Numerical characterization of a piezoelectric composite with hollow metal fillers including new figures of merit, pore shape effects, and distinct piezoceramic types

This paper focuses on the numerical analysis of the properties of porous piezoelectric composites with metal-doped pore surfaces and assesses their effectiveness as piezoelectric sensors and actuators. Two types of porous piezoelectric composite systems are considered: the ordinary porous system and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanics and materials in design Vol. 18; no. 3; pp. 611 - 631
Main Authors Nasedkin, Andrey, Nassar, Mohamed Elsayed
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper focuses on the numerical analysis of the properties of porous piezoelectric composites with metal-doped pore surfaces and assesses their effectiveness as piezoelectric sensors and actuators. Two types of porous piezoelectric composite systems are considered: the ordinary porous system and the system with metalized pore surfaces (SMPS). The pore surfaces of the SMPS were anticipated to be entirely coated by a very thin metal layer. To determine the effective moduli, homogenization problems were solved numerically using the finite element analysis of the representative cells using the ANSYS APDL package. The homogenization problems were solved considering piezoceramics substrates with different anisotropy of piezomoduli and representative cells with cubic and spherical pores. Several figures of merit, including novel figures of merit intended towards actuator applications, have been researched to evaluate the performance of the SMPS. The results of computational experiments demonstrated that pore shape has less impact on the effective elastic and dielectric characteristics but has a greater effect on the values of the piezomoduli. For various piezoceramic materials in the composite matrix, effective piezomoduli are also subject to the greatest influence, particularly transverse and shear piezomoduli. Abnormal behavior of the transverse piezomodulus and an increase in dielectric permittivities were observed as the porosity fraction was enhanced. The transverse actuation effect of the SMPS rises dramatically with increasing porosity. In this regard, it was concluded that piezoelectric transducers built from the SMPS may be efficiently employed in various actuators based on the transverse piezoelectric effect and transverse vibration modes.
AbstractList This paper focuses on the numerical analysis of the properties of porous piezoelectric composites with metal-doped pore surfaces and assesses their effectiveness as piezoelectric sensors and actuators. Two types of porous piezoelectric composite systems are considered: the ordinary porous system and the system with metalized pore surfaces (SMPS). The pore surfaces of the SMPS were anticipated to be entirely coated by a very thin metal layer. To determine the effective moduli, homogenization problems were solved numerically using the finite element analysis of the representative cells using the ANSYS APDL package. The homogenization problems were solved considering piezoceramics substrates with different anisotropy of piezomoduli and representative cells with cubic and spherical pores. Several figures of merit, including novel figures of merit intended towards actuator applications, have been researched to evaluate the performance of the SMPS. The results of computational experiments demonstrated that pore shape has less impact on the effective elastic and dielectric characteristics but has a greater effect on the values of the piezomoduli. For various piezoceramic materials in the composite matrix, effective piezomoduli are also subject to the greatest influence, particularly transverse and shear piezomoduli. Abnormal behavior of the transverse piezomodulus and an increase in dielectric permittivities were observed as the porosity fraction was enhanced. The transverse actuation effect of the SMPS rises dramatically with increasing porosity. In this regard, it was concluded that piezoelectric transducers built from the SMPS may be efficiently employed in various actuators based on the transverse piezoelectric effect and transverse vibration modes.
Author Nasedkin, Andrey
Nassar, Mohamed Elsayed
Author_xml – sequence: 1
  givenname: Andrey
  orcidid: 0000-0002-3883-2799
  surname: Nasedkin
  fullname: Nasedkin, Andrey
  email: nasedkin@math.sfedu.ru
  organization: Institute of Mathematics, Mechanics and Computer Science, Southern Federal University
– sequence: 2
  givenname: Mohamed Elsayed
  surname: Nassar
  fullname: Nassar, Mohamed Elsayed
  organization: Institute of Mathematics, Mechanics and Computer Science, Southern Federal University, Faculty of Electronic Engineering, Menoufia University
BookMark eNp9kc1q3TAUhE1JoPl7gawE3catfixZWpbQpoXQbtq1kOWjexVky5VkLsn75D2rGxcCXWR1JDHfjDhz3pzMcYamuSb4I8G4_5QJVkq1mNIWK654q941Z4T3rJWyIyfHs1At6Ql735zn_IAxw0TKs-b5xzpB8tYEZPcmGVvq7ckUH2cUHTJo8fAUIYAtVYVsnJaYfQF08GWP9jGEeEATlMo7HwKkjPxswzr6eYdmONTX3ZogH82OQeUGLTEBynuzAALnqnG-QWYe0ehzqWzZIi0kM9XE8rhAvmxOnQkZrv7Ni-b31y-_br-19z_vvt9-vm8t7VRpuQJFhr4XruswMEkoEIa5GqkQBHreD852VDg-dCNhTNjBDLwjQuA6QXJ20XzYfJcU_6yQi36Ia5prpKaiLlhSwWRVyU1lU8w5gdPWl5eVlWR80ATrYyl6K0XXUvRLKVpVlP6HLslPJj2-DbENylU87yC9_uoN6i9G1KUg
CitedBy_id crossref_primary_10_7242_1999_6691_2023_16_4_40
crossref_primary_10_1016_j_apm_2023_07_025
crossref_primary_10_1002_app_56607
Cites_doi 10.1016/j.ijsolstr.2015.09.009
10.3390/ma8125498
10.1021/acsenergylett.7b00798
10.21272/jnep.10(2).02005
10.1016/B978-0-08-100148-6.00005-6
10.1109/TUFFC.2020.2983257
10.1111/j.1551-2916.2009.03585.x
10.1039/c8mh00097b
10.1109/58.56492
10.1007/s10832-007-9043-4
10.1007/s10999-021-09536-y
10.1140/epjst/e2019-800143-7
10.4236/jmp.2013.48140
10.1007/b101799
10.1142/S2010135X2160009
10.1039/C7TA00967D
10.1088/0964-1726/15/2/026
10.1088/1361-665X/ab36e4
10.1016/S0167-6636(98)00029-5
10.1088/0964-1726/25/12/125028
10.1007/s10999-021-09550-0
10.1063/1.2166201
10.1007/s10999-018-9434-5
10.1016/j.ijsolstr.2013.12.008
10.1063/1.3481416
10.1016/j.jeurceramsoc.2018.04.067
10.1016/j.mechmat.2021.104040
10.7242/1999-6691/2021.14.2.16
10.1063/5.0057715
10.3103/S0025654420050131
10.1142/S2010135X20500186
10.1080/00150193.2021.1888230
10.32604/cmc.2020.08358
10.1146/annurev-matsci-070909-104529
10.1016/j.nanoen.2020.105567
10.1002/adma.202002208
10.1007/978-3-319-29143-7
10.1109/TUFFC.2010.1734
10.1007/s10832-007-9117-3
10.1142/S0219876218500974
10.1002/zamm.202000129
10.1121/1.1912729
10.1063/1.3622509
10.5772/9942
10.1016/j.ijsolstr.2017.03.003
10.1140/epjst/e2015-02600-y
10.1080/00150193.2019.1570019
10.1016/j.jallcom.2015.12.171
10.1016/j.cma.2017.12.005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
DOI 10.1007/s10999-022-09595-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-8841
EndPage 631
ExternalDocumentID 10_1007_s10999_022_09595_9
GrantInformation_xml – fundername: Российский Фонд Фундаментальных Исследований (РФФИ)
  grantid: 20-31-90102
  funderid: http://dx.doi.org/10.13039/501100002261
– fundername: Government of the Russian Federation
  grantid: 075-15-2019-1928
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9P
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c249t-59e91b776f440e3812e13059d2661e757bfc426f5b4d1336cbab541660ab5e853
IEDL.DBID U2A
ISSN 1569-1713
IngestDate Fri Jul 25 10:59:00 EDT 2025
Tue Jul 01 04:36:57 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 21 02:46:24 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Porous piezoceramics
Material characterization
Figures of merit
Piezoelectric actuators
Homogenization problems
Piezoelectric-metal composites
Finite element analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-59e91b776f440e3812e13059d2661e757bfc426f5b4d1336cbab541660ab5e853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3883-2799
PQID 2699982638
PQPubID 2043816
PageCount 21
ParticipantIDs proquest_journals_2699982638
crossref_citationtrail_10_1007_s10999_022_09595_9
crossref_primary_10_1007_s10999_022_09595_9
springer_journals_10_1007_s10999_022_09595_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of mechanics and materials in design
PublicationTitleAbbrev Int J Mech Mater Des
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Ghasemi, Park, Rabczuk (CR8) 2018; 332
Zhang, Roscow, Xie, Bowen (CR53) 2018; 38
Berger, Kari, Gabbert, Rodriguez-Ramos, Bravo-Castillero, Guinovart-Diaz, Sabina, Maugin (CR1) 2006; 15
Nasedkin, Nassar (CR28) 2021; 11
Song, Kim, Kim, Lee, Kang, Nahm (CR49) 2020; 32
Bowen, Topolov, Kim (CR4) 2016
Nan, Shen, Ma (CR25) 2010; 40
Nasedkin, Nasedkina, Nassar (CR33) 2020; 55
CR30
Du, Lin, Zheng, Qu, Huang, Chu (CR7) 2016; 663
Kuscer, Bustillo, Bakarič, Drnovšek, Lethiecq, Levassort (CR21) 2020; 67
Singh, Sharma, Karmakar, Kumar, Chauhan, Vaish (CR48) 2021
Iyer, Venkatesh (CR16) 2011; 110
Deutz, Pascoe, Schelen, Van Der Zwaag, De Leeuw, Groen (CR6) 2018; 5
Nasedkin, Nassar (CR29) 2021; 10
Safaei, Sodano, Anton (CR46) 2019; 28
Nasedkin, Nassar (CR26) 2021; 162
Berlincourt, Curran, Jaffe (CR2) 1964; 1
Nasedkin, Nassar (CR32) 2020; 10
Islam, Priya (CR14) 2006; 88
Yang, Wang, Guo, Huang, Nan (CR50) 2010; 93
Roscow, Bowen, Almond (CR41) 2017; 2
Nguyen, Challagulla, Venkatesh, Hadjiloizi, Georgiades (CR35) 2016; 25
Ghasemi, Park, Alajlan, Rabczuk (CR9) 2020; 17
Bottero, Idiart (CR3) 2016; 80
Priya (CR37) 2010; 57
Iyer, Venkatesh (CR15) 2010; 97
Yang (CR51) 2005
Nasedkin, Oganesyan, Soloviev (CR34) 2021; 101
Roscow, Zhang, Taylor, Bowen (CR40) 2015; 224
Iyer, Venkatesh (CR17) 2014; 51
Roscow, Pearce, Khanbareh, Kar-Narayan, Bowen (CR42) 2019; 228
Dai, He, Yang, Zhou, Xue, Liu (CR5) 2021; 11
Ghasemi, Park, Zhuang, Rabczuk (CR10) 2020; 65
Ikegami, Ueda, Nagata (CR13) 1971; 50
Ray (CR38) 2021; 17
Ringgaard, Lautzenhiser, Bierregaard, Zawada, Molz (CR39) 2015; 8
Kunkel, Locke, Pikeroen (CR20) 1990; 37
Priya (CR36) 2007; 19
Nasedkin, Nassar (CR27) 2021; 14
Sezer, Koç (CR47) 2021; 80
Zhang, Xie, Roscow, Bao, Zhou, Zhang, Bowen (CR52) 2017; 5
Rybyanets, Shvetsov, Lugovaya, Petrova, Shvetsova (CR44) 2018; 10
Rybyanets, Naumenko (CR43) 2013; 04
Kenji, Giniewicz (CR19) 2003
Nasedkin, Nasedkina, Nassar, Rybyanets (CR31) 2021; 575
Rybyanets, Makarev, Shvetsova (CR45) 2019; 539
Mercadelli, Sanson, Galassi, Suaste-Gomez (CR24) 2010
Jha, Ray (CR18) 2019; 15
Martínez-Ayuso, Friswell, Adhikari, Khodaparast, Berger (CR23) 2017; 113
Levassort, Holc, Ringgaard, Bove, Kosec, Lethiecq (CR22) 2007; 19
Hori, Nemat-Nasser (CR11) 1998; 30
Huang, Yuan, Jiang, Yuan (CR12) 2016
DA Berlincourt (9595_CR2) 1964; 1
S Ikegami (9595_CR13) 1971; 50
AV Nasedkin (9595_CR33) 2020; 55
CJ Bottero (9595_CR3) 2016; 80
H Du (9595_CR7) 2016; 663
Y Zhang (9595_CR53) 2018; 38
C Bowen (9595_CR4) 2016
RA Islam (9595_CR14) 2006; 88
M Hori (9595_CR11) 1998; 30
J Yang (9595_CR51) 2005
A Nasedkin (9595_CR26) 2021; 162
A Nasedkin (9595_CR27) 2021; 14
BV Nguyen (9595_CR35) 2016; 25
B Jha (9595_CR18) 2019; 15
JI Roscow (9595_CR42) 2019; 228
S Iyer (9595_CR16) 2011; 110
H Ghasemi (9595_CR10) 2020; 65
M Ray (9595_CR38) 2021; 17
E Ringgaard (9595_CR39) 2015; 8
J Roscow (9595_CR41) 2017; 2
W Huang (9595_CR12) 2016
S Priya (9595_CR37) 2010; 57
B Dai (9595_CR5) 2021; 11
DB Deutz (9595_CR6) 2018; 5
J Roscow (9595_CR40) 2015; 224
S Priya (9595_CR36) 2007; 19
AV Nasedkin (9595_CR34) 2021; 101
H Ghasemi (9595_CR9) 2020; 17
AN Rybyanets (9595_CR44) 2018; 10
A Nasedkin (9595_CR31) 2021; 575
Y Zhang (9595_CR52) 2017; 5
A Nasedkin (9595_CR29) 2021; 10
H Kunkel (9595_CR20) 1990; 37
9595_CR30
S Iyer (9595_CR15) 2010; 97
N Sezer (9595_CR47) 2021; 80
CW Nan (9595_CR25) 2010; 40
AV Nasedkin (9595_CR32) 2020; 10
A Yang (9595_CR50) 2010; 93
S Iyer (9595_CR17) 2014; 51
M Safaei (9595_CR46) 2019; 28
H Song (9595_CR49) 2020; 32
H Berger (9595_CR1) 2006; 15
E Mercadelli (9595_CR24) 2010
AN Rybyanets (9595_CR45) 2019; 539
D Singh (9595_CR48) 2021
A Nasedkin (9595_CR28) 2021; 11
F Levassort (9595_CR22) 2007; 19
H Ghasemi (9595_CR8) 2018; 332
D Kuscer (9595_CR21) 2020; 67
G Martínez-Ayuso (9595_CR23) 2017; 113
A Rybyanets (9595_CR43) 2013; 04
U Kenji (9595_CR19) 2003
References_xml – volume: 80
  start-page: 381
  year: 2016
  end-page: 392
  ident: CR3
  article-title: Influence of second-phase inclusions on the electro-deformation of ferroelectric ceramics
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.09.009
– volume: 8
  start-page: 8877
  issue: 12
  year: 2015
  end-page: 8889
  ident: CR39
  article-title: Development of porous piezoceramics for medical and sensor applications
  publication-title: Materials
  doi: 10.3390/ma8125498
– volume: 2
  start-page: 2264
  issue: 10
  year: 2017
  end-page: 2269
  ident: CR41
  article-title: Breakdown in the case for materials with giant permittivity?
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00798
– volume: 10
  start-page: 02005
  issue: 2
  year: 2018
  ident: CR44
  article-title: Nanoparticles transport using polymeric nano- and microgranules: novel approach for advanced material design and medical applications
  publication-title: J. Nano-Electron. Phys.
  doi: 10.21272/jnep.10(2).02005
– start-page: 119
  year: 2016
  end-page: 148
  ident: CR12
  article-title: Flexoelectric effect, materials, and structures
  publication-title: Structural Health Monitoring (SHM) in Aerospace Structures
  doi: 10.1016/B978-0-08-100148-6.00005-6
– volume: 67
  start-page: 1656
  issue: 8
  year: 2020
  end-page: 1666
  ident: CR21
  article-title: Acoustic properties of porous lead zirconate titanate backing for ultrasonic transducers
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2983257
– volume: 93
  start-page: 1427
  issue: 5
  year: 2010
  end-page: 1431
  ident: CR50
  article-title: Porous PZT ceramics with high hydrostatic figure of merit and low acoustic impedance by TBA-based gel-casting process
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03585.x
– volume: 5
  start-page: 444
  issue: 3
  year: 2018
  end-page: 453
  ident: CR6
  article-title: Analysis and experimental validation of the figure of merit for piezoelectric energy harvesters
  publication-title: Mater. Horiz.
  doi: 10.1039/c8mh00097b
– volume: 37
  start-page: 316
  issue: 4
  year: 1990
  end-page: 328
  ident: CR20
  article-title: Finite-element analysis of vibrational modes in piezoelectric ceramic disks
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.56492
– volume: 19
  start-page: 167
  issue: 1
  year: 2007
  end-page: 184
  ident: CR36
  article-title: Advances in energy harvesting using low profile piezoelectric transducers
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-007-9043-4
– volume: 17
  start-page: 767
  issue: 4
  year: 2021
  end-page: 782
  ident: CR38
  article-title: Three-dimensional exact elasticity solutions for antisymmetric angle-ply laminated composite plates
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-021-09536-y
– volume: 228
  start-page: 1537
  issue: 7
  year: 2019
  end-page: 1554
  ident: CR42
  article-title: Modified energy harvesting figures of merit for stress-and strain-driven piezoelectric systems
  publication-title: Eur. Phys. J.: Spec. Top.
  doi: 10.1140/epjst/e2019-800143-7
– year: 2003
  ident: CR19
  publication-title: Micromechatronics
– volume: 04
  start-page: 1041
  year: 2013
  end-page: 1049
  ident: CR43
  article-title: Nanoparticles transport in ceramic matricies: a novel approach for ceramic matrix composites fabrication
  publication-title: J. Mod. Phys.
  doi: 10.4236/jmp.2013.48140
– year: 2005
  ident: CR51
  publication-title: An Introduction to the Theory of Piezoelectricity
  doi: 10.1007/b101799
– volume: 11
  start-page: 2160009
  issue: 4–5
  year: 2021
  ident: CR28
  article-title: Numerical investigation of the effects of partial metallization at the pore surface on the effective properties of a porous piezoceramic composite
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X2160009
– volume: 5
  start-page: 6569
  issue: 14
  year: 2017
  end-page: 6580
  ident: CR52
  article-title: Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00967D
– volume: 15
  start-page: 451
  issue: 1
  year: 2006
  end-page: 458
  ident: CR1
  article-title: Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/15/2/026
– volume: 28
  start-page: 113001
  year: 2019
  ident: CR46
  article-title: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018)
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab36e4
– volume: 30
  start-page: 295
  year: 1998
  end-page: 308
  ident: CR11
  article-title: Universal bounds for effective piezoelectric moduli
  publication-title: Mech. Mat.
  doi: 10.1016/S0167-6636(98)00029-5
– volume: 25
  start-page: 125028
  issue: 12
  year: 2016
  ident: CR35
  article-title: Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3–3 pi-ezoelectric foams
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/12/125028
– year: 2021
  ident: CR48
  article-title: A finite element computational framework for enhanced photostrictive performance in 0–3 composites
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-021-09550-0
– volume: 88
  start-page: 032903
  issue: 3
  year: 2006
  ident: CR14
  article-title: Realization of high-energy density polycrystalline piezoelectric ceramics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2166201
– volume: 15
  start-page: 739
  issue: 4
  year: 2019
  end-page: 755
  ident: CR18
  article-title: Benchmark analysis of piezoelectric bimorph energy harvesters composed of laminated composite beam substrates
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-018-9434-5
– volume: 51
  start-page: 1221
  issue: 6
  year: 2014
  end-page: 1234
  ident: CR17
  article-title: Electromechanical response of (3–0, 3–1) particulate, fibrous, and porous piezoelectric composites with anisotropic constituents: a model based on the homogenization method
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2013.12.008
– volume: 97
  start-page: 072904
  issue: 7
  year: 2010
  ident: CR15
  article-title: Electromechanical response of porous piezoelectric materials: effects of porosity connectivity
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3481416
– ident: CR30
– volume: 38
  start-page: 4203
  issue: 12
  year: 2018
  end-page: 4211
  ident: CR53
  article-title: High piezoelectric sensitivity and hydrostatic figures of merit in unidirectional porous ferroelectric ceramics fabricated by freeze casting
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.04.067
– volume: 162
  start-page: 104040
  year: 2021
  ident: CR26
  article-title: About anomalous properties of porous piezoceramic materials with metallized or rigid surfaces of pores
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2021.104040
– volume: 14
  start-page: 190
  issue: 2
  year: 2021
  end-page: 202
  ident: CR27
  article-title: Numerical analysis of the effective properties of inhomogeneously polarized porous piezoelectric ceramics with Ni-doped pore walls considering the influence of volume fractions of metal and pores
  publication-title: Comput. Contin. Mech.
  doi: 10.7242/1999-6691/2021.14.2.16
– volume: 11
  start-page: 25213
  issue: 12
  year: 2021
  ident: CR5
  article-title: Modeling and analysis of the piezomagnetic, electromagnetic, and magnetostrictive effects in a magnetostrictive transducer
  publication-title: AIP Adv.
  doi: 10.1063/5.0057715
– volume: 55
  start-page: 827
  issue: 6
  year: 2020
  end-page: 836
  ident: CR33
  article-title: Homogenization of porous piezocomposites with extreme properties at pore boundaries by effective moduli method
  publication-title: Mech. Solids
  doi: 10.3103/S0025654420050131
– volume: 10
  start-page: 2050018
  issue: 5
  year: 2020
  ident: CR32
  article-title: Effective properties of a porous inhomogeneously polarized by direction piezoceramic material with full metalized pore boundaries: finite element analysis
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X20500186
– volume: 575
  start-page: 84
  issue: 1
  year: 2021
  end-page: 91
  ident: CR31
  article-title: Effective properties of piezoceramics with metal inclusions: numerical analysis
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2021.1888230
– volume: 65
  start-page: 1157
  issue: 2
  year: 2020
  end-page: 1179
  ident: CR10
  article-title: Three-dimensional isogeometric analysis of flexoelectricity with matlab implementation
  publication-title: Comput. Mater. Contin.
  doi: 10.32604/cmc.2020.08358
– volume: 40
  start-page: 131
  issue: 1
  year: 2010
  end-page: 151
  ident: CR25
  article-title: Physical properties of composites near percolation
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070909-104529
– volume: 80
  start-page: 105567
  year: 2021
  ident: CR47
  article-title: A comprehensive review on the state-of-the-art of piezoelectric energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105567
– volume: 32
  start-page: 2002208
  issue: 51
  year: 2020
  ident: CR49
  article-title: Piezoelectric energy harvesting design principles for materials and structures: material figure-of-merit and self-resonance tuning
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002208
– year: 2016
  ident: CR4
  publication-title: Modern Piezoelectric Energy-Harvesting Materials
  doi: 10.1007/978-3-319-29143-7
– volume: 1
  start-page: 247
  issue: Part A
  year: 1964
  ident: CR2
  article-title: Piezoelectric and piezomagnetic materials and their function in transducers
  publication-title: Phys. Acoust. Princ. Methods
– volume: 57
  start-page: 2610
  issue: 12
  year: 2010
  end-page: 2612
  ident: CR37
  article-title: Criterion for material selection in design of bulk piezoelectric energy harvesters
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2010.1734
– volume: 19
  start-page: 127
  year: 2007
  end-page: 139
  ident: CR22
  article-title: Fabrication, modelling and use of porous ceramics for ultrasonic transducer applications
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-007-9117-3
– volume: 17
  start-page: 1850097
  issue: 01
  year: 2020
  ident: CR9
  article-title: A computational framework for design and optimization of flexoelectric materials
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876218500974
– volume: 101
  start-page: e202000129
  issue: 3
  year: 2021
  ident: CR34
  article-title: Analysis of Rosen type energy harvesting devices from porous piezoceramics with great longitudinal piezomodulus
  publication-title: ZAMM
  doi: 10.1002/zamm.202000129
– volume: 50
  start-page: 1060
  year: 1971
  end-page: 1066
  ident: CR13
  article-title: Electromechanical properties of PbTiO ceramics containing La and Mn
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1912729
– volume: 110
  start-page: 034109
  issue: 3
  year: 2011
  ident: CR16
  article-title: Electromechanical response of (3–0) porous piezoelectric materials: effects of porosity shape
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3622509
– start-page: 111
  year: 2010
  end-page: 128
  ident: CR24
  article-title: Porous piezoelectric ceramics
  publication-title: Piezoelectric Ceramics, chap 6
  doi: 10.5772/9942
– volume: 113
  start-page: 218
  year: 2017
  end-page: 229
  ident: CR23
  article-title: Homogenization of porous piezoelectric materials
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.03.003
– volume: 224
  start-page: 2949
  issue: 14–15
  year: 2015
  end-page: 2966
  ident: CR40
  article-title: Porous ferroelectrics for energy harvesting applications
  publication-title: Eur. Phys. J.: Spec. Top.
  doi: 10.1140/epjst/e2015-02600-y
– volume: 10
  start-page: 1928346
  issue: 1080/15376494
  year: 2021
  ident: CR29
  article-title: A numerical study about the effects of the metal volume fraction on the effective properties of a porous piezoelectric composite with metalized pore boundaries
  publication-title: Mech. Adv. Mater. Struct.
– volume: 539
  start-page: 101
  issue: 1
  year: 2019
  end-page: 111
  ident: CR45
  article-title: Recent advances in porous piezoceramics applications
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2019.1570019
– volume: 663
  start-page: 848
  year: 2016
  end-page: 861
  ident: CR7
  article-title: Colossal permittivity in percolative ceramic/metal dielectric composites
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.12.171
– volume: 332
  start-page: 47
  year: 2018
  end-page: 62
  ident: CR8
  article-title: A multi-material level set-based topology optimization of flexoelectric composites
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.12.005
– volume: 97
  start-page: 072904
  issue: 7
  year: 2010
  ident: 9595_CR15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3481416
– volume: 10
  start-page: 1928346
  issue: 1080/15376494
  year: 2021
  ident: 9595_CR29
  publication-title: Mech. Adv. Mater. Struct.
– volume: 38
  start-page: 4203
  issue: 12
  year: 2018
  ident: 9595_CR53
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.04.067
– volume: 332
  start-page: 47
  year: 2018
  ident: 9595_CR8
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.12.005
– volume: 11
  start-page: 2160009
  issue: 4–5
  year: 2021
  ident: 9595_CR28
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X2160009
– volume: 15
  start-page: 451
  issue: 1
  year: 2006
  ident: 9595_CR1
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/15/2/026
– volume: 101
  start-page: e202000129
  issue: 3
  year: 2021
  ident: 9595_CR34
  publication-title: ZAMM
  doi: 10.1002/zamm.202000129
– volume: 228
  start-page: 1537
  issue: 7
  year: 2019
  ident: 9595_CR42
  publication-title: Eur. Phys. J.: Spec. Top.
  doi: 10.1140/epjst/e2019-800143-7
– volume: 88
  start-page: 032903
  issue: 3
  year: 2006
  ident: 9595_CR14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2166201
– volume: 5
  start-page: 444
  issue: 3
  year: 2018
  ident: 9595_CR6
  publication-title: Mater. Horiz.
  doi: 10.1039/c8mh00097b
– volume: 40
  start-page: 131
  issue: 1
  year: 2010
  ident: 9595_CR25
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070909-104529
– volume: 80
  start-page: 381
  year: 2016
  ident: 9595_CR3
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.09.009
– volume: 67
  start-page: 1656
  issue: 8
  year: 2020
  ident: 9595_CR21
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2983257
– volume: 1
  start-page: 247
  issue: Part A
  year: 1964
  ident: 9595_CR2
  publication-title: Phys. Acoust. Princ. Methods
– volume: 55
  start-page: 827
  issue: 6
  year: 2020
  ident: 9595_CR33
  publication-title: Mech. Solids
  doi: 10.3103/S0025654420050131
– volume: 04
  start-page: 1041
  year: 2013
  ident: 9595_CR43
  publication-title: J. Mod. Phys.
  doi: 10.4236/jmp.2013.48140
– volume: 575
  start-page: 84
  issue: 1
  year: 2021
  ident: 9595_CR31
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2021.1888230
– volume: 11
  start-page: 25213
  issue: 12
  year: 2021
  ident: 9595_CR5
  publication-title: AIP Adv.
  doi: 10.1063/5.0057715
– volume: 110
  start-page: 034109
  issue: 3
  year: 2011
  ident: 9595_CR16
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3622509
– volume: 51
  start-page: 1221
  issue: 6
  year: 2014
  ident: 9595_CR17
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2013.12.008
– volume: 19
  start-page: 167
  issue: 1
  year: 2007
  ident: 9595_CR36
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-007-9043-4
– volume: 5
  start-page: 6569
  issue: 14
  year: 2017
  ident: 9595_CR52
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00967D
– volume: 93
  start-page: 1427
  issue: 5
  year: 2010
  ident: 9595_CR50
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03585.x
– volume: 17
  start-page: 1850097
  issue: 01
  year: 2020
  ident: 9595_CR9
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876218500974
– volume-title: Micromechatronics
  year: 2003
  ident: 9595_CR19
– volume-title: An Introduction to the Theory of Piezoelectricity
  year: 2005
  ident: 9595_CR51
  doi: 10.1007/b101799
– volume: 32
  start-page: 2002208
  issue: 51
  year: 2020
  ident: 9595_CR49
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002208
– volume: 539
  start-page: 101
  issue: 1
  year: 2019
  ident: 9595_CR45
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2019.1570019
– volume-title: Modern Piezoelectric Energy-Harvesting Materials
  year: 2016
  ident: 9595_CR4
  doi: 10.1007/978-3-319-29143-7
– volume: 10
  start-page: 2050018
  issue: 5
  year: 2020
  ident: 9595_CR32
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X20500186
– volume: 50
  start-page: 1060
  year: 1971
  ident: 9595_CR13
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1912729
– start-page: 111
  volume-title: Piezoelectric Ceramics, chap 6
  year: 2010
  ident: 9595_CR24
  doi: 10.5772/9942
– volume: 224
  start-page: 2949
  issue: 14–15
  year: 2015
  ident: 9595_CR40
  publication-title: Eur. Phys. J.: Spec. Top.
  doi: 10.1140/epjst/e2015-02600-y
– year: 2021
  ident: 9595_CR48
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-021-09550-0
– start-page: 119
  volume-title: Structural Health Monitoring (SHM) in Aerospace Structures
  year: 2016
  ident: 9595_CR12
  doi: 10.1016/B978-0-08-100148-6.00005-6
– volume: 663
  start-page: 848
  year: 2016
  ident: 9595_CR7
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.12.171
– volume: 65
  start-page: 1157
  issue: 2
  year: 2020
  ident: 9595_CR10
  publication-title: Comput. Mater. Contin.
  doi: 10.32604/cmc.2020.08358
– volume: 30
  start-page: 295
  year: 1998
  ident: 9595_CR11
  publication-title: Mech. Mat.
  doi: 10.1016/S0167-6636(98)00029-5
– volume: 28
  start-page: 113001
  year: 2019
  ident: 9595_CR46
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab36e4
– volume: 162
  start-page: 104040
  year: 2021
  ident: 9595_CR26
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2021.104040
– volume: 80
  start-page: 105567
  year: 2021
  ident: 9595_CR47
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105567
– volume: 37
  start-page: 316
  issue: 4
  year: 1990
  ident: 9595_CR20
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.56492
– volume: 15
  start-page: 739
  issue: 4
  year: 2019
  ident: 9595_CR18
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-018-9434-5
– volume: 2
  start-page: 2264
  issue: 10
  year: 2017
  ident: 9595_CR41
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00798
– volume: 113
  start-page: 218
  year: 2017
  ident: 9595_CR23
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.03.003
– volume: 25
  start-page: 125028
  issue: 12
  year: 2016
  ident: 9595_CR35
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/12/125028
– volume: 8
  start-page: 8877
  issue: 12
  year: 2015
  ident: 9595_CR39
  publication-title: Materials
  doi: 10.3390/ma8125498
– volume: 10
  start-page: 02005
  issue: 2
  year: 2018
  ident: 9595_CR44
  publication-title: J. Nano-Electron. Phys.
  doi: 10.21272/jnep.10(2).02005
– volume: 19
  start-page: 127
  year: 2007
  ident: 9595_CR22
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-007-9117-3
– ident: 9595_CR30
– volume: 57
  start-page: 2610
  issue: 12
  year: 2010
  ident: 9595_CR37
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2010.1734
– volume: 14
  start-page: 190
  issue: 2
  year: 2021
  ident: 9595_CR27
  publication-title: Comput. Contin. Mech.
  doi: 10.7242/1999-6691/2021.14.2.16
– volume: 17
  start-page: 767
  issue: 4
  year: 2021
  ident: 9595_CR38
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-021-09536-y
SSID ssj0030188
Score 2.2606392
Snippet This paper focuses on the numerical analysis of the properties of porous piezoelectric composites with metal-doped pore surfaces and assesses their...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 611
SubjectTerms Actuation
Actuators
Anisotropy
Characterization and Evaluation of Materials
Classical Mechanics
Dielectric properties
Engineering
Engineering Design
Finite element method
Homogenization
Numerical analysis
Piezoelectric ceramics
Piezoelectric transducers
Piezoelectricity
Porosity
Shape effects
Solid Mechanics
Substrates
Transverse oscillation
Vibration mode
Title Numerical characterization of a piezoelectric composite with hollow metal fillers including new figures of merit, pore shape effects, and distinct piezoceramic types
URI https://link.springer.com/article/10.1007/s10999-022-09595-9
https://www.proquest.com/docview/2699982638
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfGK1ljl4s4Ek3Tz2WKS1KPRkoZ5C9hEt1LQ0CYL_x__p7CZpq6jgKZBsdiCzme-b3XkQci2ptEVPOVbAdFFtFepfinGLConLiVE74SbaYuyPJvR-6k2rpLCsjnavjySNpd5KdjMZ8-g86b0rz2K7pOmh764DuSZuv7a_KMJ0m0THhFkO-mBVqszPc3yFow3H_HYsatBmeEgOKpoI_VKvR2RHpcdkf6t44An5GBflacscxLrqcplUCYsEYljO1PuibHMzE6Bjx3WAlgK99Qpo9OaLN3hVSL4hMQmBGcxSMS80mAGSbbz7XKAzrifTgvIuIFdXkL3ESwVVHEgX4lSC1IYiFXkpUqiVbnIPenc3OyWT4eDxdmRVTRcsgZ5YbnlMMYcHgZ9QaivEc1chzHlMaiRXgRfwRCCqJx6nEv1bX_CYe8jqfBuvCsH_jDTSRarOCXCTGBsgRwg4RRwMQxEwLiVLfGRFLm0Rp_72kagqkuvGGPNoU0tZ6ytCfUVGXxFrkZv1O8uyHsefo9u1SqPq38wiF6Uz9Kp6YYt0azVvHv8-28X_hl-SPbdcaZbttEkjXxXqChlMzjuk2b97ehh0zML9BF2G6j0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HtSD-MRq1Tl4s4Ek3Tz2WMRStfbUQm-h-4gWalKaFMH_4_90dpO0VVTwFEg2u5CZzPfN7jwIuZZU2qKlHCtguqi2CvUvxbhFhUR1YtSOuYm26PvdIX0YeaMyKSyrot2rI0ljqdeS3UzGPDpPeu_Ks9gm2UIyEGpdHrrtyv7iEqbbJDomzHLQBytTZX6e4yscrTjmt2NRgzadfbJX0kRoF3I9IBsqOSS7a8UDj8hHf1GctkxBLKsuF0mVkMYwhtlEvadFm5uJAB07rgO0FOitV0CjN03f4FUh-YbYJARmMEnEdKHBDJBs493nBTrjejK9UN4E5OoKspfxTEEZB9KEcSJBakORiLxYUqi5bnIPenc3OybDzt3gtmuVTRcsgZ5YbnlMMYcHgR9TaivEc1chzHlMaiRXgRfwWCCqxx6nEv1bX_Ax95DV-TZeFYL_CaklaaJOCXCTGBsgRwg4RRwMQxEwLiWLfWRFLq0Tp_r2kSgrkuvGGNNoVUtZyytCeUVGXhGrk5vlO7OiHsefoxuVSKPy38wiF1dn6FW1wjppVmJePf59trP_Db8i293BUy_q3fcfz8mOW2idZTsNUsvnC3WBbCbnl0Z5PwEzj-uc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16hy82WCSbpLusajFF8WDhd5C9xEt1LS0KYL_x__pzCaxVVTwFEg2O5CZ7HyzO98MY6eaa1c1jOdEgopqmyb9UkI6XGk0J8HdRNpsi0543eW3vaC3wOK32e7lkWTOaaAqTWl2PtbJ-QLxzbLnMZCifazAEctshRMbGC2667fKtRjF2c6TGKQIx8N4rKDN_DzHV9c0x5vfjkit52lvso0CMkIr1_EWWzLpNltfKCS4w947s_zkZQjqswJzTrCEUQJ9GA_M2yhveTNQQHnklKxlgLZhARfA4egVXgwCcUgsOXAKg1QNZ-TYAIE33n2aYWBOk5GgrA6I2w1Mn_tjA0VOSB36qQZNi0aqslykMhNqeA-00zvdZd321ePFtVM0YHAURmWZEwgjPBlFYcK5a9C3-wZdXiA0eXUTBZFMFHr4JJBcY6wbKtmXASK80MWrQSCwxyrpKDX7DKQlyUaIFyLJ0Sc2myoSUmuRhIiQfF5lXvntY1VUJ6cmGcN4XleZ9BWjvmKrr1hU2dnnO-O8Nsefo2ulSuPiP53GPkoXGGE1mlVWL9U8f_z7bAf_G37CVh8u2_H9TefukK35udE5rldjlWwyM0cIbDJ5bG33A5vP788
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+characterization+of+a+piezoelectric+composite+with+hollow+metal+fillers+including+new+figures+of+merit%2C+pore+shape+effects%2C+and+distinct+piezoceramic+types&rft.jtitle=International+journal+of+mechanics+and+materials+in+design&rft.au=Nasedkin%2C+Andrey&rft.au=Nassar%2C+Mohamed+Elsayed&rft.date=2022-09-01&rft.issn=1569-1713&rft.eissn=1573-8841&rft.volume=18&rft.issue=3&rft.spage=611&rft.epage=631&rft_id=info:doi/10.1007%2Fs10999-022-09595-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10999_022_09595_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-1713&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-1713&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-1713&client=summon