. doi: 10.1038/s41467-023-40988-2 – volume: 206 year: 2022 ident: 10.1016/j.est.2024.114930_bb0150 article-title: A review on the application of lattice Boltzmann method for melting and solidification problems publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2022.111288 |
SSID | ssj0001651196 |
Score | 2.297521 |
Snippet | The increasing demand for energy recovery and renewable energy inspires the wide applications of latent heat thermal energy storage employed with phase change... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 114930 |
SubjectTerms | Inhomogeneous heat flux boundary Latent heat thermal energy storage Phase change material Smoothed particle hydrodynamics |
Title | The effect analysis of the oscillating heat flux boundary conditions to the melting performance by SPH method |
URI | https://dx.doi.org/10.1016/j.est.2024.114930 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5ze9EH8SfOX-TBJ6Gsa5M2eRzDURWHMAd9K017kcnsxujA_fdempZN0BdfSw_Cl_DdXfLdHSF3DKTqB0I5wlTIMKmEo0BLJ8255BqyXClT4PwyDqIpe4p53CLDphbGyCpr7recXrF1_aVXo9lbzma9iYexA3qfGH2SmTYb75GO58tAtEln8PgcjbdXLYF5LLNj5rjnGJvmfbNSeiH9YqLoMdM3Vxo59G8easfrjI7IYR0u0oFd0TFpQXFCDnaaCJ6ST9xpamUZNK1bjNCFphjZUdOpcm7UbsU7NaxL9Xz9RVU1Smm1oZgL51ayRctFZfAJ8-rn5baegKoNnbxG1M6aPiPT0cPbMHLqIQpOhplV6XBwcxFIlqtMhjoVgO4pdXFNkHMVCgCmwVNCIEKau_2Upz7mXJCGQnLmB9o_J-1iUcAFoRKkF-aYIIHKGZKkQnLwFB4BkQXAQXfJfQNcsrS9MpJGRPaRIMqJQTmxKHcJa6BNfmx4glz-t9nl_8yuyL5nBve65rLtmrTL1RpuMJoo1W19Wr4Bl87KZA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEB6sHtoeSp_UPnPoqbCoa7KbHEUqa31QUMHbsnEnpcUXolD_fSf7QAvtpddlB8KX8M1M8s0MwBNHpWue1I60FTJcaeloNMqJYqGEwUmstS1w7vW9YMRfx2JcgGZeC2NllRn3p5yesHX2pZKhWVl-fFQGLsUO5H3G5JPstNnxAZRsdypehFKj3Qn6u6sWzz6WpWPmhOtYm_x9M1F6Ef1Souhy2zdXWTn0bx5qz-u0TuEkCxdZI13RGRRwfg7He00EL2BGO81SWQaLshYjbGEYRXbMdqqcWrXb_J1Z1mVmuvliOhmltNoyyoXjVLLF1ovEYIbT5Oflrp6A6S0bvAUsnTV9CaPWy7AZONkQBWdCmdXaEViNpad4rCfKN5FEck9RldaEsdC-ROQGXS0lIWREtRaJqE45F0a-VILXPVO_guJ8McdrYAqV68eUIKGOOZGkJnJwNR0BOfFQoCnDcw5cuEx7ZYS5iOwzJJRDi3KYolwGnkMb_tjwkLj8b7Ob_5k9wmEw7HXDbrvfuYUj1w7xrdqLtzsorlcbvKfIYq0fspPzDSwLzUo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+analysis+of+the+oscillating+heat+flux+boundary+conditions+to+the+melting+performance+by+SPH+method&rft.jtitle=Journal+of+energy+storage&rft.au=Wang%2C+Jianqiang&rft.au=Liu%2C+Xuedong&rft.au=Liu%2C+Hongmei&rft.date=2025-01-30&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.volume=107&rft_id=info:doi/10.1016%2Fj.est.2024.114930&rft.externalDocID=S2352152X2404516X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |