Efficient sulfide and methane removal in anaerobic secondary effluent using a pilot-scale membrane-aerated biofilm reactor

[Display omitted] •A pilot-scale MABR was operated after a demonstration-scale AnMBR.•The MABR achieved > 99 % removal of both sulfide and dissolved methane.•Energy requirement for the MABR operation was negligible (<0.05 kWh/m3).•> 99 % of produced N2O was recovered in off-gas from the gas...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 486; p. 150066
Main Authors Adem, Mahilet K., Morris, Ian C., Shin, Chungheon, Tilmans, Sebastien H., Mitch, William A., Criddle, Craig S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A pilot-scale MABR was operated after a demonstration-scale AnMBR.•The MABR achieved > 99 % removal of both sulfide and dissolved methane.•Energy requirement for the MABR operation was negligible (<0.05 kWh/m3).•> 99 % of produced N2O was recovered in off-gas from the gas permeable membranes. Anaerobic secondary treatment can enable energy-efficient removal of organic matter but may produce effluent containing dissolved methane and sulfide that must be managed before discharge or reuse. In this study, we operated a Membrane-aerated Biofilm Reactor (MABR) to achieve reliable removal of dissolved sulfide and methane from anaerobic secondary effluent at pilot-scale. The pilot-scale MABR was equipped with gas permeable polymethyl pentene (PMP) membranes, promoting surface growth of aerobic biofilm via diffusion-based aeration (lumen-to-surface diffusion). The system treated anaerobic secondary effluent from a demonstration-scale anaerobic membrane bioreactor (AnMBR) processing 90 m3/d primary effluent. MABR influent flow rate was increased from 8.2 to 32.7 m3/d to elevate substrate loading rates to the biofilm. The MABR consistently achieved >99 % removal of sulfide and dissolved methane, even at the maximum substrate loading rate: 2.3 g-S/m2/d for sulfide and 2.5 g-CH4/m2/d for dissolved methane. Despite effective sulfide and methane removal, incomplete nitrification (<25 % ammonia removal) occurred, with a portion of ammonia converted into nitrous oxide (N2O), a greenhouse gas 298 times more potent than CO2. Operating the MABR incurred low energy costs: 0.01 to 0.05 kWh/m3 for the compressor supplying air to the membrane lumen and 0.01 kWh/m3 for the influent pump. An in-depth mass balance of N2O emissions from the MABR revealed that N2O was subject to counter-diffusion (surface-to-lumen diffusion) in which >99 % of the N2O produced within the biofilm was recovered in off-gas from the gas permeable membranes (hollow fibers).
AbstractList [Display omitted] •A pilot-scale MABR was operated after a demonstration-scale AnMBR.•The MABR achieved > 99 % removal of both sulfide and dissolved methane.•Energy requirement for the MABR operation was negligible (<0.05 kWh/m3).•> 99 % of produced N2O was recovered in off-gas from the gas permeable membranes. Anaerobic secondary treatment can enable energy-efficient removal of organic matter but may produce effluent containing dissolved methane and sulfide that must be managed before discharge or reuse. In this study, we operated a Membrane-aerated Biofilm Reactor (MABR) to achieve reliable removal of dissolved sulfide and methane from anaerobic secondary effluent at pilot-scale. The pilot-scale MABR was equipped with gas permeable polymethyl pentene (PMP) membranes, promoting surface growth of aerobic biofilm via diffusion-based aeration (lumen-to-surface diffusion). The system treated anaerobic secondary effluent from a demonstration-scale anaerobic membrane bioreactor (AnMBR) processing 90 m3/d primary effluent. MABR influent flow rate was increased from 8.2 to 32.7 m3/d to elevate substrate loading rates to the biofilm. The MABR consistently achieved >99 % removal of sulfide and dissolved methane, even at the maximum substrate loading rate: 2.3 g-S/m2/d for sulfide and 2.5 g-CH4/m2/d for dissolved methane. Despite effective sulfide and methane removal, incomplete nitrification (<25 % ammonia removal) occurred, with a portion of ammonia converted into nitrous oxide (N2O), a greenhouse gas 298 times more potent than CO2. Operating the MABR incurred low energy costs: 0.01 to 0.05 kWh/m3 for the compressor supplying air to the membrane lumen and 0.01 kWh/m3 for the influent pump. An in-depth mass balance of N2O emissions from the MABR revealed that N2O was subject to counter-diffusion (surface-to-lumen diffusion) in which >99 % of the N2O produced within the biofilm was recovered in off-gas from the gas permeable membranes (hollow fibers).
ArticleNumber 150066
Author Mitch, William A.
Adem, Mahilet K.
Morris, Ian C.
Tilmans, Sebastien H.
Shin, Chungheon
Criddle, Craig S.
Author_xml – sequence: 1
  givenname: Mahilet K.
  surname: Adem
  fullname: Adem, Mahilet K.
  organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
– sequence: 2
  givenname: Ian C.
  surname: Morris
  fullname: Morris, Ian C.
  organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
– sequence: 3
  givenname: Chungheon
  surname: Shin
  fullname: Shin, Chungheon
  email: lukeshin@stanford.edu
  organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
– sequence: 4
  givenname: Sebastien H.
  surname: Tilmans
  fullname: Tilmans, Sebastien H.
  organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
– sequence: 5
  givenname: William A.
  surname: Mitch
  fullname: Mitch, William A.
  organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
– sequence: 6
  givenname: Craig S.
  surname: Criddle
  fullname: Criddle, Craig S.
  organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
BookMark eNp9kM1qwzAQBnVIoUnaB-hNL2BXsh3ZpqcS0h8I9NKehby7amVsK0hOoH36KqTnnhYWZviYFVtMfiLG7qTIpZDqvs-B-rwQRZXLjRBKLdhSls0ma9qqvmarGHuR3q1sl-xnZ60DR9PM43GwDombCflI85eZiAca_ckM3E3pbSj4zgGPBH5CE745WTscz-wxuumTG35wg5-zCGag5Bi7kCRZ4sxMyDvnrRvGJDUw-3DDrqwZIt3-3TX7eNq9b1-y_dvz6_Zxn0FRtXO2QbBCmaKRoATVqIBqAS2AVBaoQVSEpiotCmOquqtlUSlEtKVVpGyL5ZrJixeCjzGQ1YfgxjRfS6HPwXSvUzB9DqYvwRLzcGEoDTs5CjqeIwGhCwSzRu_-oX8BbZ17fQ
Cites_doi 10.1016/j.biortech.2014.02.060
10.1016/j.cej.2021.131912
10.1016/j.watres.2021.117598
10.1021/acs.est.1c07992
10.1016/j.bej.2022.108442
10.2166/wst.2021.062
10.1016/j.biortech.2012.01.014
10.1016/j.watres.2020.115965
10.1016/j.watres.2016.08.019
10.2139/ssrn.4569090
10.1021/acs.est.3c01936
10.1002/jctb.4565
10.1021/acsestengg.2c00256
10.1016/j.biortech.2017.09.002
10.1016/j.biortech.2011.07.109
10.2174/1385272820666160517155831
10.1016/j.biortech.2011.08.099
10.1016/S0021-9673(96)00809-6
10.1021/es501701s
10.1016/j.biortech.2012.02.110
10.1039/D0EW01112F
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2024.150066
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2024_150066
S1385894724015523
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SSH
ZY4
ID FETCH-LOGICAL-c249t-5dcf06a281c60e7d6ce70c9cc16fce8dd6eda43fd0aa47b71246dddf3f6e6f9d3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 02:11:49 EDT 2025
Sat Nov 02 16:00:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Anaerobic secondary effluent
Dissolved methane removal
N2O recovery
Sulfide removal
Carbon footprint
Membrane-aerated biofilm reactor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-5dcf06a281c60e7d6ce70c9cc16fce8dd6eda43fd0aa47b71246dddf3f6e6f9d3
ParticipantIDs crossref_primary_10_1016_j_cej_2024_150066
elsevier_sciencedirect_doi_10_1016_j_cej_2024_150066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Martin, Nerenberg (b0105) 2012; 122
Shin, McCarty, Kim, Bae (b0035) 2014; 159
Orhon (b0005) 2015; 90
Shin, Lee, McCarty, Bae (b0095) 2011; 102
Galdi, Szczuka, Shin, Mitch, Luthy (b0120) 2022; 3
Daigger, G. T. MABR Workshop: Current status and emerging applications, December 6, 2020, IWA Biofilms 2020 Virtual Conferences.
Shin, McCarty, Bae (b0100) 2016; 20
Calvo Buendia, Tanabe, Kranjc, Baasansuren, Fukuda, Ngarize, Osako, Pyrozhenko, Shermanau, Federici (b0015) 2019
Carlson, He, Yang, Daigger (b0075) 2021; 83
Kobayashi, Agari, Kigo, Terada (b0130) 2022; 183
Stocker, Qin, Plattner, Tignor, Allen, Boschung, Nauels, Xia, Bex, Midgley (b0140) 2014
Hatamoto, Miyauchi, Kindaichi, Ozaki, Ohashi (b0125) 2011; 102
Shin, Tilmans, Chen, Criddle (b0045) 2021; 426
Shin, Bae (b0025) 2018; 247
Lee, Rout, Kyun, Bae (b0070) 2020; 182
Rittmann, McCarty (b0020) 2020
Shin, Bae, McCarty (b0050) 2012; 109
Evans, Doody, Harclerode, Brower, Vila, McCarty, Parker, Parameswaran, Lim, Bae, Shin, Lee, Tan, Guy, Page, Maga (b0030) 2018
Kim, A., Shin, C., Criddle, C. S. Membrane-aerated biofilm reactor enabling simultaneous removal of ammonium and sulfide from a simulated anaerobic secondary effluent. (2023) Available at SSRN: https://ssrn.com/abstract=4569090 or http://dx.doi.org/10.2139/ssrn.4569090.
Shin, Szczuka, Jiang, Mitch, Criddle (b0065) 2021; 7
Scherson, Criddle (b0145) 2014; 48
Shin, Szczuka, Berglund-Brown, Chen, Quay, MacDonald, Chen, Tilmans, Mitch, Criddle (b0040) CEC-500-2022-XXX, 2022.
Husain, Cote (b0115) 2006; 7,118,672
Shin, Szczuka, Liu, Mendoza, Jiang, Tilmans, Tarpeh, Mitch, Criddle (b0055) 2022; 56
Han, Zhang, Liu, Rittmann, Zhao (b0080) 2023; 57
Doble (b0135) 2007
Shin, Tilmans, Chen, McCarty, Criddle (b0010) 2021; 204
Crone, Garland, Sorial, Vane (b0060) 2016; 104
Rethmeier, Rabenstein, Langer, Fischer (b0090) 1997; 760
Shin (10.1016/j.cej.2024.150066_b0045) 2021; 426
Carlson (10.1016/j.cej.2024.150066_b0075) 2021; 83
Kobayashi (10.1016/j.cej.2024.150066_b0130) 2022; 183
Shin (10.1016/j.cej.2024.150066_b0040) 2022
Lee (10.1016/j.cej.2024.150066_b0070) 2020; 182
Rethmeier (10.1016/j.cej.2024.150066_b0090) 1997; 760
Shin (10.1016/j.cej.2024.150066_b0035) 2014; 159
Husain (10.1016/j.cej.2024.150066_b0115) 2006; 7,118,672
Rittmann (10.1016/j.cej.2024.150066_b0020) 2020
Shin (10.1016/j.cej.2024.150066_b0065) 2021; 7
10.1016/j.cej.2024.150066_b0085
Calvo Buendia (10.1016/j.cej.2024.150066_b0015) 2019
Martin (10.1016/j.cej.2024.150066_b0105) 2012; 122
Shin (10.1016/j.cej.2024.150066_b0010) 2021; 204
Han (10.1016/j.cej.2024.150066_b0080) 2023; 57
Shin (10.1016/j.cej.2024.150066_b0055) 2022; 56
Hatamoto (10.1016/j.cej.2024.150066_b0125) 2011; 102
Shin (10.1016/j.cej.2024.150066_b0100) 2016; 20
Shin (10.1016/j.cej.2024.150066_b0095) 2011; 102
Stocker (10.1016/j.cej.2024.150066_b0140) 2014
Shin (10.1016/j.cej.2024.150066_b0025) 2018; 247
10.1016/j.cej.2024.150066_b0110
Doble (10.1016/j.cej.2024.150066_b0135) 2007
Galdi (10.1016/j.cej.2024.150066_b0120) 2022; 3
Crone (10.1016/j.cej.2024.150066_b0060) 2016; 104
Scherson (10.1016/j.cej.2024.150066_b0145) 2014; 48
Shin (10.1016/j.cej.2024.150066_b0050) 2012; 109
Orhon (10.1016/j.cej.2024.150066_b0005) 2015; 90
Evans (10.1016/j.cej.2024.150066_b0030) 2018
References_xml – volume: 7,118,672
  start-page: B2
  year: 2006
  ident: b0115
  article-title: Membrane supported bioreactor for municipal and industrial wastewater treatment
  publication-title: US
– volume: 760
  start-page: 295
  year: 1997
  end-page: 302
  ident: b0090
  article-title: Detection of traves of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods
  publication-title: J. Chromatogr.
– reference: Daigger, G. T. MABR Workshop: Current status and emerging applications, December 6, 2020, IWA Biofilms 2020 Virtual Conferences.
– volume: 3
  start-page: 121
  year: 2022
  end-page: 130
  ident: b0120
  article-title: Dissolved methane recovery and trace contaminant fate following mainstream anaerobic treatment of municipal wastewater
  publication-title: ACS ES&T Engineering
– reference: Kim, A., Shin, C., Criddle, C. S. Membrane-aerated biofilm reactor enabling simultaneous removal of ammonium and sulfide from a simulated anaerobic secondary effluent. (2023) Available at SSRN: https://ssrn.com/abstract=4569090 or http://dx.doi.org/10.2139/ssrn.4569090.
– volume: 159
  start-page: 95
  year: 2014
  end-page: 103
  ident: b0035
  article-title: Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR)
  publication-title: Bioresour. Technol.
– year: 2019
  ident: b0015
  article-title: 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories
– volume: 122
  start-page: 83
  year: 2012
  end-page: 94
  ident: b0105
  article-title: The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments
  publication-title: Bioresour. Technol.
– volume: 57
  start-page: 10733
  year: 2023
  end-page: 10744
  ident: b0080
  article-title: Novel sulfate reduction coupled to simultaneous nitrification and autotrophic denitrification process for removing nitrogen and organics from saline wastewater
  publication-title: Environ. Sci. Technol.
– volume: 426
  year: 2021
  ident: b0045
  article-title: Anaerobic membrane bioreactor model for design and prediction of domestic wastewater treatment process performance
  publication-title: Chem. Eng. J.
– year: 2007
  ident: b0135
  article-title: Perry’s chemical engineers’ handbook
– year: 2020
  ident: b0020
  article-title: Environmental biotechnology: principles and applications
– volume: 183
  year: 2022
  ident: b0130
  article-title: Efficient oxygen supply and rapid biofilm formation by a new composite polystyrene elastomer membrane for use in a membrane-aerated biofilm reactor
  publication-title: Biochem. Eng. J.
– volume: 90
  start-page: 608
  year: 2015
  end-page: 640
  ident: b0005
  article-title: Evolution of the activated sludge process: the first 50 years
  publication-title: J. Chem. Tech. & Biotech.
– volume: 20
  start-page: 2810
  year: 2016
  end-page: 2816
  ident: b0100
  article-title: Importance of dissolved methane management when anaerobically treating low-strength wastewaters
  publication-title: Curr. Org. Chem.
– year: CEC-500-2022-XXX, 2022.
  ident: b0040
  article-title: Maximizing water and energy from new anaerobic wastewater treatment technology
  publication-title: California Energy Commission Final Report
– volume: 102
  start-page: 9860
  year: 2011
  end-page: 9865
  ident: b0095
  article-title: Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater
  publication-title: Bioresource Technology
– volume: 7
  start-page: 739
  year: 2021
  end-page: 747
  ident: b0065
  article-title: Optimization of reverse osmosis operational conditions to maximize ammonia removal from the effluent of an anaerobic membrane bioreactor
  publication-title: Environ. Sci. Water Res. Technol.
– volume: 48
  start-page: 8420
  year: 2014
  end-page: 8432
  ident: b0145
  article-title: Recovery of freshwater from wastewater: upgrading process configurations to maximize energy recovery and minimize residuals
  publication-title: Environ. Sci. Technol.
– volume: 182
  year: 2020
  ident: b0070
  article-title: Process optimization and energy analysis of vacuum degasifier systems for the simultaneous removal of dissolved methane and hydrogen sulfide from anaerobically treated wastewater
  publication-title: Water Res.
– year: 2014
  ident: b0140
  article-title: IPCC 2013: the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change
– volume: 247
  start-page: 1038
  year: 2018
  end-page: 1046
  ident: b0025
  article-title: Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: a critical review
  publication-title: Bioresour. Technol.
– volume: 104
  start-page: 520
  year: 2016
  end-page: 531
  ident: b0060
  article-title: Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: a review
  publication-title: Water Res.
– year: 2018
  ident: b0030
  article-title: Anaerobic membrane bioreactor (AnMBR) for sustainable waste- water treatment
  publication-title: Environmental Security Technology Certification Program Project (ESTCP Project ER-201434)
– volume: 109
  start-page: 13
  year: 2012
  end-page: 20
  ident: b0050
  article-title: Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor
  publication-title: Bioresour. Technol.
– volume: 56
  start-page: 8712
  year: 2022
  end-page: 8721
  ident: b0055
  article-title: Recovery of clean water and ammonia from domestic wastewater: impacts on embodied energy and greenhouse gas emissions
  publication-title: Environ. Sci. Technol.
– volume: 102
  start-page: 10299
  year: 2011
  end-page: 10304
  ident: b0125
  article-title: Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment
  publication-title: Bioresour. Technol.
– volume: 204
  year: 2021
  ident: b0010
  article-title: Temperate climate energy-positive anaerobic secondary treatment of domestic wastewater at pilot-scale
  publication-title: Water Res.
– volume: 83
  start-page: 1418
  year: 2021
  end-page: 1428
  ident: b0075
  article-title: Comparison of hybrid membrane aerated biofilm reactor (MABR)/SUSPENDED growth and conventional biological nutrient removal processes
  publication-title: Water Sci. Technol.
– volume: 159
  start-page: 95
  year: 2014
  ident: 10.1016/j.cej.2024.150066_b0035
  article-title: Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.02.060
– volume: 426
  year: 2021
  ident: 10.1016/j.cej.2024.150066_b0045
  article-title: Anaerobic membrane bioreactor model for design and prediction of domestic wastewater treatment process performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131912
– volume: 204
  year: 2021
  ident: 10.1016/j.cej.2024.150066_b0010
  article-title: Temperate climate energy-positive anaerobic secondary treatment of domestic wastewater at pilot-scale
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117598
– volume: 56
  start-page: 8712
  issue: 12
  year: 2022
  ident: 10.1016/j.cej.2024.150066_b0055
  article-title: Recovery of clean water and ammonia from domestic wastewater: impacts on embodied energy and greenhouse gas emissions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c07992
– volume: 183
  year: 2022
  ident: 10.1016/j.cej.2024.150066_b0130
  article-title: Efficient oxygen supply and rapid biofilm formation by a new composite polystyrene elastomer membrane for use in a membrane-aerated biofilm reactor
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2022.108442
– volume: 83
  start-page: 1418
  issue: 6
  year: 2021
  ident: 10.1016/j.cej.2024.150066_b0075
  article-title: Comparison of hybrid membrane aerated biofilm reactor (MABR)/SUSPENDED growth and conventional biological nutrient removal processes
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2021.062
– year: 2019
  ident: 10.1016/j.cej.2024.150066_b0015
– volume: 109
  start-page: 13
  year: 2012
  ident: 10.1016/j.cej.2024.150066_b0050
  article-title: Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.014
– volume: 7,118,672
  start-page: B2
  year: 2006
  ident: 10.1016/j.cej.2024.150066_b0115
  article-title: Membrane supported bioreactor for municipal and industrial wastewater treatment
  publication-title: US
– volume: 182
  year: 2020
  ident: 10.1016/j.cej.2024.150066_b0070
  article-title: Process optimization and energy analysis of vacuum degasifier systems for the simultaneous removal of dissolved methane and hydrogen sulfide from anaerobically treated wastewater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115965
– volume: 104
  start-page: 520
  year: 2016
  ident: 10.1016/j.cej.2024.150066_b0060
  article-title: Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.08.019
– year: 2020
  ident: 10.1016/j.cej.2024.150066_b0020
– ident: 10.1016/j.cej.2024.150066_b0085
  doi: 10.2139/ssrn.4569090
– year: 2018
  ident: 10.1016/j.cej.2024.150066_b0030
  article-title: Anaerobic membrane bioreactor (AnMBR) for sustainable waste- water treatment
  publication-title: Environmental Security Technology Certification Program Project (ESTCP Project ER-201434)
– volume: 57
  start-page: 10733
  issue: 29
  year: 2023
  ident: 10.1016/j.cej.2024.150066_b0080
  article-title: Novel sulfate reduction coupled to simultaneous nitrification and autotrophic denitrification process for removing nitrogen and organics from saline wastewater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c01936
– volume: 90
  start-page: 608
  issue: 4
  year: 2015
  ident: 10.1016/j.cej.2024.150066_b0005
  article-title: Evolution of the activated sludge process: the first 50 years
  publication-title: J. Chem. Tech. & Biotech.
  doi: 10.1002/jctb.4565
– volume: 3
  start-page: 121
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2024.150066_b0120
  article-title: Dissolved methane recovery and trace contaminant fate following mainstream anaerobic treatment of municipal wastewater
  publication-title: ACS ES&T Engineering
  doi: 10.1021/acsestengg.2c00256
– ident: 10.1016/j.cej.2024.150066_b0110
– volume: 247
  start-page: 1038
  year: 2018
  ident: 10.1016/j.cej.2024.150066_b0025
  article-title: Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.002
– year: 2022
  ident: 10.1016/j.cej.2024.150066_b0040
  article-title: Maximizing water and energy from new anaerobic wastewater treatment technology
  publication-title: California Energy Commission Final Report
– volume: 102
  start-page: 9860
  issue: 21
  year: 2011
  ident: 10.1016/j.cej.2024.150066_b0095
  article-title: Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2011.07.109
– volume: 20
  start-page: 2810
  issue: 26
  year: 2016
  ident: 10.1016/j.cej.2024.150066_b0100
  article-title: Importance of dissolved methane management when anaerobically treating low-strength wastewaters
  publication-title: Curr. Org. Chem.
  doi: 10.2174/1385272820666160517155831
– volume: 102
  start-page: 10299
  issue: 22
  year: 2011
  ident: 10.1016/j.cej.2024.150066_b0125
  article-title: Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.08.099
– volume: 760
  start-page: 295
  year: 1997
  ident: 10.1016/j.cej.2024.150066_b0090
  article-title: Detection of traves of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods
  publication-title: J. Chromatogr.
  doi: 10.1016/S0021-9673(96)00809-6
– volume: 48
  start-page: 8420
  issue: 15
  year: 2014
  ident: 10.1016/j.cej.2024.150066_b0145
  article-title: Recovery of freshwater from wastewater: upgrading process configurations to maximize energy recovery and minimize residuals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501701s
– volume: 122
  start-page: 83
  year: 2012
  ident: 10.1016/j.cej.2024.150066_b0105
  article-title: The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.02.110
– year: 2014
  ident: 10.1016/j.cej.2024.150066_b0140
– year: 2007
  ident: 10.1016/j.cej.2024.150066_b0135
– volume: 7
  start-page: 739
  issue: 4
  year: 2021
  ident: 10.1016/j.cej.2024.150066_b0065
  article-title: Optimization of reverse osmosis operational conditions to maximize ammonia removal from the effluent of an anaerobic membrane bioreactor
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/D0EW01112F
SSID ssj0006919
Score 2.4445112
Snippet [Display omitted] •A pilot-scale MABR was operated after a demonstration-scale AnMBR.•The MABR achieved > 99 % removal of both sulfide and dissolved...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 150066
SubjectTerms Anaerobic secondary effluent
Carbon footprint
Dissolved methane removal
Membrane-aerated biofilm reactor
N2O recovery
Sulfide removal
Title Efficient sulfide and methane removal in anaerobic secondary effluent using a pilot-scale membrane-aerated biofilm reactor
URI https://dx.doi.org/10.1016/j.cej.2024.150066
Volume 486
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvaSH0jYtTR9Bh5wCytprWVofQ0jYdkkOedDczFgzKg5Z77LrHJpDfntnvDZNob30ZCwkYWbEPDyj71PqoLI4pglmJo8EUmYsDEDmTZVxQpRi5T3I_47zCze9sd9u89stdTLchZG2yt72b2x6Z637kVEvzdGyrkdXqdS0CuvZJwmOmCB-WuvllB89_W7zcEVH7iGTjcweKptdj1egO04Rx_aIw6KkA0r8i2965m_OXqtXfaCojzff8kZtUfNWvXwGH7irHk87_Ad2G3r9cB9rJA0NaiGFhob0iuYLPke6bngYSACXgl5LAoyw-qkpdvQkrZbW9x8a9LK-X7RmzUoj3mPOaXRDBgR0mVBXtXB7z3nTjqDnnbo5O70-mZqeS8EETrBak2OIiYPxJA0uIY8ukE9CEULqYmBloSMEm0VMAKyvPLt9h4gxi45cLDB7r7abRUMflMZYBZtXkzFCbpEKSCJCwnEc5WHifdhTh4MUy-UGMqMcesnuShZ5KSIvNyLfU3aQc_mH3ks26f9e9vH_ln1SO_Im1aA0_6y229UDfeGgoq32u1Ozr14cf51NL-Q5u_w--wVT0tFD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHkoPFX2gQkvrQ0-VzCYbx94cKwTatsClIHGLJp5xFcRmV7vh0B747Z3JJiqV4MLVsa1oxplHZvx9Sn2uLI5pgpnJI4GUGQsDkHlTZZwQpVh5D_K_4-zcTS_t96v8akMdDXdhpK2yt_1rm95Z635k1EtztKjr0c9UalqF9eyTBEcs21TPLH--QmNwePevz8MVHbuHzDYyfShtdk1ega45RxzbQ46Lkg4p8QHndM_hnOyol32kqL-uX-aV2qDmtXpxDz_wjfpz3AFAsN_Qq9ubWCNpaFALKzQ0pJc0m_NB0nXDw0CCuBT0SjJghOVvTbHjJ2m19L7_0qAX9c28NSvWGvEeM86jGzIgqMuEuqqF3HvGm3YMPW_V5cnxxdHU9GQKJnCG1ZocQ0wcjCdpcAl5dIF8EooQUhcDawsdIdgsYgJgfeXZ7ztEjFl05GKB2a7aauYNvVMaYxVsXk3GCLlFKiCJCAkHcpSHifdhT30ZpFgu1pgZ5dBMdl2yyEsRebkW-Z6yg5zL_xRfsk1_fNn-05Z9Us-nF2en5em38x_v1bY8kdJQmn9QW-3ylg44wmirj90J-gu7cNEu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+sulfide+and+methane+removal+in+anaerobic+secondary+effluent+using+a+pilot-scale+membrane-aerated+biofilm+reactor&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Adem%2C+Mahilet+K.&rft.au=Morris%2C+Ian+C.&rft.au=Shin%2C+Chungheon&rft.au=Tilmans%2C+Sebastien+H.&rft.date=2024-04-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=486&rft_id=info:doi/10.1016%2Fj.cej.2024.150066&rft.externalDocID=S1385894724015523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon