Efficient sulfide and methane removal in anaerobic secondary effluent using a pilot-scale membrane-aerated biofilm reactor
[Display omitted] •A pilot-scale MABR was operated after a demonstration-scale AnMBR.•The MABR achieved > 99 % removal of both sulfide and dissolved methane.•Energy requirement for the MABR operation was negligible (<0.05 kWh/m3).•> 99 % of produced N2O was recovered in off-gas from the gas...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 486; p. 150066 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A pilot-scale MABR was operated after a demonstration-scale AnMBR.•The MABR achieved > 99 % removal of both sulfide and dissolved methane.•Energy requirement for the MABR operation was negligible (<0.05 kWh/m3).•> 99 % of produced N2O was recovered in off-gas from the gas permeable membranes.
Anaerobic secondary treatment can enable energy-efficient removal of organic matter but may produce effluent containing dissolved methane and sulfide that must be managed before discharge or reuse. In this study, we operated a Membrane-aerated Biofilm Reactor (MABR) to achieve reliable removal of dissolved sulfide and methane from anaerobic secondary effluent at pilot-scale. The pilot-scale MABR was equipped with gas permeable polymethyl pentene (PMP) membranes, promoting surface growth of aerobic biofilm via diffusion-based aeration (lumen-to-surface diffusion). The system treated anaerobic secondary effluent from a demonstration-scale anaerobic membrane bioreactor (AnMBR) processing 90 m3/d primary effluent. MABR influent flow rate was increased from 8.2 to 32.7 m3/d to elevate substrate loading rates to the biofilm. The MABR consistently achieved >99 % removal of sulfide and dissolved methane, even at the maximum substrate loading rate: 2.3 g-S/m2/d for sulfide and 2.5 g-CH4/m2/d for dissolved methane. Despite effective sulfide and methane removal, incomplete nitrification (<25 % ammonia removal) occurred, with a portion of ammonia converted into nitrous oxide (N2O), a greenhouse gas 298 times more potent than CO2. Operating the MABR incurred low energy costs: 0.01 to 0.05 kWh/m3 for the compressor supplying air to the membrane lumen and 0.01 kWh/m3 for the influent pump. An in-depth mass balance of N2O emissions from the MABR revealed that N2O was subject to counter-diffusion (surface-to-lumen diffusion) in which >99 % of the N2O produced within the biofilm was recovered in off-gas from the gas permeable membranes (hollow fibers). |
---|---|
AbstractList | [Display omitted]
•A pilot-scale MABR was operated after a demonstration-scale AnMBR.•The MABR achieved > 99 % removal of both sulfide and dissolved methane.•Energy requirement for the MABR operation was negligible (<0.05 kWh/m3).•> 99 % of produced N2O was recovered in off-gas from the gas permeable membranes.
Anaerobic secondary treatment can enable energy-efficient removal of organic matter but may produce effluent containing dissolved methane and sulfide that must be managed before discharge or reuse. In this study, we operated a Membrane-aerated Biofilm Reactor (MABR) to achieve reliable removal of dissolved sulfide and methane from anaerobic secondary effluent at pilot-scale. The pilot-scale MABR was equipped with gas permeable polymethyl pentene (PMP) membranes, promoting surface growth of aerobic biofilm via diffusion-based aeration (lumen-to-surface diffusion). The system treated anaerobic secondary effluent from a demonstration-scale anaerobic membrane bioreactor (AnMBR) processing 90 m3/d primary effluent. MABR influent flow rate was increased from 8.2 to 32.7 m3/d to elevate substrate loading rates to the biofilm. The MABR consistently achieved >99 % removal of sulfide and dissolved methane, even at the maximum substrate loading rate: 2.3 g-S/m2/d for sulfide and 2.5 g-CH4/m2/d for dissolved methane. Despite effective sulfide and methane removal, incomplete nitrification (<25 % ammonia removal) occurred, with a portion of ammonia converted into nitrous oxide (N2O), a greenhouse gas 298 times more potent than CO2. Operating the MABR incurred low energy costs: 0.01 to 0.05 kWh/m3 for the compressor supplying air to the membrane lumen and 0.01 kWh/m3 for the influent pump. An in-depth mass balance of N2O emissions from the MABR revealed that N2O was subject to counter-diffusion (surface-to-lumen diffusion) in which >99 % of the N2O produced within the biofilm was recovered in off-gas from the gas permeable membranes (hollow fibers). |
ArticleNumber | 150066 |
Author | Mitch, William A. Adem, Mahilet K. Morris, Ian C. Tilmans, Sebastien H. Shin, Chungheon Criddle, Craig S. |
Author_xml | – sequence: 1 givenname: Mahilet K. surname: Adem fullname: Adem, Mahilet K. organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States – sequence: 2 givenname: Ian C. surname: Morris fullname: Morris, Ian C. organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States – sequence: 3 givenname: Chungheon surname: Shin fullname: Shin, Chungheon email: lukeshin@stanford.edu organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States – sequence: 4 givenname: Sebastien H. surname: Tilmans fullname: Tilmans, Sebastien H. organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States – sequence: 5 givenname: William A. surname: Mitch fullname: Mitch, William A. organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States – sequence: 6 givenname: Craig S. surname: Criddle fullname: Criddle, Craig S. organization: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States |
BookMark | eNp9kM1qwzAQBnVIoUnaB-hNL2BXsh3ZpqcS0h8I9NKehby7amVsK0hOoH36KqTnnhYWZviYFVtMfiLG7qTIpZDqvs-B-rwQRZXLjRBKLdhSls0ma9qqvmarGHuR3q1sl-xnZ60DR9PM43GwDombCflI85eZiAca_ckM3E3pbSj4zgGPBH5CE745WTscz-wxuumTG35wg5-zCGag5Bi7kCRZ4sxMyDvnrRvGJDUw-3DDrqwZIt3-3TX7eNq9b1-y_dvz6_Zxn0FRtXO2QbBCmaKRoATVqIBqAS2AVBaoQVSEpiotCmOquqtlUSlEtKVVpGyL5ZrJixeCjzGQ1YfgxjRfS6HPwXSvUzB9DqYvwRLzcGEoDTs5CjqeIwGhCwSzRu_-oX8BbZ17fQ |
Cites_doi | 10.1016/j.biortech.2014.02.060 10.1016/j.cej.2021.131912 10.1016/j.watres.2021.117598 10.1021/acs.est.1c07992 10.1016/j.bej.2022.108442 10.2166/wst.2021.062 10.1016/j.biortech.2012.01.014 10.1016/j.watres.2020.115965 10.1016/j.watres.2016.08.019 10.2139/ssrn.4569090 10.1021/acs.est.3c01936 10.1002/jctb.4565 10.1021/acsestengg.2c00256 10.1016/j.biortech.2017.09.002 10.1016/j.biortech.2011.07.109 10.2174/1385272820666160517155831 10.1016/j.biortech.2011.08.099 10.1016/S0021-9673(96)00809-6 10.1021/es501701s 10.1016/j.biortech.2012.02.110 10.1039/D0EW01112F |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2024.150066 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2024_150066 S1385894724015523 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- SSH ZY4 |
ID | FETCH-LOGICAL-c249t-5dcf06a281c60e7d6ce70c9cc16fce8dd6eda43fd0aa47b71246dddf3f6e6f9d3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 02:11:49 EDT 2025 Sat Nov 02 16:00:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anaerobic secondary effluent Dissolved methane removal N2O recovery Sulfide removal Carbon footprint Membrane-aerated biofilm reactor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-5dcf06a281c60e7d6ce70c9cc16fce8dd6eda43fd0aa47b71246dddf3f6e6f9d3 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2024_150066 elsevier_sciencedirect_doi_10_1016_j_cej_2024_150066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-15 |
PublicationDateYYYYMMDD | 2024-04-15 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Martin, Nerenberg (b0105) 2012; 122 Shin, McCarty, Kim, Bae (b0035) 2014; 159 Orhon (b0005) 2015; 90 Shin, Lee, McCarty, Bae (b0095) 2011; 102 Galdi, Szczuka, Shin, Mitch, Luthy (b0120) 2022; 3 Daigger, G. T. MABR Workshop: Current status and emerging applications, December 6, 2020, IWA Biofilms 2020 Virtual Conferences. Shin, McCarty, Bae (b0100) 2016; 20 Calvo Buendia, Tanabe, Kranjc, Baasansuren, Fukuda, Ngarize, Osako, Pyrozhenko, Shermanau, Federici (b0015) 2019 Carlson, He, Yang, Daigger (b0075) 2021; 83 Kobayashi, Agari, Kigo, Terada (b0130) 2022; 183 Stocker, Qin, Plattner, Tignor, Allen, Boschung, Nauels, Xia, Bex, Midgley (b0140) 2014 Hatamoto, Miyauchi, Kindaichi, Ozaki, Ohashi (b0125) 2011; 102 Shin, Tilmans, Chen, Criddle (b0045) 2021; 426 Shin, Bae (b0025) 2018; 247 Lee, Rout, Kyun, Bae (b0070) 2020; 182 Rittmann, McCarty (b0020) 2020 Shin, Bae, McCarty (b0050) 2012; 109 Evans, Doody, Harclerode, Brower, Vila, McCarty, Parker, Parameswaran, Lim, Bae, Shin, Lee, Tan, Guy, Page, Maga (b0030) 2018 Kim, A., Shin, C., Criddle, C. S. Membrane-aerated biofilm reactor enabling simultaneous removal of ammonium and sulfide from a simulated anaerobic secondary effluent. (2023) Available at SSRN: https://ssrn.com/abstract=4569090 or http://dx.doi.org/10.2139/ssrn.4569090. Shin, Szczuka, Jiang, Mitch, Criddle (b0065) 2021; 7 Scherson, Criddle (b0145) 2014; 48 Shin, Szczuka, Berglund-Brown, Chen, Quay, MacDonald, Chen, Tilmans, Mitch, Criddle (b0040) CEC-500-2022-XXX, 2022. Husain, Cote (b0115) 2006; 7,118,672 Shin, Szczuka, Liu, Mendoza, Jiang, Tilmans, Tarpeh, Mitch, Criddle (b0055) 2022; 56 Han, Zhang, Liu, Rittmann, Zhao (b0080) 2023; 57 Doble (b0135) 2007 Shin, Tilmans, Chen, McCarty, Criddle (b0010) 2021; 204 Crone, Garland, Sorial, Vane (b0060) 2016; 104 Rethmeier, Rabenstein, Langer, Fischer (b0090) 1997; 760 Shin (10.1016/j.cej.2024.150066_b0045) 2021; 426 Carlson (10.1016/j.cej.2024.150066_b0075) 2021; 83 Kobayashi (10.1016/j.cej.2024.150066_b0130) 2022; 183 Shin (10.1016/j.cej.2024.150066_b0040) 2022 Lee (10.1016/j.cej.2024.150066_b0070) 2020; 182 Rethmeier (10.1016/j.cej.2024.150066_b0090) 1997; 760 Shin (10.1016/j.cej.2024.150066_b0035) 2014; 159 Husain (10.1016/j.cej.2024.150066_b0115) 2006; 7,118,672 Rittmann (10.1016/j.cej.2024.150066_b0020) 2020 Shin (10.1016/j.cej.2024.150066_b0065) 2021; 7 10.1016/j.cej.2024.150066_b0085 Calvo Buendia (10.1016/j.cej.2024.150066_b0015) 2019 Martin (10.1016/j.cej.2024.150066_b0105) 2012; 122 Shin (10.1016/j.cej.2024.150066_b0010) 2021; 204 Han (10.1016/j.cej.2024.150066_b0080) 2023; 57 Shin (10.1016/j.cej.2024.150066_b0055) 2022; 56 Hatamoto (10.1016/j.cej.2024.150066_b0125) 2011; 102 Shin (10.1016/j.cej.2024.150066_b0100) 2016; 20 Shin (10.1016/j.cej.2024.150066_b0095) 2011; 102 Stocker (10.1016/j.cej.2024.150066_b0140) 2014 Shin (10.1016/j.cej.2024.150066_b0025) 2018; 247 10.1016/j.cej.2024.150066_b0110 Doble (10.1016/j.cej.2024.150066_b0135) 2007 Galdi (10.1016/j.cej.2024.150066_b0120) 2022; 3 Crone (10.1016/j.cej.2024.150066_b0060) 2016; 104 Scherson (10.1016/j.cej.2024.150066_b0145) 2014; 48 Shin (10.1016/j.cej.2024.150066_b0050) 2012; 109 Orhon (10.1016/j.cej.2024.150066_b0005) 2015; 90 Evans (10.1016/j.cej.2024.150066_b0030) 2018 |
References_xml | – volume: 7,118,672 start-page: B2 year: 2006 ident: b0115 article-title: Membrane supported bioreactor for municipal and industrial wastewater treatment publication-title: US – volume: 760 start-page: 295 year: 1997 end-page: 302 ident: b0090 article-title: Detection of traves of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods publication-title: J. Chromatogr. – reference: Daigger, G. T. MABR Workshop: Current status and emerging applications, December 6, 2020, IWA Biofilms 2020 Virtual Conferences. – volume: 3 start-page: 121 year: 2022 end-page: 130 ident: b0120 article-title: Dissolved methane recovery and trace contaminant fate following mainstream anaerobic treatment of municipal wastewater publication-title: ACS ES&T Engineering – reference: Kim, A., Shin, C., Criddle, C. S. Membrane-aerated biofilm reactor enabling simultaneous removal of ammonium and sulfide from a simulated anaerobic secondary effluent. (2023) Available at SSRN: https://ssrn.com/abstract=4569090 or http://dx.doi.org/10.2139/ssrn.4569090. – volume: 159 start-page: 95 year: 2014 end-page: 103 ident: b0035 article-title: Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) publication-title: Bioresour. Technol. – year: 2019 ident: b0015 article-title: 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories – volume: 122 start-page: 83 year: 2012 end-page: 94 ident: b0105 article-title: The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments publication-title: Bioresour. Technol. – volume: 57 start-page: 10733 year: 2023 end-page: 10744 ident: b0080 article-title: Novel sulfate reduction coupled to simultaneous nitrification and autotrophic denitrification process for removing nitrogen and organics from saline wastewater publication-title: Environ. Sci. Technol. – volume: 426 year: 2021 ident: b0045 article-title: Anaerobic membrane bioreactor model for design and prediction of domestic wastewater treatment process performance publication-title: Chem. Eng. J. – year: 2007 ident: b0135 article-title: Perry’s chemical engineers’ handbook – year: 2020 ident: b0020 article-title: Environmental biotechnology: principles and applications – volume: 183 year: 2022 ident: b0130 article-title: Efficient oxygen supply and rapid biofilm formation by a new composite polystyrene elastomer membrane for use in a membrane-aerated biofilm reactor publication-title: Biochem. Eng. J. – volume: 90 start-page: 608 year: 2015 end-page: 640 ident: b0005 article-title: Evolution of the activated sludge process: the first 50 years publication-title: J. Chem. Tech. & Biotech. – volume: 20 start-page: 2810 year: 2016 end-page: 2816 ident: b0100 article-title: Importance of dissolved methane management when anaerobically treating low-strength wastewaters publication-title: Curr. Org. Chem. – year: CEC-500-2022-XXX, 2022. ident: b0040 article-title: Maximizing water and energy from new anaerobic wastewater treatment technology publication-title: California Energy Commission Final Report – volume: 102 start-page: 9860 year: 2011 end-page: 9865 ident: b0095 article-title: Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater publication-title: Bioresource Technology – volume: 7 start-page: 739 year: 2021 end-page: 747 ident: b0065 article-title: Optimization of reverse osmosis operational conditions to maximize ammonia removal from the effluent of an anaerobic membrane bioreactor publication-title: Environ. Sci. Water Res. Technol. – volume: 48 start-page: 8420 year: 2014 end-page: 8432 ident: b0145 article-title: Recovery of freshwater from wastewater: upgrading process configurations to maximize energy recovery and minimize residuals publication-title: Environ. Sci. Technol. – volume: 182 year: 2020 ident: b0070 article-title: Process optimization and energy analysis of vacuum degasifier systems for the simultaneous removal of dissolved methane and hydrogen sulfide from anaerobically treated wastewater publication-title: Water Res. – year: 2014 ident: b0140 article-title: IPCC 2013: the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change – volume: 247 start-page: 1038 year: 2018 end-page: 1046 ident: b0025 article-title: Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: a critical review publication-title: Bioresour. Technol. – volume: 104 start-page: 520 year: 2016 end-page: 531 ident: b0060 article-title: Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: a review publication-title: Water Res. – year: 2018 ident: b0030 article-title: Anaerobic membrane bioreactor (AnMBR) for sustainable waste- water treatment publication-title: Environmental Security Technology Certification Program Project (ESTCP Project ER-201434) – volume: 109 start-page: 13 year: 2012 end-page: 20 ident: b0050 article-title: Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor publication-title: Bioresour. Technol. – volume: 56 start-page: 8712 year: 2022 end-page: 8721 ident: b0055 article-title: Recovery of clean water and ammonia from domestic wastewater: impacts on embodied energy and greenhouse gas emissions publication-title: Environ. Sci. Technol. – volume: 102 start-page: 10299 year: 2011 end-page: 10304 ident: b0125 article-title: Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment publication-title: Bioresour. Technol. – volume: 204 year: 2021 ident: b0010 article-title: Temperate climate energy-positive anaerobic secondary treatment of domestic wastewater at pilot-scale publication-title: Water Res. – volume: 83 start-page: 1418 year: 2021 end-page: 1428 ident: b0075 article-title: Comparison of hybrid membrane aerated biofilm reactor (MABR)/SUSPENDED growth and conventional biological nutrient removal processes publication-title: Water Sci. Technol. – volume: 159 start-page: 95 year: 2014 ident: 10.1016/j.cej.2024.150066_b0035 article-title: Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.02.060 – volume: 426 year: 2021 ident: 10.1016/j.cej.2024.150066_b0045 article-title: Anaerobic membrane bioreactor model for design and prediction of domestic wastewater treatment process performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131912 – volume: 204 year: 2021 ident: 10.1016/j.cej.2024.150066_b0010 article-title: Temperate climate energy-positive anaerobic secondary treatment of domestic wastewater at pilot-scale publication-title: Water Res. doi: 10.1016/j.watres.2021.117598 – volume: 56 start-page: 8712 issue: 12 year: 2022 ident: 10.1016/j.cej.2024.150066_b0055 article-title: Recovery of clean water and ammonia from domestic wastewater: impacts on embodied energy and greenhouse gas emissions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c07992 – volume: 183 year: 2022 ident: 10.1016/j.cej.2024.150066_b0130 article-title: Efficient oxygen supply and rapid biofilm formation by a new composite polystyrene elastomer membrane for use in a membrane-aerated biofilm reactor publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2022.108442 – volume: 83 start-page: 1418 issue: 6 year: 2021 ident: 10.1016/j.cej.2024.150066_b0075 article-title: Comparison of hybrid membrane aerated biofilm reactor (MABR)/SUSPENDED growth and conventional biological nutrient removal processes publication-title: Water Sci. Technol. doi: 10.2166/wst.2021.062 – year: 2019 ident: 10.1016/j.cej.2024.150066_b0015 – volume: 109 start-page: 13 year: 2012 ident: 10.1016/j.cej.2024.150066_b0050 article-title: Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.014 – volume: 7,118,672 start-page: B2 year: 2006 ident: 10.1016/j.cej.2024.150066_b0115 article-title: Membrane supported bioreactor for municipal and industrial wastewater treatment publication-title: US – volume: 182 year: 2020 ident: 10.1016/j.cej.2024.150066_b0070 article-title: Process optimization and energy analysis of vacuum degasifier systems for the simultaneous removal of dissolved methane and hydrogen sulfide from anaerobically treated wastewater publication-title: Water Res. doi: 10.1016/j.watres.2020.115965 – volume: 104 start-page: 520 year: 2016 ident: 10.1016/j.cej.2024.150066_b0060 article-title: Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: a review publication-title: Water Res. doi: 10.1016/j.watres.2016.08.019 – year: 2020 ident: 10.1016/j.cej.2024.150066_b0020 – ident: 10.1016/j.cej.2024.150066_b0085 doi: 10.2139/ssrn.4569090 – year: 2018 ident: 10.1016/j.cej.2024.150066_b0030 article-title: Anaerobic membrane bioreactor (AnMBR) for sustainable waste- water treatment publication-title: Environmental Security Technology Certification Program Project (ESTCP Project ER-201434) – volume: 57 start-page: 10733 issue: 29 year: 2023 ident: 10.1016/j.cej.2024.150066_b0080 article-title: Novel sulfate reduction coupled to simultaneous nitrification and autotrophic denitrification process for removing nitrogen and organics from saline wastewater publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c01936 – volume: 90 start-page: 608 issue: 4 year: 2015 ident: 10.1016/j.cej.2024.150066_b0005 article-title: Evolution of the activated sludge process: the first 50 years publication-title: J. Chem. Tech. & Biotech. doi: 10.1002/jctb.4565 – volume: 3 start-page: 121 issue: 1 year: 2022 ident: 10.1016/j.cej.2024.150066_b0120 article-title: Dissolved methane recovery and trace contaminant fate following mainstream anaerobic treatment of municipal wastewater publication-title: ACS ES&T Engineering doi: 10.1021/acsestengg.2c00256 – ident: 10.1016/j.cej.2024.150066_b0110 – volume: 247 start-page: 1038 year: 2018 ident: 10.1016/j.cej.2024.150066_b0025 article-title: Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.002 – year: 2022 ident: 10.1016/j.cej.2024.150066_b0040 article-title: Maximizing water and energy from new anaerobic wastewater treatment technology publication-title: California Energy Commission Final Report – volume: 102 start-page: 9860 issue: 21 year: 2011 ident: 10.1016/j.cej.2024.150066_b0095 article-title: Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater publication-title: Bioresource Technology doi: 10.1016/j.biortech.2011.07.109 – volume: 20 start-page: 2810 issue: 26 year: 2016 ident: 10.1016/j.cej.2024.150066_b0100 article-title: Importance of dissolved methane management when anaerobically treating low-strength wastewaters publication-title: Curr. Org. Chem. doi: 10.2174/1385272820666160517155831 – volume: 102 start-page: 10299 issue: 22 year: 2011 ident: 10.1016/j.cej.2024.150066_b0125 article-title: Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.08.099 – volume: 760 start-page: 295 year: 1997 ident: 10.1016/j.cej.2024.150066_b0090 article-title: Detection of traves of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(96)00809-6 – volume: 48 start-page: 8420 issue: 15 year: 2014 ident: 10.1016/j.cej.2024.150066_b0145 article-title: Recovery of freshwater from wastewater: upgrading process configurations to maximize energy recovery and minimize residuals publication-title: Environ. Sci. Technol. doi: 10.1021/es501701s – volume: 122 start-page: 83 year: 2012 ident: 10.1016/j.cej.2024.150066_b0105 article-title: The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.02.110 – year: 2014 ident: 10.1016/j.cej.2024.150066_b0140 – year: 2007 ident: 10.1016/j.cej.2024.150066_b0135 – volume: 7 start-page: 739 issue: 4 year: 2021 ident: 10.1016/j.cej.2024.150066_b0065 article-title: Optimization of reverse osmosis operational conditions to maximize ammonia removal from the effluent of an anaerobic membrane bioreactor publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/D0EW01112F |
SSID | ssj0006919 |
Score | 2.4445112 |
Snippet | [Display omitted]
•A pilot-scale MABR was operated after a demonstration-scale AnMBR.•The MABR achieved > 99 % removal of both sulfide and dissolved... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 150066 |
SubjectTerms | Anaerobic secondary effluent Carbon footprint Dissolved methane removal Membrane-aerated biofilm reactor N2O recovery Sulfide removal |
Title | Efficient sulfide and methane removal in anaerobic secondary effluent using a pilot-scale membrane-aerated biofilm reactor |
URI | https://dx.doi.org/10.1016/j.cej.2024.150066 |
Volume | 486 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvaSH0jYtTR9Bh5wCytprWVofQ0jYdkkOedDczFgzKg5Z77LrHJpDfntnvDZNob30ZCwkYWbEPDyj71PqoLI4pglmJo8EUmYsDEDmTZVxQpRi5T3I_47zCze9sd9u89stdTLchZG2yt72b2x6Z637kVEvzdGyrkdXqdS0CuvZJwmOmCB-WuvllB89_W7zcEVH7iGTjcweKptdj1egO04Rx_aIw6KkA0r8i2965m_OXqtXfaCojzff8kZtUfNWvXwGH7irHk87_Ad2G3r9cB9rJA0NaiGFhob0iuYLPke6bngYSACXgl5LAoyw-qkpdvQkrZbW9x8a9LK-X7RmzUoj3mPOaXRDBgR0mVBXtXB7z3nTjqDnnbo5O70-mZqeS8EETrBak2OIiYPxJA0uIY8ukE9CEULqYmBloSMEm0VMAKyvPLt9h4gxi45cLDB7r7abRUMflMZYBZtXkzFCbpEKSCJCwnEc5WHifdhTh4MUy-UGMqMcesnuShZ5KSIvNyLfU3aQc_mH3ks26f9e9vH_ln1SO_Im1aA0_6y229UDfeGgoq32u1Ozr14cf51NL-Q5u_w--wVT0tFD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHkoPFX2gQkvrQ0-VzCYbx94cKwTatsClIHGLJp5xFcRmV7vh0B747Z3JJiqV4MLVsa1oxplHZvx9Sn2uLI5pgpnJI4GUGQsDkHlTZZwQpVh5D_K_4-zcTS_t96v8akMdDXdhpK2yt_1rm95Z635k1EtztKjr0c9UalqF9eyTBEcs21TPLH--QmNwePevz8MVHbuHzDYyfShtdk1ega45RxzbQ46Lkg4p8QHndM_hnOyol32kqL-uX-aV2qDmtXpxDz_wjfpz3AFAsN_Qq9ubWCNpaFALKzQ0pJc0m_NB0nXDw0CCuBT0SjJghOVvTbHjJ2m19L7_0qAX9c28NSvWGvEeM86jGzIgqMuEuqqF3HvGm3YMPW_V5cnxxdHU9GQKJnCG1ZocQ0wcjCdpcAl5dIF8EooQUhcDawsdIdgsYgJgfeXZ7ztEjFl05GKB2a7aauYNvVMaYxVsXk3GCLlFKiCJCAkHcpSHifdhT30ZpFgu1pgZ5dBMdl2yyEsRebkW-Z6yg5zL_xRfsk1_fNn-05Z9Us-nF2en5em38x_v1bY8kdJQmn9QW-3ylg44wmirj90J-gu7cNEu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+sulfide+and+methane+removal+in+anaerobic+secondary+effluent+using+a+pilot-scale+membrane-aerated+biofilm+reactor&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Adem%2C+Mahilet+K.&rft.au=Morris%2C+Ian+C.&rft.au=Shin%2C+Chungheon&rft.au=Tilmans%2C+Sebastien+H.&rft.date=2024-04-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=486&rft_id=info:doi/10.1016%2Fj.cej.2024.150066&rft.externalDocID=S1385894724015523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |