The effect analysis of the oscillating heat flux boundary conditions to the melting performance by SPH method

The increasing demand for energy recovery and renewable energy inspires the wide applications of latent heat thermal energy storage employed with phase change material, and the inhomogeneous heat flux boundary conditions of the system change the heat transfer properties and phase change performance....

Full description

Saved in:
Bibliographic Details
Published inJournal of energy storage Vol. 107; p. 114930
Main Authors Wang, Jianqiang, Liu, Xuedong, Liu, Hongmei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.01.2025
Subjects
Online AccessGet full text
ISSN2352-152X
DOI10.1016/j.est.2024.114930

Cover

Loading…
Abstract The increasing demand for energy recovery and renewable energy inspires the wide applications of latent heat thermal energy storage employed with phase change material, and the inhomogeneous heat flux boundary conditions of the system change the heat transfer properties and phase change performance. This study focuses on the phase change process inside a square domain under oscillating heat flux boundary conditions and conducts a parameter study of different coefficients. The Smoothed Particle Hydrodynamics method is adopted to model the heat and mass transfer process and the oscillating heat flux boundary condition. After the validation of the proposed method, the melting process inside the square domain is displayed. The distribution of temperature and velocity change during several periods are discussed, and the liquid fraction change is found to be consistent with the periodic change of heat flux. A parametric study is then conducted to analyze the effect of the several parameters. Results reveal that the oscillating heat flux leads to an increased melting speed up to 140 % compared to the constant heat flux, and a larger frequency of periodic heat flux leads to a longer melting time and smaller maximum temperature. Comparatively, the change in the initial phase of heat flux only affects the early stage of the melting process, and the melting time change is more sensitive to the frequency than the initial phase where the variation can be up to 51 % and 27 %, respectively. Besides, a larger Rayleigh number leads to a larger velocity magnitude and smaller temperature, and the maximum temperature distribution is more concentrated on the upper domain which decreases the melting speed. Comprehensively, the parameters with Ra = 2 × 104, ω = π, φ0 = 0 is found to have the best performance in melting speed and thermal energy storage in this study. •The charging process with inhomogeneous heat flux boundary condition in LHTES system is simulated by SPH method.•The melting time of PCM is accelerate with a periodic heat flux compared with constant heat flux.•The effects of the frequency and the initial phase of the periodic heat flux on thermal performance are analyzed.•A large Rayleigh number leads to a larger magnitude of velocity and a smaller magnitude of temperature during melting.
AbstractList The increasing demand for energy recovery and renewable energy inspires the wide applications of latent heat thermal energy storage employed with phase change material, and the inhomogeneous heat flux boundary conditions of the system change the heat transfer properties and phase change performance. This study focuses on the phase change process inside a square domain under oscillating heat flux boundary conditions and conducts a parameter study of different coefficients. The Smoothed Particle Hydrodynamics method is adopted to model the heat and mass transfer process and the oscillating heat flux boundary condition. After the validation of the proposed method, the melting process inside the square domain is displayed. The distribution of temperature and velocity change during several periods are discussed, and the liquid fraction change is found to be consistent with the periodic change of heat flux. A parametric study is then conducted to analyze the effect of the several parameters. Results reveal that the oscillating heat flux leads to an increased melting speed up to 140 % compared to the constant heat flux, and a larger frequency of periodic heat flux leads to a longer melting time and smaller maximum temperature. Comparatively, the change in the initial phase of heat flux only affects the early stage of the melting process, and the melting time change is more sensitive to the frequency than the initial phase where the variation can be up to 51 % and 27 %, respectively. Besides, a larger Rayleigh number leads to a larger velocity magnitude and smaller temperature, and the maximum temperature distribution is more concentrated on the upper domain which decreases the melting speed. Comprehensively, the parameters with Ra = 2 × 104, ω = π, φ0 = 0 is found to have the best performance in melting speed and thermal energy storage in this study. •The charging process with inhomogeneous heat flux boundary condition in LHTES system is simulated by SPH method.•The melting time of PCM is accelerate with a periodic heat flux compared with constant heat flux.•The effects of the frequency and the initial phase of the periodic heat flux on thermal performance are analyzed.•A large Rayleigh number leads to a larger magnitude of velocity and a smaller magnitude of temperature during melting.
ArticleNumber 114930
Author Liu, Hongmei
Liu, Xuedong
Wang, Jianqiang
Author_xml – sequence: 1
  givenname: Jianqiang
  surname: Wang
  fullname: Wang, Jianqiang
  email: wangjq121@cczu.edu.cn
  organization: School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, China
– sequence: 2
  givenname: Xuedong
  surname: Liu
  fullname: Liu, Xuedong
  organization: School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, China
– sequence: 3
  givenname: Hongmei
  surname: Liu
  fullname: Liu, Hongmei
  organization: School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, China
BookMark eNp9kM1KAzEUhbOoYK19AHd5gRmTzGR-cCVFbaGgYAV3ITO5sSkzSUlSsW9v2rp2deHecy7nfDdoYp0FhO4oySmh1f0uhxBzRliZU1q2BZmgKSs4yyhnn9doHsKOkCTklLbVFI2bLWDQGvqIpZXDMZiAncYxrV3ozTDIaOwX3oKMWA-HH9y5g1XSH3HvrDLROBtwdGfDCMNZvAevnR-l7QF3R_z-tkynuHXqFl1pOQSY_80Z-nh-2iyW2fr1ZbV4XGc9K9uYcSCqqdpSdX1ba9kAqWpJUkZQvKsbgFID65omVdCcUMllQUsCsm5aXhaVLmaIXv723oXgQYu9N2MKLSgRJ0xiJxImccIkLpiS5-HigRTs24AXqT6kCsr4REcoZ_5x_wJ6t3XP
Cites_doi 10.1016/j.renene.2023.119270
10.1016/j.ijthermalsci.2021.106917
10.1016/j.solener.2022.12.035
10.1016/j.rser.2023.113724
10.1016/j.camwa.2023.03.003
10.1115/1.3246666
10.1016/j.applthermaleng.2020.115206
10.1002/fld.1650030305
10.1016/j.icheatmasstransfer.2020.104519
10.1006/jcph.1997.5776
10.1016/j.est.2024.112439
10.1016/j.ijheatmasstransfer.2019.118970
10.1016/j.enganabound.2022.12.017
10.1016/j.est.2023.106825
10.1016/j.applthermaleng.2019.114423
10.1016/j.ijheatmasstransfer.2018.08.135
10.1016/j.ijmecsci.2019.105243
10.1016/j.ijthermalsci.2016.10.017
10.1080/10407780590896853
10.1016/j.apenergy.2011.01.016
10.1016/j.energy.2023.129530
10.1016/j.aej.2022.12.030
10.1016/j.jcp.2004.11.039
10.1016/j.icheatmasstransfer.2023.106832
10.1016/j.solener.2021.08.051
10.1016/j.ijthermalsci.2023.108404
10.1016/j.ijheatmasstransfer.2019.05.054
10.1016/j.est.2023.108750
10.1016/j.jcp.2009.05.032
10.1016/j.jcp.2022.111809
10.1016/j.est.2022.106184
10.1016/j.cma.2018.06.033
10.1063/5.0057583
10.1016/j.apenergy.2017.01.091
10.1016/j.ijheatmasstransfer.2022.123458
10.1115/1.3246884
10.1016/j.apt.2019.12.010
10.1007/s10973-019-09192-7
10.1016/j.egypro.2015.11.846
10.1002/est2.425
10.1016/j.apenergy.2016.12.123
10.1016/j.ijrefrig.2016.07.002
10.1016/j.apenergy.2020.114572
10.1016/j.ijheatmasstransfer.2015.04.109
10.1016/j.est.2017.12.005
10.1038/s41467-023-40988-2
10.1016/j.commatsci.2022.111288
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.est.2024.114930
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_est_2024_114930
S2352152X2404516X
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
SSH
ID FETCH-LOGICAL-c249t-5e0d8694dbc97fa8e067a0feced5b78ee4fe2b88119f501a5a3140ea7895436f3
IEDL.DBID AIKHN
ISSN 2352-152X
IngestDate Tue Jul 01 00:52:38 EDT 2025
Sat Jan 18 16:10:47 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Smoothed particle hydrodynamics
Phase change material
Inhomogeneous heat flux boundary
Latent heat thermal energy storage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-5e0d8694dbc97fa8e067a0feced5b78ee4fe2b88119f501a5a3140ea7895436f3
ParticipantIDs crossref_primary_10_1016_j_est_2024_114930
elsevier_sciencedirect_doi_10_1016_j_est_2024_114930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-30
PublicationDateYYYYMMDD 2025-01-30
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of energy storage
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Taghilou, Talati (bb0245) 2016; 70
Zhou, Xu, Huang (bb0020) 2023; 14
Gau, Viskanta (bb0235) 1986; 108
Li, Yang, Wang, Huo, Rao (bb0100) 2024; 95
Wang (bb0190) 2023; 145
Wang, Zhang (bb0215) 2020; 113
Kalabin, Kanashina, Zubkov (bb0230) 2005; 47
Monaghan, Huppert, Worster (bb0155) 2005; 206
He, Liu, Li, Tao (bb0145) 2019; 129
Lüthi, Afrasiabi, Bambach (bb0170) 2023; 139
Yan, Teng, Abed, Deifalla, Youshanlouei, Abdulghani, Moria (bb0080) 2023; 58
Shittu, Li, Xuan, Xiao, Zhao, Ma, Akhlaghi (bb0075) 2020; 173
Sadeghi, Babayan, Chamkha (bb0120) 2020; 147
Wang, Hu, Zhang, Pan (bb0210) 2019; 139
Xu, Stansby, Laurence (bb0225) 2009; 228
Eslami, Khosravi, Fallah Kohan (bb0025) 2021; 47
Huang, Stonehouse, Abeykoon (bb0040) 2023; 200
Ye, Wang, Wang (bb0060) 2017; 190
Morris, Fox, Zhu (bb0220) 1997; 136
Asker, Genceli, Ezan (bb0125) 2023; 5
Izadi, Alshuraiaan, Hajjar, Sheremet, Ben Hamida (bb0135) 2023; 192
Zhang, Li, Yan (bb0255) 2024; 286
De Vahl Davis (bb0200) 1983; 3
Alhuyi Nazari, Maleki, Assad, Rosen, Haghighi, Sharabaty, Chen (bb0035) 2021; 228
Zhou, Yang, Xu (bb0045) 2011; 88
Ghalambaz, Mehryan, Hajjar, Veismoradi (bb0110) 2020; 31
Dong, Hao, Yu (bb0180) 2022; 16
Saleem, Marafie, Al-Farhany, Hussam, Sheard (bb0130) 2023; 69
Samanta, Chattopadhyay, Guha (bb0150) 2022; 206
Lan, Zhang, Tian, Su, Qiu (bb0185) 2023; 474
Rocha, Trevizoli, de Oliveira (bb0005) 2023; 250
Riahi, Saman, Bruno, Belusko, Tay (bb0105) 2017; 191
Huang, Li, Xie, Gao, Yang, Li (bb0250) 2024
Russell, Souto-Iglesias, Zohdi (bb0160) 2018; 341
Alptekin, Ezan (bb0070) 2020; 164
Zhang, Huo, Wang, Shi (bb0140) 2023; 187
Mazzeo, Oliveti, De Simone, Arcuri (bb0050) 2015; 88
Long, Huang (bb0165) 2023; 147
Chabot, Gosselin (bb0085) 2017; 112
Kant, Shukla, Sharma, Biwole (bb0090) 2018; 15
Bouzennada, Mechighel, Filali, Kolsi (bb0095) 2020; 141
Zhang, Wang, Li (bb0240) 2021; 165
Kimura, Bejan (bb0205) 1984; 106
Li, Wen, Cai, Yu, Liu (bb0015) 2023; 65
Tunçbilek, Arıcı, Krajčík, Li, Nižetić, Papadopoulos (bb0065) 2023; 218
Cai, Zhang, Ji (bb0010) 2023; 72
Zhang, Mancin, Pu (bb0030) 2023; 62
Klimeš, Charvát, Mastani Joybari, Zálešák, Haghighat, Panchabikesan, El Mankibi, Yuan (bb0195) 2020; 263
Mazzeo, Oliveti, Arcuri (bb0055) 2015; 82
Hajjar, Mehryan, Ghalambaz (bb0115) 2020; 166
Zhuang, Wu, Zhang, Dong (bb0175) 2022; 12
Alhuyi Nazari (10.1016/j.est.2024.114930_bb0035) 2021; 228
Shittu (10.1016/j.est.2024.114930_bb0075) 2020; 173
Li (10.1016/j.est.2024.114930_bb0100) 2024; 95
Zhou (10.1016/j.est.2024.114930_bb0045) 2011; 88
Eslami (10.1016/j.est.2024.114930_bb0025) 2021; 47
Alptekin (10.1016/j.est.2024.114930_bb0070) 2020; 164
Wang (10.1016/j.est.2024.114930_bb0215) 2020; 113
Saleem (10.1016/j.est.2024.114930_bb0130) 2023; 69
Morris (10.1016/j.est.2024.114930_bb0220) 1997; 136
Gau (10.1016/j.est.2024.114930_bb0235) 1986; 108
Riahi (10.1016/j.est.2024.114930_bb0105) 2017; 191
Hajjar (10.1016/j.est.2024.114930_bb0115) 2020; 166
De Vahl Davis (10.1016/j.est.2024.114930_bb0200) 1983; 3
Zhang (10.1016/j.est.2024.114930_bb0255) 2024; 286
Asker (10.1016/j.est.2024.114930_bb0125) 2023; 5
Zhuang (10.1016/j.est.2024.114930_bb0175) 2022; 12
Zhang (10.1016/j.est.2024.114930_bb0140) 2023; 187
Xu (10.1016/j.est.2024.114930_bb0225) 2009; 228
Lüthi (10.1016/j.est.2024.114930_bb0170) 2023; 139
Chabot (10.1016/j.est.2024.114930_bb0085) 2017; 112
Izadi (10.1016/j.est.2024.114930_bb0135) 2023; 192
Wang (10.1016/j.est.2024.114930_bb0210) 2019; 139
Cai (10.1016/j.est.2024.114930_bb0010) 2023; 72
Kant (10.1016/j.est.2024.114930_bb0090) 2018; 15
Zhang (10.1016/j.est.2024.114930_bb0240) 2021; 165
Long (10.1016/j.est.2024.114930_bb0165) 2023; 147
Yan (10.1016/j.est.2024.114930_bb0080) 2023; 58
Monaghan (10.1016/j.est.2024.114930_bb0155) 2005; 206
Rocha (10.1016/j.est.2024.114930_bb0005) 2023; 250
Zhou (10.1016/j.est.2024.114930_bb0020) 2023; 14
Mazzeo (10.1016/j.est.2024.114930_bb0055) 2015; 82
Bouzennada (10.1016/j.est.2024.114930_bb0095) 2020; 141
Zhang (10.1016/j.est.2024.114930_bb0030) 2023; 62
Sadeghi (10.1016/j.est.2024.114930_bb0120) 2020; 147
Kimura (10.1016/j.est.2024.114930_bb0205) 1984; 106
Samanta (10.1016/j.est.2024.114930_bb0150) 2022; 206
Ghalambaz (10.1016/j.est.2024.114930_bb0110) 2020; 31
Lan (10.1016/j.est.2024.114930_bb0185) 2023; 474
Taghilou (10.1016/j.est.2024.114930_bb0245) 2016; 70
Ye (10.1016/j.est.2024.114930_bb0060) 2017; 190
Kalabin (10.1016/j.est.2024.114930_bb0230) 2005; 47
He (10.1016/j.est.2024.114930_bb0145) 2019; 129
Wang (10.1016/j.est.2024.114930_bb0190) 2023; 145
Huang (10.1016/j.est.2024.114930_bb0250) 2024
Tunçbilek (10.1016/j.est.2024.114930_bb0065) 2023; 218
Huang (10.1016/j.est.2024.114930_bb0040) 2023; 200
Russell (10.1016/j.est.2024.114930_bb0160) 2018; 341
Dong (10.1016/j.est.2024.114930_bb0180) 2022; 16
Li (10.1016/j.est.2024.114930_bb0015) 2023; 65
Klimeš (10.1016/j.est.2024.114930_bb0195) 2020; 263
Mazzeo (10.1016/j.est.2024.114930_bb0050) 2015; 88
References_xml – volume: 190
  start-page: 213
  year: 2017
  end-page: 221
  ident: bb0060
  article-title: Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions
  publication-title: Appl. Energy
– volume: 47
  start-page: 621
  year: 2005
  end-page: 631
  ident: bb0230
  article-title: Natural-convective heat transfer in a square cavity with time-varying side-wall temperature
  publication-title: Numer. Heat Transf. A Appl.
– volume: 14
  start-page: 5449
  year: 2023
  ident: bb0020
  article-title: Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials
  publication-title: Nat. Commun.
– volume: 47
  year: 2021
  ident: bb0025
  article-title: Effects of fin parameters on performance of latent heat thermal energy storage systems: a comprehensive review
  publication-title: Sustain Energy Technol Assess
– volume: 286
  year: 2024
  ident: bb0255
  article-title: Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: energy, exergy, and economic analysis
  publication-title: Energy
– volume: 129
  start-page: 160
  year: 2019
  end-page: 197
  ident: bb0145
  article-title: Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review
  publication-title: Int. J. Heat Mass Transf.
– volume: 3
  start-page: 249
  year: 1983
  end-page: 264
  ident: bb0200
  article-title: Natural convection of air in a square cavity: a bench mark numerical solution
  publication-title: Int. J. Numer. Methods Fluids
– volume: 58
  year: 2023
  ident: bb0080
  article-title: Computational fluid dynamics simulation of a designed envelop contenting phase change material and imposed solar heat flux and ambient air
  publication-title: J. Energy Storage
– volume: 263
  year: 2020
  ident: bb0195
  article-title: Computer modelling and experimental investigation of phase change hysteresis of PCMs: the state-of-the-art review
  publication-title: Appl. Energy
– volume: 474
  year: 2023
  ident: bb0185
  article-title: An enhanced implicit viscosity ISPH method for simulating free-surface flow coupled with solid-liquid phase change
  publication-title: J. Comput. Phys.
– volume: 113
  year: 2020
  ident: bb0215
  article-title: Coupled solid-liquid phase change and thermal flow simulation by particle method
  publication-title: International Communications in Heat and Mass Transfer
– volume: 16
  start-page: 588
  year: 2022
  end-page: 629
  ident: bb0180
  article-title: Two-dimensional smoothed particle hydrodynamics (SPH) simulation of multiphase melting flows and associated interface behavior
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 192
  year: 2023
  ident: bb0135
  article-title: Free convection of nanofluids in a porous sensible heat storage unit: combined effect of time periodic heating and external magnetic field
  publication-title: Int. J. Therm. Sci.
– volume: 206
  start-page: 684
  year: 2005
  end-page: 705
  ident: bb0155
  article-title: Solidification using smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 165
  year: 2021
  ident: bb0240
  article-title: Lattice Boltzmann simulation of natural convection melting in a cubic cavity with an internal cylindrical heat source
  publication-title: Int. J. Therm. Sci.
– volume: 145
  year: 2023
  ident: bb0190
  article-title: Numerical investigation of melting process with natural convection inside multi-tube horizontal cylinder by SPH method
  publication-title: International Communications in Heat and Mass Transfer
– volume: 228
  start-page: 725
  year: 2021
  end-page: 743
  ident: bb0035
  article-title: A review of nanomaterial incorporated phase change materials for solar thermal energy storage
  publication-title: Sol. Energy
– volume: 15
  start-page: 274
  year: 2018
  end-page: 282
  ident: bb0090
  article-title: Melting and solidification behaviour of phase change materials with cyclic heating and cooling
  publication-title: J. Energy Storage
– year: 2024
  ident: bb0250
  article-title: Phase change heat storage and enhanced heat transfer based on metal foam under unsteady rotation conditions
  publication-title: Energy
– volume: 139
  start-page: 948
  year: 2019
  end-page: 962
  ident: bb0210
  article-title: Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics
  publication-title: Int. J. Heat Mass Transf.
– volume: 136
  start-page: 214
  year: 1997
  end-page: 226
  ident: bb0220
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
– volume: 147
  year: 2020
  ident: bb0120
  article-title: Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition
  publication-title: Int. J. Heat Mass Transf.
– volume: 88
  start-page: 2113
  year: 2011
  end-page: 2121
  ident: bb0045
  article-title: Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves
  publication-title: Appl. Energy
– volume: 65
  year: 2023
  ident: bb0015
  article-title: Phase change material for passive cooling in building envelopes: a comprehensive review
  publication-title: J. Build. Eng.
– volume: 250
  start-page: 248
  year: 2023
  end-page: 284
  ident: bb0005
  article-title: A timeline of the phase-change problem for latent thermal energy storage systems: a review of theoretical approaches from the 1970’s to 2022
  publication-title: Sol. Energy
– volume: 70
  start-page: 157
  year: 2016
  end-page: 170
  ident: bb0245
  article-title: Numerical investigation on the natural convection effects in the melting process of PCM in a finned container using lattice Boltzmann method
  publication-title: Int. J. Refrig.
– volume: 187
  year: 2023
  ident: bb0140
  article-title: Review of the modeling approaches of phase change processes
  publication-title: Renew. Sust. Energ. Rev.
– volume: 218
  year: 2023
  ident: bb0065
  article-title: Enhancing building wall thermal performance with phase change material and insulation: a comparative and synergistic assessment
  publication-title: Renew. Energy
– volume: 82
  start-page: 472
  year: 2015
  end-page: 479
  ident: bb0055
  article-title: Multiple bi-phase interfaces in a PCM layer subject to periodic boundary conditions characteristic of building external walls
  publication-title: Energy Procedia
– volume: 173
  year: 2020
  ident: bb0075
  article-title: Transient and non-uniform heat flux effect on solar thermoelectric generator with phase change material
  publication-title: Appl. Therm. Eng.
– volume: 191
  start-page: 276
  year: 2017
  end-page: 286
  ident: bb0105
  article-title: Impact of periodic flow reversal of heat transfer fluid on the melting and solidification processes in a latent heat shell and tube storage system
  publication-title: Appl. Energy
– volume: 12
  year: 2022
  ident: bb0175
  article-title: A weakly compressible smoothed particle hydrodynamics framework for melting multiphase flow
  publication-title: AIP Adv.
– volume: 228
  start-page: 6703
  year: 2009
  end-page: 6725
  ident: bb0225
  article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach
  publication-title: J. Comput. Phys.
– volume: 166
  year: 2020
  ident: bb0115
  article-title: Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension
  publication-title: Int. J. Mech. Sci.
– volume: 341
  start-page: 163
  year: 2018
  end-page: 187
  ident: bb0160
  article-title: Numerical simulation of laser fusion additive manufacturing processes using the SPH method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 139
  start-page: 7
  year: 2023
  end-page: 27
  ident: bb0170
  article-title: An adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturing
  publication-title: Comput. Math. Appl.
– volume: 206
  year: 2022
  ident: bb0150
  article-title: A review on the application of lattice Boltzmann method for melting and solidification problems
  publication-title: Comput. Mater. Sci.
– volume: 147
  start-page: 320
  year: 2023
  end-page: 335
  ident: bb0165
  article-title: An improved high order smoothed particle hydrodynamics method for numerical simulations of selective laser melting process
  publication-title: Eng. Anal. Bound. Elem.
– volume: 72
  year: 2023
  ident: bb0010
  article-title: Recent advances in phase change materials-based battery thermal management systems for electric vehicles
  publication-title: J. Energy Storage
– volume: 200
  year: 2023
  ident: bb0040
  article-title: Encapsulation methods for phase change materials – a critical review
  publication-title: Int. J. Heat Mass Transf.
– volume: 31
  start-page: 954
  year: 2020
  end-page: 966
  ident: bb0110
  article-title: Unsteady natural convection flow of a suspension comprising nano-encapsulated phase change materials (NEPCMs) in a porous medium
  publication-title: Adv. Powder Technol.
– volume: 62
  year: 2023
  ident: bb0030
  article-title: A review and prospective of fin design to improve heat transfer performance of latent thermal energy storage
  publication-title: J. Energy Storage
– volume: 88
  start-page: 844
  year: 2015
  end-page: 861
  ident: bb0050
  article-title: Analytical model for solidification and melting in a finite PCM in steady periodic regime
  publication-title: Int. J. Heat Mass Transf.
– volume: 106
  start-page: 98
  year: 1984
  end-page: 103
  ident: bb0205
  article-title: The boundary layer natural convection regime in a rectangular cavity with uniform heat flux from the side
  publication-title: J. Heat Transf.
– volume: 95
  year: 2024
  ident: bb0100
  article-title: Investigation on the dynamic response characteristics of phase change energy storage system based on the harmonic heat source
  publication-title: J. Energy Storage
– volume: 69
  start-page: 177
  year: 2023
  end-page: 191
  ident: bb0130
  article-title: Natural convection heat transfer in a nanofluid filled l-shaped enclosure with time-periodic temperature boundary and magnetic field
  publication-title: Alex. Eng. J.
– volume: 141
  start-page: 1769
  year: 2020
  end-page: 1784
  ident: bb0095
  article-title: Study of the usability of sinusoidal function heat flux based on enthalpy-porosity technique for PCM-related applications
  publication-title: J. Therm. Anal. Calorim.
– volume: 108
  start-page: 174
  year: 1986
  end-page: 181
  ident: bb0235
  article-title: Melting and solidification of a pure metal on a vertical wall
  publication-title: J. Heat Transf.
– volume: 164
  year: 2020
  ident: bb0070
  article-title: Performance investigations on a sensible heat thermal energy storage tank with a solar collector under variable climatic conditions
  publication-title: Appl. Therm. Eng.
– volume: 112
  start-page: 345
  year: 2017
  end-page: 357
  ident: bb0085
  article-title: Solid-liquid phase change around a tube with periodic heating and cooling: scale analysis, numerical simulations and correlations
  publication-title: Int. J. Therm. Sci.
– volume: 5
  year: 2023
  ident: bb0125
  article-title: Numerical simulation of thermal energy storage system inside a spherical capsule under periodic boundary conditions
  publication-title: Energy Storage
– volume: 218
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0065
  article-title: Enhancing building wall thermal performance with phase change material and insulation: a comparative and synergistic assessment
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.119270
– volume: 165
  year: 2021
  ident: 10.1016/j.est.2024.114930_bb0240
  article-title: Lattice Boltzmann simulation of natural convection melting in a cubic cavity with an internal cylindrical heat source
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.106917
– volume: 250
  start-page: 248
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0005
  article-title: A timeline of the phase-change problem for latent thermal energy storage systems: a review of theoretical approaches from the 1970’s to 2022
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.12.035
– volume: 187
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0140
  article-title: Review of the modeling approaches of phase change processes
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2023.113724
– volume: 139
  start-page: 7
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0170
  article-title: An adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturing
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2023.03.003
– volume: 16
  start-page: 588
  year: 2022
  ident: 10.1016/j.est.2024.114930_bb0180
  article-title: Two-dimensional smoothed particle hydrodynamics (SPH) simulation of multiphase melting flows and associated interface behavior
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 106
  start-page: 98
  year: 1984
  ident: 10.1016/j.est.2024.114930_bb0205
  article-title: The boundary layer natural convection regime in a rectangular cavity with uniform heat flux from the side
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3246666
– volume: 173
  year: 2020
  ident: 10.1016/j.est.2024.114930_bb0075
  article-title: Transient and non-uniform heat flux effect on solar thermoelectric generator with phase change material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115206
– volume: 3
  start-page: 249
  year: 1983
  ident: 10.1016/j.est.2024.114930_bb0200
  article-title: Natural convection of air in a square cavity: a bench mark numerical solution
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650030305
– volume: 113
  year: 2020
  ident: 10.1016/j.est.2024.114930_bb0215
  article-title: Coupled solid-liquid phase change and thermal flow simulation by particle method
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104519
– volume: 136
  start-page: 214
  year: 1997
  ident: 10.1016/j.est.2024.114930_bb0220
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5776
– volume: 95
  year: 2024
  ident: 10.1016/j.est.2024.114930_bb0100
  article-title: Investigation on the dynamic response characteristics of phase change energy storage system based on the harmonic heat source
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112439
– volume: 147
  year: 2020
  ident: 10.1016/j.est.2024.114930_bb0120
  article-title: Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118970
– volume: 147
  start-page: 320
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0165
  article-title: An improved high order smoothed particle hydrodynamics method for numerical simulations of selective laser melting process
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2022.12.017
– volume: 62
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0030
  article-title: A review and prospective of fin design to improve heat transfer performance of latent thermal energy storage
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106825
– volume: 164
  year: 2020
  ident: 10.1016/j.est.2024.114930_bb0070
  article-title: Performance investigations on a sensible heat thermal energy storage tank with a solar collector under variable climatic conditions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114423
– volume: 129
  start-page: 160
  year: 2019
  ident: 10.1016/j.est.2024.114930_bb0145
  article-title: Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.08.135
– volume: 166
  year: 2020
  ident: 10.1016/j.est.2024.114930_bb0115
  article-title: Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.105243
– volume: 112
  start-page: 345
  year: 2017
  ident: 10.1016/j.est.2024.114930_bb0085
  article-title: Solid-liquid phase change around a tube with periodic heating and cooling: scale analysis, numerical simulations and correlations
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.10.017
– volume: 47
  start-page: 621
  year: 2005
  ident: 10.1016/j.est.2024.114930_bb0230
  article-title: Natural-convective heat transfer in a square cavity with time-varying side-wall temperature
  publication-title: Numer. Heat Transf. A Appl.
  doi: 10.1080/10407780590896853
– volume: 65
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0015
  article-title: Phase change material for passive cooling in building envelopes: a comprehensive review
  publication-title: J. Build. Eng.
– volume: 88
  start-page: 2113
  year: 2011
  ident: 10.1016/j.est.2024.114930_bb0045
  article-title: Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.01.016
– volume: 286
  year: 2024
  ident: 10.1016/j.est.2024.114930_bb0255
  article-title: Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: energy, exergy, and economic analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129530
– volume: 69
  start-page: 177
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0130
  article-title: Natural convection heat transfer in a nanofluid filled l-shaped enclosure with time-periodic temperature boundary and magnetic field
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.12.030
– volume: 206
  start-page: 684
  year: 2005
  ident: 10.1016/j.est.2024.114930_bb0155
  article-title: Solidification using smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.11.039
– volume: 145
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0190
  article-title: Numerical investigation of melting process with natural convection inside multi-tube horizontal cylinder by SPH method
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2023.106832
– volume: 228
  start-page: 725
  year: 2021
  ident: 10.1016/j.est.2024.114930_bb0035
  article-title: A review of nanomaterial incorporated phase change materials for solar thermal energy storage
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.08.051
– volume: 47
  year: 2021
  ident: 10.1016/j.est.2024.114930_bb0025
  article-title: Effects of fin parameters on performance of latent heat thermal energy storage systems: a comprehensive review
  publication-title: Sustain Energy Technol Assess
– volume: 192
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0135
  article-title: Free convection of nanofluids in a porous sensible heat storage unit: combined effect of time periodic heating and external magnetic field
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2023.108404
– volume: 139
  start-page: 948
  year: 2019
  ident: 10.1016/j.est.2024.114930_bb0210
  article-title: Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.05.054
– volume: 72
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0010
  article-title: Recent advances in phase change materials-based battery thermal management systems for electric vehicles
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108750
– volume: 228
  start-page: 6703
  year: 2009
  ident: 10.1016/j.est.2024.114930_bb0225
  article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.05.032
– volume: 474
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0185
  article-title: An enhanced implicit viscosity ISPH method for simulating free-surface flow coupled with solid-liquid phase change
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111809
– volume: 58
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0080
  article-title: Computational fluid dynamics simulation of a designed envelop contenting phase change material and imposed solar heat flux and ambient air
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.106184
– volume: 341
  start-page: 163
  year: 2018
  ident: 10.1016/j.est.2024.114930_bb0160
  article-title: Numerical simulation of laser fusion additive manufacturing processes using the SPH method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.06.033
– volume: 12
  year: 2022
  ident: 10.1016/j.est.2024.114930_bb0175
  article-title: A weakly compressible smoothed particle hydrodynamics framework for melting multiphase flow
  publication-title: AIP Adv.
  doi: 10.1063/5.0057583
– volume: 191
  start-page: 276
  year: 2017
  ident: 10.1016/j.est.2024.114930_bb0105
  article-title: Impact of periodic flow reversal of heat transfer fluid on the melting and solidification processes in a latent heat shell and tube storage system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.091
– volume: 200
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0040
  article-title: Encapsulation methods for phase change materials – a critical review
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.123458
– volume: 108
  start-page: 174
  year: 1986
  ident: 10.1016/j.est.2024.114930_bb0235
  article-title: Melting and solidification of a pure metal on a vertical wall
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3246884
– volume: 31
  start-page: 954
  year: 2020
  ident: 10.1016/j.est.2024.114930_bb0110
  article-title: Unsteady natural convection flow of a suspension comprising nano-encapsulated phase change materials (NEPCMs) in a porous medium
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2019.12.010
– volume: 141
  start-page: 1769
  year: 2020
  ident: 10.1016/j.est.2024.114930_bb0095
  article-title: Study of the usability of sinusoidal function heat flux based on enthalpy-porosity technique for PCM-related applications
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-09192-7
– volume: 82
  start-page: 472
  year: 2015
  ident: 10.1016/j.est.2024.114930_bb0055
  article-title: Multiple bi-phase interfaces in a PCM layer subject to periodic boundary conditions characteristic of building external walls
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.11.846
– volume: 5
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0125
  article-title: Numerical simulation of thermal energy storage system inside a spherical capsule under periodic boundary conditions
  publication-title: Energy Storage
  doi: 10.1002/est2.425
– volume: 190
  start-page: 213
  year: 2017
  ident: 10.1016/j.est.2024.114930_bb0060
  article-title: Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.123
– volume: 70
  start-page: 157
  year: 2016
  ident: 10.1016/j.est.2024.114930_bb0245
  article-title: Numerical investigation on the natural convection effects in the melting process of PCM in a finned container using lattice Boltzmann method
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2016.07.002
– volume: 263
  year: 2020
  ident: 10.1016/j.est.2024.114930_bb0195
  article-title: Computer modelling and experimental investigation of phase change hysteresis of PCMs: the state-of-the-art review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114572
– year: 2024
  ident: 10.1016/j.est.2024.114930_bb0250
  article-title: Phase change heat storage and enhanced heat transfer based on metal foam under unsteady rotation conditions
  publication-title: Energy
– volume: 88
  start-page: 844
  year: 2015
  ident: 10.1016/j.est.2024.114930_bb0050
  article-title: Analytical model for solidification and melting in a finite PCM in steady periodic regime
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.04.109
– volume: 15
  start-page: 274
  year: 2018
  ident: 10.1016/j.est.2024.114930_bb0090
  article-title: Melting and solidification behaviour of phase change materials with cyclic heating and cooling
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2017.12.005
– volume: 14
  start-page: 5449
  year: 2023
  ident: 10.1016/j.est.2024.114930_bb0020
  article-title: Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40988-2
– volume: 206
  year: 2022
  ident: 10.1016/j.est.2024.114930_bb0150
  article-title: A review on the application of lattice Boltzmann method for melting and solidification problems
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2022.111288
SSID ssj0001651196
Score 2.297521
Snippet The increasing demand for energy recovery and renewable energy inspires the wide applications of latent heat thermal energy storage employed with phase change...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114930
SubjectTerms Inhomogeneous heat flux boundary
Latent heat thermal energy storage
Phase change material
Smoothed particle hydrodynamics
Title The effect analysis of the oscillating heat flux boundary conditions to the melting performance by SPH method
URI https://dx.doi.org/10.1016/j.est.2024.114930
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5ze9EH8SfOX-TBJ6Gsa5M2eRzDURWHMAd9K017kcnsxujA_fdempZN0BdfSw_Cl_DdXfLdHSF3DKTqB0I5wlTIMKmEo0BLJ8255BqyXClT4PwyDqIpe4p53CLDphbGyCpr7recXrF1_aVXo9lbzma9iYexA3qfGH2SmTYb75GO58tAtEln8PgcjbdXLYF5LLNj5rjnGJvmfbNSeiH9YqLoMdM3Vxo59G8easfrjI7IYR0u0oFd0TFpQXFCDnaaCJ6ST9xpamUZNK1bjNCFphjZUdOpcm7UbsU7NaxL9Xz9RVU1Smm1oZgL51ayRctFZfAJ8-rn5baegKoNnbxG1M6aPiPT0cPbMHLqIQpOhplV6XBwcxFIlqtMhjoVgO4pdXFNkHMVCgCmwVNCIEKau_2Upz7mXJCGQnLmB9o_J-1iUcAFoRKkF-aYIIHKGZKkQnLwFB4BkQXAQXfJfQNcsrS9MpJGRPaRIMqJQTmxKHcJa6BNfmx4glz-t9nl_8yuyL5nBve65rLtmrTL1RpuMJoo1W19Wr4Bl87KZA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEB6sHtoeSp_UPnPoqbCoa7KbHEUqa31QUMHbsnEnpcUXolD_fSf7QAvtpddlB8KX8M1M8s0MwBNHpWue1I60FTJcaeloNMqJYqGEwUmstS1w7vW9YMRfx2JcgGZeC2NllRn3p5yesHX2pZKhWVl-fFQGLsUO5H3G5JPstNnxAZRsdypehFKj3Qn6u6sWzz6WpWPmhOtYm_x9M1F6Ef1Souhy2zdXWTn0bx5qz-u0TuEkCxdZI13RGRRwfg7He00EL2BGO81SWQaLshYjbGEYRXbMdqqcWrXb_J1Z1mVmuvliOhmltNoyyoXjVLLF1ovEYIbT5Oflrp6A6S0bvAUsnTV9CaPWy7AZONkQBWdCmdXaEViNpad4rCfKN5FEck9RldaEsdC-ROQGXS0lIWREtRaJqE45F0a-VILXPVO_guJ8McdrYAqV68eUIKGOOZGkJnJwNR0BOfFQoCnDcw5cuEx7ZYS5iOwzJJRDi3KYolwGnkMb_tjwkLj8b7Ob_5k9wmEw7HXDbrvfuYUj1w7xrdqLtzsorlcbvKfIYq0fspPzDSwLzUo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+analysis+of+the+oscillating+heat+flux+boundary+conditions+to+the+melting+performance+by+SPH+method&rft.jtitle=Journal+of+energy+storage&rft.au=Wang%2C+Jianqiang&rft.au=Liu%2C+Xuedong&rft.au=Liu%2C+Hongmei&rft.date=2025-01-30&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.volume=107&rft_id=info:doi/10.1016%2Fj.est.2024.114930&rft.externalDocID=S2352152X2404516X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon