Numerical characterization of a piezoelectric composite with hollow metal fillers including new figures of merit, pore shape effects, and distinct piezoceramic types
This paper focuses on the numerical analysis of the properties of porous piezoelectric composites with metal-doped pore surfaces and assesses their effectiveness as piezoelectric sensors and actuators. Two types of porous piezoelectric composite systems are considered: the ordinary porous system and...
Saved in:
Published in | International journal of mechanics and materials in design Vol. 18; no. 3; pp. 611 - 631 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper focuses on the numerical analysis of the properties of porous piezoelectric composites with metal-doped pore surfaces and assesses their effectiveness as piezoelectric sensors and actuators. Two types of porous piezoelectric composite systems are considered: the ordinary porous system and the system with metalized pore surfaces (SMPS). The pore surfaces of the SMPS were anticipated to be entirely coated by a very thin metal layer. To determine the effective moduli, homogenization problems were solved numerically using the finite element analysis of the representative cells using the ANSYS APDL package. The homogenization problems were solved considering piezoceramics substrates with different anisotropy of piezomoduli and representative cells with cubic and spherical pores. Several figures of merit, including novel figures of merit intended towards actuator applications, have been researched to evaluate the performance of the SMPS. The results of computational experiments demonstrated that pore shape has less impact on the effective elastic and dielectric characteristics but has a greater effect on the values of the piezomoduli. For various piezoceramic materials in the composite matrix, effective piezomoduli are also subject to the greatest influence, particularly transverse and shear piezomoduli. Abnormal behavior of the transverse piezomodulus and an increase in dielectric permittivities were observed as the porosity fraction was enhanced. The transverse actuation effect of the SMPS rises dramatically with increasing porosity. In this regard, it was concluded that piezoelectric transducers built from the SMPS may be efficiently employed in various actuators based on the transverse piezoelectric effect and transverse vibration modes. |
---|---|
AbstractList | This paper focuses on the numerical analysis of the properties of porous piezoelectric composites with metal-doped pore surfaces and assesses their effectiveness as piezoelectric sensors and actuators. Two types of porous piezoelectric composite systems are considered: the ordinary porous system and the system with metalized pore surfaces (SMPS). The pore surfaces of the SMPS were anticipated to be entirely coated by a very thin metal layer. To determine the effective moduli, homogenization problems were solved numerically using the finite element analysis of the representative cells using the ANSYS APDL package. The homogenization problems were solved considering piezoceramics substrates with different anisotropy of piezomoduli and representative cells with cubic and spherical pores. Several figures of merit, including novel figures of merit intended towards actuator applications, have been researched to evaluate the performance of the SMPS. The results of computational experiments demonstrated that pore shape has less impact on the effective elastic and dielectric characteristics but has a greater effect on the values of the piezomoduli. For various piezoceramic materials in the composite matrix, effective piezomoduli are also subject to the greatest influence, particularly transverse and shear piezomoduli. Abnormal behavior of the transverse piezomodulus and an increase in dielectric permittivities were observed as the porosity fraction was enhanced. The transverse actuation effect of the SMPS rises dramatically with increasing porosity. In this regard, it was concluded that piezoelectric transducers built from the SMPS may be efficiently employed in various actuators based on the transverse piezoelectric effect and transverse vibration modes. |
Author | Nasedkin, Andrey Nassar, Mohamed Elsayed |
Author_xml | – sequence: 1 givenname: Andrey orcidid: 0000-0002-3883-2799 surname: Nasedkin fullname: Nasedkin, Andrey email: nasedkin@math.sfedu.ru organization: Institute of Mathematics, Mechanics and Computer Science, Southern Federal University – sequence: 2 givenname: Mohamed Elsayed surname: Nassar fullname: Nassar, Mohamed Elsayed organization: Institute of Mathematics, Mechanics and Computer Science, Southern Federal University, Faculty of Electronic Engineering, Menoufia University |
BookMark | eNp9kc1q3TAUhE1JoPl7gawE3catfixZWpbQpoXQbtq1kOWjexVky5VkLsn75D2rGxcCXWR1JDHfjDhz3pzMcYamuSb4I8G4_5QJVkq1mNIWK654q941Z4T3rJWyIyfHs1At6Ql735zn_IAxw0TKs-b5xzpB8tYEZPcmGVvq7ckUH2cUHTJo8fAUIYAtVYVsnJaYfQF08GWP9jGEeEATlMo7HwKkjPxswzr6eYdmONTX3ZogH82OQeUGLTEBynuzAALnqnG-QWYe0ehzqWzZIi0kM9XE8rhAvmxOnQkZrv7Ni-b31y-_br-19z_vvt9-vm8t7VRpuQJFhr4XruswMEkoEIa5GqkQBHreD852VDg-dCNhTNjBDLwjQuA6QXJ20XzYfJcU_6yQi36Ia5prpKaiLlhSwWRVyU1lU8w5gdPWl5eVlWR80ATrYyl6K0XXUvRLKVpVlP6HLslPJj2-DbENylU87yC9_uoN6i9G1KUg |
CitedBy_id | crossref_primary_10_7242_1999_6691_2023_16_4_40 crossref_primary_10_1016_j_apm_2023_07_025 crossref_primary_10_1002_app_56607 |
Cites_doi | 10.1016/j.ijsolstr.2015.09.009 10.3390/ma8125498 10.1021/acsenergylett.7b00798 10.21272/jnep.10(2).02005 10.1016/B978-0-08-100148-6.00005-6 10.1109/TUFFC.2020.2983257 10.1111/j.1551-2916.2009.03585.x 10.1039/c8mh00097b 10.1109/58.56492 10.1007/s10832-007-9043-4 10.1007/s10999-021-09536-y 10.1140/epjst/e2019-800143-7 10.4236/jmp.2013.48140 10.1007/b101799 10.1142/S2010135X2160009 10.1039/C7TA00967D 10.1088/0964-1726/15/2/026 10.1088/1361-665X/ab36e4 10.1016/S0167-6636(98)00029-5 10.1088/0964-1726/25/12/125028 10.1007/s10999-021-09550-0 10.1063/1.2166201 10.1007/s10999-018-9434-5 10.1016/j.ijsolstr.2013.12.008 10.1063/1.3481416 10.1016/j.jeurceramsoc.2018.04.067 10.1016/j.mechmat.2021.104040 10.7242/1999-6691/2021.14.2.16 10.1063/5.0057715 10.3103/S0025654420050131 10.1142/S2010135X20500186 10.1080/00150193.2021.1888230 10.32604/cmc.2020.08358 10.1146/annurev-matsci-070909-104529 10.1016/j.nanoen.2020.105567 10.1002/adma.202002208 10.1007/978-3-319-29143-7 10.1109/TUFFC.2010.1734 10.1007/s10832-007-9117-3 10.1142/S0219876218500974 10.1002/zamm.202000129 10.1121/1.1912729 10.1063/1.3622509 10.5772/9942 10.1016/j.ijsolstr.2017.03.003 10.1140/epjst/e2015-02600-y 10.1080/00150193.2019.1570019 10.1016/j.jallcom.2015.12.171 10.1016/j.cma.2017.12.005 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10999-022-09595-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-8841 |
EndPage | 631 |
ExternalDocumentID | 10_1007_s10999_022_09595_9 |
GrantInformation_xml | – fundername: Российский Фонд Фундаментальных Исследований (РФФИ) grantid: 20-31-90102 funderid: http://dx.doi.org/10.13039/501100002261 – fundername: Government of the Russian Federation grantid: 075-15-2019-1928 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O93 O9J OAM P2P P9P PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7S Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c249t-59e91b776f440e3812e13059d2661e757bfc426f5b4d1336cbab541660ab5e853 |
IEDL.DBID | U2A |
ISSN | 1569-1713 |
IngestDate | Fri Jul 25 10:59:00 EDT 2025 Tue Jul 01 04:36:57 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 21 02:46:24 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | Porous piezoceramics Material characterization Figures of merit Piezoelectric actuators Homogenization problems Piezoelectric-metal composites Finite element analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-59e91b776f440e3812e13059d2661e757bfc426f5b4d1336cbab541660ab5e853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3883-2799 |
PQID | 2699982638 |
PQPubID | 2043816 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2699982638 crossref_citationtrail_10_1007_s10999_022_09595_9 crossref_primary_10_1007_s10999_022_09595_9 springer_journals_10_1007_s10999_022_09595_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | International journal of mechanics and materials in design |
PublicationTitleAbbrev | Int J Mech Mater Des |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Ghasemi, Park, Rabczuk (CR8) 2018; 332 Zhang, Roscow, Xie, Bowen (CR53) 2018; 38 Berger, Kari, Gabbert, Rodriguez-Ramos, Bravo-Castillero, Guinovart-Diaz, Sabina, Maugin (CR1) 2006; 15 Nasedkin, Nassar (CR28) 2021; 11 Song, Kim, Kim, Lee, Kang, Nahm (CR49) 2020; 32 Bowen, Topolov, Kim (CR4) 2016 Nan, Shen, Ma (CR25) 2010; 40 Nasedkin, Nasedkina, Nassar (CR33) 2020; 55 CR30 Du, Lin, Zheng, Qu, Huang, Chu (CR7) 2016; 663 Kuscer, Bustillo, Bakarič, Drnovšek, Lethiecq, Levassort (CR21) 2020; 67 Singh, Sharma, Karmakar, Kumar, Chauhan, Vaish (CR48) 2021 Iyer, Venkatesh (CR16) 2011; 110 Deutz, Pascoe, Schelen, Van Der Zwaag, De Leeuw, Groen (CR6) 2018; 5 Nasedkin, Nassar (CR29) 2021; 10 Safaei, Sodano, Anton (CR46) 2019; 28 Nasedkin, Nassar (CR26) 2021; 162 Berlincourt, Curran, Jaffe (CR2) 1964; 1 Nasedkin, Nassar (CR32) 2020; 10 Islam, Priya (CR14) 2006; 88 Yang, Wang, Guo, Huang, Nan (CR50) 2010; 93 Roscow, Bowen, Almond (CR41) 2017; 2 Nguyen, Challagulla, Venkatesh, Hadjiloizi, Georgiades (CR35) 2016; 25 Ghasemi, Park, Alajlan, Rabczuk (CR9) 2020; 17 Bottero, Idiart (CR3) 2016; 80 Priya (CR37) 2010; 57 Iyer, Venkatesh (CR15) 2010; 97 Yang (CR51) 2005 Nasedkin, Oganesyan, Soloviev (CR34) 2021; 101 Roscow, Zhang, Taylor, Bowen (CR40) 2015; 224 Iyer, Venkatesh (CR17) 2014; 51 Roscow, Pearce, Khanbareh, Kar-Narayan, Bowen (CR42) 2019; 228 Dai, He, Yang, Zhou, Xue, Liu (CR5) 2021; 11 Ghasemi, Park, Zhuang, Rabczuk (CR10) 2020; 65 Ikegami, Ueda, Nagata (CR13) 1971; 50 Ray (CR38) 2021; 17 Ringgaard, Lautzenhiser, Bierregaard, Zawada, Molz (CR39) 2015; 8 Kunkel, Locke, Pikeroen (CR20) 1990; 37 Priya (CR36) 2007; 19 Nasedkin, Nassar (CR27) 2021; 14 Sezer, Koç (CR47) 2021; 80 Zhang, Xie, Roscow, Bao, Zhou, Zhang, Bowen (CR52) 2017; 5 Rybyanets, Shvetsov, Lugovaya, Petrova, Shvetsova (CR44) 2018; 10 Rybyanets, Naumenko (CR43) 2013; 04 Kenji, Giniewicz (CR19) 2003 Nasedkin, Nasedkina, Nassar, Rybyanets (CR31) 2021; 575 Rybyanets, Makarev, Shvetsova (CR45) 2019; 539 Mercadelli, Sanson, Galassi, Suaste-Gomez (CR24) 2010 Jha, Ray (CR18) 2019; 15 Martínez-Ayuso, Friswell, Adhikari, Khodaparast, Berger (CR23) 2017; 113 Levassort, Holc, Ringgaard, Bove, Kosec, Lethiecq (CR22) 2007; 19 Hori, Nemat-Nasser (CR11) 1998; 30 Huang, Yuan, Jiang, Yuan (CR12) 2016 DA Berlincourt (9595_CR2) 1964; 1 S Ikegami (9595_CR13) 1971; 50 AV Nasedkin (9595_CR33) 2020; 55 CJ Bottero (9595_CR3) 2016; 80 H Du (9595_CR7) 2016; 663 Y Zhang (9595_CR53) 2018; 38 C Bowen (9595_CR4) 2016 RA Islam (9595_CR14) 2006; 88 M Hori (9595_CR11) 1998; 30 J Yang (9595_CR51) 2005 A Nasedkin (9595_CR26) 2021; 162 A Nasedkin (9595_CR27) 2021; 14 BV Nguyen (9595_CR35) 2016; 25 B Jha (9595_CR18) 2019; 15 JI Roscow (9595_CR42) 2019; 228 S Iyer (9595_CR16) 2011; 110 H Ghasemi (9595_CR10) 2020; 65 M Ray (9595_CR38) 2021; 17 E Ringgaard (9595_CR39) 2015; 8 J Roscow (9595_CR41) 2017; 2 W Huang (9595_CR12) 2016 S Priya (9595_CR37) 2010; 57 B Dai (9595_CR5) 2021; 11 DB Deutz (9595_CR6) 2018; 5 J Roscow (9595_CR40) 2015; 224 S Priya (9595_CR36) 2007; 19 AV Nasedkin (9595_CR34) 2021; 101 H Ghasemi (9595_CR9) 2020; 17 AN Rybyanets (9595_CR44) 2018; 10 A Nasedkin (9595_CR31) 2021; 575 Y Zhang (9595_CR52) 2017; 5 A Nasedkin (9595_CR29) 2021; 10 H Kunkel (9595_CR20) 1990; 37 9595_CR30 S Iyer (9595_CR15) 2010; 97 N Sezer (9595_CR47) 2021; 80 CW Nan (9595_CR25) 2010; 40 AV Nasedkin (9595_CR32) 2020; 10 A Yang (9595_CR50) 2010; 93 S Iyer (9595_CR17) 2014; 51 M Safaei (9595_CR46) 2019; 28 H Song (9595_CR49) 2020; 32 H Berger (9595_CR1) 2006; 15 E Mercadelli (9595_CR24) 2010 AN Rybyanets (9595_CR45) 2019; 539 D Singh (9595_CR48) 2021 A Nasedkin (9595_CR28) 2021; 11 F Levassort (9595_CR22) 2007; 19 H Ghasemi (9595_CR8) 2018; 332 D Kuscer (9595_CR21) 2020; 67 G Martínez-Ayuso (9595_CR23) 2017; 113 A Rybyanets (9595_CR43) 2013; 04 U Kenji (9595_CR19) 2003 |
References_xml | – volume: 80 start-page: 381 year: 2016 end-page: 392 ident: CR3 article-title: Influence of second-phase inclusions on the electro-deformation of ferroelectric ceramics publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.09.009 – volume: 8 start-page: 8877 issue: 12 year: 2015 end-page: 8889 ident: CR39 article-title: Development of porous piezoceramics for medical and sensor applications publication-title: Materials doi: 10.3390/ma8125498 – volume: 2 start-page: 2264 issue: 10 year: 2017 end-page: 2269 ident: CR41 article-title: Breakdown in the case for materials with giant permittivity? publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00798 – volume: 10 start-page: 02005 issue: 2 year: 2018 ident: CR44 article-title: Nanoparticles transport using polymeric nano- and microgranules: novel approach for advanced material design and medical applications publication-title: J. Nano-Electron. Phys. doi: 10.21272/jnep.10(2).02005 – start-page: 119 year: 2016 end-page: 148 ident: CR12 article-title: Flexoelectric effect, materials, and structures publication-title: Structural Health Monitoring (SHM) in Aerospace Structures doi: 10.1016/B978-0-08-100148-6.00005-6 – volume: 67 start-page: 1656 issue: 8 year: 2020 end-page: 1666 ident: CR21 article-title: Acoustic properties of porous lead zirconate titanate backing for ultrasonic transducers publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2983257 – volume: 93 start-page: 1427 issue: 5 year: 2010 end-page: 1431 ident: CR50 article-title: Porous PZT ceramics with high hydrostatic figure of merit and low acoustic impedance by TBA-based gel-casting process publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03585.x – volume: 5 start-page: 444 issue: 3 year: 2018 end-page: 453 ident: CR6 article-title: Analysis and experimental validation of the figure of merit for piezoelectric energy harvesters publication-title: Mater. Horiz. doi: 10.1039/c8mh00097b – volume: 37 start-page: 316 issue: 4 year: 1990 end-page: 328 ident: CR20 article-title: Finite-element analysis of vibrational modes in piezoelectric ceramic disks publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.56492 – volume: 19 start-page: 167 issue: 1 year: 2007 end-page: 184 ident: CR36 article-title: Advances in energy harvesting using low profile piezoelectric transducers publication-title: J. Electroceram. doi: 10.1007/s10832-007-9043-4 – volume: 17 start-page: 767 issue: 4 year: 2021 end-page: 782 ident: CR38 article-title: Three-dimensional exact elasticity solutions for antisymmetric angle-ply laminated composite plates publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-021-09536-y – volume: 228 start-page: 1537 issue: 7 year: 2019 end-page: 1554 ident: CR42 article-title: Modified energy harvesting figures of merit for stress-and strain-driven piezoelectric systems publication-title: Eur. Phys. J.: Spec. Top. doi: 10.1140/epjst/e2019-800143-7 – year: 2003 ident: CR19 publication-title: Micromechatronics – volume: 04 start-page: 1041 year: 2013 end-page: 1049 ident: CR43 article-title: Nanoparticles transport in ceramic matricies: a novel approach for ceramic matrix composites fabrication publication-title: J. Mod. Phys. doi: 10.4236/jmp.2013.48140 – year: 2005 ident: CR51 publication-title: An Introduction to the Theory of Piezoelectricity doi: 10.1007/b101799 – volume: 11 start-page: 2160009 issue: 4–5 year: 2021 ident: CR28 article-title: Numerical investigation of the effects of partial metallization at the pore surface on the effective properties of a porous piezoceramic composite publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X2160009 – volume: 5 start-page: 6569 issue: 14 year: 2017 end-page: 6580 ident: CR52 article-title: Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00967D – volume: 15 start-page: 451 issue: 1 year: 2006 end-page: 458 ident: CR1 article-title: Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/15/2/026 – volume: 28 start-page: 113001 year: 2019 ident: CR46 article-title: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018) publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab36e4 – volume: 30 start-page: 295 year: 1998 end-page: 308 ident: CR11 article-title: Universal bounds for effective piezoelectric moduli publication-title: Mech. Mat. doi: 10.1016/S0167-6636(98)00029-5 – volume: 25 start-page: 125028 issue: 12 year: 2016 ident: CR35 article-title: Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3–3 pi-ezoelectric foams publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/12/125028 – year: 2021 ident: CR48 article-title: A finite element computational framework for enhanced photostrictive performance in 0–3 composites publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-021-09550-0 – volume: 88 start-page: 032903 issue: 3 year: 2006 ident: CR14 article-title: Realization of high-energy density polycrystalline piezoelectric ceramics publication-title: Appl. Phys. Lett. doi: 10.1063/1.2166201 – volume: 15 start-page: 739 issue: 4 year: 2019 end-page: 755 ident: CR18 article-title: Benchmark analysis of piezoelectric bimorph energy harvesters composed of laminated composite beam substrates publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-018-9434-5 – volume: 51 start-page: 1221 issue: 6 year: 2014 end-page: 1234 ident: CR17 article-title: Electromechanical response of (3–0, 3–1) particulate, fibrous, and porous piezoelectric composites with anisotropic constituents: a model based on the homogenization method publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.12.008 – volume: 97 start-page: 072904 issue: 7 year: 2010 ident: CR15 article-title: Electromechanical response of porous piezoelectric materials: effects of porosity connectivity publication-title: Appl. Phys. Lett. doi: 10.1063/1.3481416 – ident: CR30 – volume: 38 start-page: 4203 issue: 12 year: 2018 end-page: 4211 ident: CR53 article-title: High piezoelectric sensitivity and hydrostatic figures of merit in unidirectional porous ferroelectric ceramics fabricated by freeze casting publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.04.067 – volume: 162 start-page: 104040 year: 2021 ident: CR26 article-title: About anomalous properties of porous piezoceramic materials with metallized or rigid surfaces of pores publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2021.104040 – volume: 14 start-page: 190 issue: 2 year: 2021 end-page: 202 ident: CR27 article-title: Numerical analysis of the effective properties of inhomogeneously polarized porous piezoelectric ceramics with Ni-doped pore walls considering the influence of volume fractions of metal and pores publication-title: Comput. Contin. Mech. doi: 10.7242/1999-6691/2021.14.2.16 – volume: 11 start-page: 25213 issue: 12 year: 2021 ident: CR5 article-title: Modeling and analysis of the piezomagnetic, electromagnetic, and magnetostrictive effects in a magnetostrictive transducer publication-title: AIP Adv. doi: 10.1063/5.0057715 – volume: 55 start-page: 827 issue: 6 year: 2020 end-page: 836 ident: CR33 article-title: Homogenization of porous piezocomposites with extreme properties at pore boundaries by effective moduli method publication-title: Mech. Solids doi: 10.3103/S0025654420050131 – volume: 10 start-page: 2050018 issue: 5 year: 2020 ident: CR32 article-title: Effective properties of a porous inhomogeneously polarized by direction piezoceramic material with full metalized pore boundaries: finite element analysis publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X20500186 – volume: 575 start-page: 84 issue: 1 year: 2021 end-page: 91 ident: CR31 article-title: Effective properties of piezoceramics with metal inclusions: numerical analysis publication-title: Ferroelectrics doi: 10.1080/00150193.2021.1888230 – volume: 65 start-page: 1157 issue: 2 year: 2020 end-page: 1179 ident: CR10 article-title: Three-dimensional isogeometric analysis of flexoelectricity with matlab implementation publication-title: Comput. Mater. Contin. doi: 10.32604/cmc.2020.08358 – volume: 40 start-page: 131 issue: 1 year: 2010 end-page: 151 ident: CR25 article-title: Physical properties of composites near percolation publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070909-104529 – volume: 80 start-page: 105567 year: 2021 ident: CR47 article-title: A comprehensive review on the state-of-the-art of piezoelectric energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105567 – volume: 32 start-page: 2002208 issue: 51 year: 2020 ident: CR49 article-title: Piezoelectric energy harvesting design principles for materials and structures: material figure-of-merit and self-resonance tuning publication-title: Adv. Mater. doi: 10.1002/adma.202002208 – year: 2016 ident: CR4 publication-title: Modern Piezoelectric Energy-Harvesting Materials doi: 10.1007/978-3-319-29143-7 – volume: 1 start-page: 247 issue: Part A year: 1964 ident: CR2 article-title: Piezoelectric and piezomagnetic materials and their function in transducers publication-title: Phys. Acoust. Princ. Methods – volume: 57 start-page: 2610 issue: 12 year: 2010 end-page: 2612 ident: CR37 article-title: Criterion for material selection in design of bulk piezoelectric energy harvesters publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2010.1734 – volume: 19 start-page: 127 year: 2007 end-page: 139 ident: CR22 article-title: Fabrication, modelling and use of porous ceramics for ultrasonic transducer applications publication-title: J. Electroceram. doi: 10.1007/s10832-007-9117-3 – volume: 17 start-page: 1850097 issue: 01 year: 2020 ident: CR9 article-title: A computational framework for design and optimization of flexoelectric materials publication-title: Int. J. Comput. Methods doi: 10.1142/S0219876218500974 – volume: 101 start-page: e202000129 issue: 3 year: 2021 ident: CR34 article-title: Analysis of Rosen type energy harvesting devices from porous piezoceramics with great longitudinal piezomodulus publication-title: ZAMM doi: 10.1002/zamm.202000129 – volume: 50 start-page: 1060 year: 1971 end-page: 1066 ident: CR13 article-title: Electromechanical properties of PbTiO ceramics containing La and Mn publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1912729 – volume: 110 start-page: 034109 issue: 3 year: 2011 ident: CR16 article-title: Electromechanical response of (3–0) porous piezoelectric materials: effects of porosity shape publication-title: J. Appl. Phys. doi: 10.1063/1.3622509 – start-page: 111 year: 2010 end-page: 128 ident: CR24 article-title: Porous piezoelectric ceramics publication-title: Piezoelectric Ceramics, chap 6 doi: 10.5772/9942 – volume: 113 start-page: 218 year: 2017 end-page: 229 ident: CR23 article-title: Homogenization of porous piezoelectric materials publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.03.003 – volume: 224 start-page: 2949 issue: 14–15 year: 2015 end-page: 2966 ident: CR40 article-title: Porous ferroelectrics for energy harvesting applications publication-title: Eur. Phys. J.: Spec. Top. doi: 10.1140/epjst/e2015-02600-y – volume: 10 start-page: 1928346 issue: 1080/15376494 year: 2021 ident: CR29 article-title: A numerical study about the effects of the metal volume fraction on the effective properties of a porous piezoelectric composite with metalized pore boundaries publication-title: Mech. Adv. Mater. Struct. – volume: 539 start-page: 101 issue: 1 year: 2019 end-page: 111 ident: CR45 article-title: Recent advances in porous piezoceramics applications publication-title: Ferroelectrics doi: 10.1080/00150193.2019.1570019 – volume: 663 start-page: 848 year: 2016 end-page: 861 ident: CR7 article-title: Colossal permittivity in percolative ceramic/metal dielectric composites publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.12.171 – volume: 332 start-page: 47 year: 2018 end-page: 62 ident: CR8 article-title: A multi-material level set-based topology optimization of flexoelectric composites publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.12.005 – volume: 97 start-page: 072904 issue: 7 year: 2010 ident: 9595_CR15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3481416 – volume: 10 start-page: 1928346 issue: 1080/15376494 year: 2021 ident: 9595_CR29 publication-title: Mech. Adv. Mater. Struct. – volume: 38 start-page: 4203 issue: 12 year: 2018 ident: 9595_CR53 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.04.067 – volume: 332 start-page: 47 year: 2018 ident: 9595_CR8 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.12.005 – volume: 11 start-page: 2160009 issue: 4–5 year: 2021 ident: 9595_CR28 publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X2160009 – volume: 15 start-page: 451 issue: 1 year: 2006 ident: 9595_CR1 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/15/2/026 – volume: 101 start-page: e202000129 issue: 3 year: 2021 ident: 9595_CR34 publication-title: ZAMM doi: 10.1002/zamm.202000129 – volume: 228 start-page: 1537 issue: 7 year: 2019 ident: 9595_CR42 publication-title: Eur. Phys. J.: Spec. Top. doi: 10.1140/epjst/e2019-800143-7 – volume: 88 start-page: 032903 issue: 3 year: 2006 ident: 9595_CR14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2166201 – volume: 5 start-page: 444 issue: 3 year: 2018 ident: 9595_CR6 publication-title: Mater. Horiz. doi: 10.1039/c8mh00097b – volume: 40 start-page: 131 issue: 1 year: 2010 ident: 9595_CR25 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070909-104529 – volume: 80 start-page: 381 year: 2016 ident: 9595_CR3 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.09.009 – volume: 67 start-page: 1656 issue: 8 year: 2020 ident: 9595_CR21 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2983257 – volume: 1 start-page: 247 issue: Part A year: 1964 ident: 9595_CR2 publication-title: Phys. Acoust. Princ. Methods – volume: 55 start-page: 827 issue: 6 year: 2020 ident: 9595_CR33 publication-title: Mech. Solids doi: 10.3103/S0025654420050131 – volume: 04 start-page: 1041 year: 2013 ident: 9595_CR43 publication-title: J. Mod. Phys. doi: 10.4236/jmp.2013.48140 – volume: 575 start-page: 84 issue: 1 year: 2021 ident: 9595_CR31 publication-title: Ferroelectrics doi: 10.1080/00150193.2021.1888230 – volume: 11 start-page: 25213 issue: 12 year: 2021 ident: 9595_CR5 publication-title: AIP Adv. doi: 10.1063/5.0057715 – volume: 110 start-page: 034109 issue: 3 year: 2011 ident: 9595_CR16 publication-title: J. Appl. Phys. doi: 10.1063/1.3622509 – volume: 51 start-page: 1221 issue: 6 year: 2014 ident: 9595_CR17 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.12.008 – volume: 19 start-page: 167 issue: 1 year: 2007 ident: 9595_CR36 publication-title: J. Electroceram. doi: 10.1007/s10832-007-9043-4 – volume: 5 start-page: 6569 issue: 14 year: 2017 ident: 9595_CR52 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00967D – volume: 93 start-page: 1427 issue: 5 year: 2010 ident: 9595_CR50 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03585.x – volume: 17 start-page: 1850097 issue: 01 year: 2020 ident: 9595_CR9 publication-title: Int. J. Comput. Methods doi: 10.1142/S0219876218500974 – volume-title: Micromechatronics year: 2003 ident: 9595_CR19 – volume-title: An Introduction to the Theory of Piezoelectricity year: 2005 ident: 9595_CR51 doi: 10.1007/b101799 – volume: 32 start-page: 2002208 issue: 51 year: 2020 ident: 9595_CR49 publication-title: Adv. Mater. doi: 10.1002/adma.202002208 – volume: 539 start-page: 101 issue: 1 year: 2019 ident: 9595_CR45 publication-title: Ferroelectrics doi: 10.1080/00150193.2019.1570019 – volume-title: Modern Piezoelectric Energy-Harvesting Materials year: 2016 ident: 9595_CR4 doi: 10.1007/978-3-319-29143-7 – volume: 10 start-page: 2050018 issue: 5 year: 2020 ident: 9595_CR32 publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X20500186 – volume: 50 start-page: 1060 year: 1971 ident: 9595_CR13 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1912729 – start-page: 111 volume-title: Piezoelectric Ceramics, chap 6 year: 2010 ident: 9595_CR24 doi: 10.5772/9942 – volume: 224 start-page: 2949 issue: 14–15 year: 2015 ident: 9595_CR40 publication-title: Eur. Phys. J.: Spec. Top. doi: 10.1140/epjst/e2015-02600-y – year: 2021 ident: 9595_CR48 publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-021-09550-0 – start-page: 119 volume-title: Structural Health Monitoring (SHM) in Aerospace Structures year: 2016 ident: 9595_CR12 doi: 10.1016/B978-0-08-100148-6.00005-6 – volume: 663 start-page: 848 year: 2016 ident: 9595_CR7 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.12.171 – volume: 65 start-page: 1157 issue: 2 year: 2020 ident: 9595_CR10 publication-title: Comput. Mater. Contin. doi: 10.32604/cmc.2020.08358 – volume: 30 start-page: 295 year: 1998 ident: 9595_CR11 publication-title: Mech. Mat. doi: 10.1016/S0167-6636(98)00029-5 – volume: 28 start-page: 113001 year: 2019 ident: 9595_CR46 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab36e4 – volume: 162 start-page: 104040 year: 2021 ident: 9595_CR26 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2021.104040 – volume: 80 start-page: 105567 year: 2021 ident: 9595_CR47 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105567 – volume: 37 start-page: 316 issue: 4 year: 1990 ident: 9595_CR20 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.56492 – volume: 15 start-page: 739 issue: 4 year: 2019 ident: 9595_CR18 publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-018-9434-5 – volume: 2 start-page: 2264 issue: 10 year: 2017 ident: 9595_CR41 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00798 – volume: 113 start-page: 218 year: 2017 ident: 9595_CR23 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.03.003 – volume: 25 start-page: 125028 issue: 12 year: 2016 ident: 9595_CR35 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/12/125028 – volume: 8 start-page: 8877 issue: 12 year: 2015 ident: 9595_CR39 publication-title: Materials doi: 10.3390/ma8125498 – volume: 10 start-page: 02005 issue: 2 year: 2018 ident: 9595_CR44 publication-title: J. Nano-Electron. Phys. doi: 10.21272/jnep.10(2).02005 – volume: 19 start-page: 127 year: 2007 ident: 9595_CR22 publication-title: J. Electroceram. doi: 10.1007/s10832-007-9117-3 – ident: 9595_CR30 – volume: 57 start-page: 2610 issue: 12 year: 2010 ident: 9595_CR37 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2010.1734 – volume: 14 start-page: 190 issue: 2 year: 2021 ident: 9595_CR27 publication-title: Comput. Contin. Mech. doi: 10.7242/1999-6691/2021.14.2.16 – volume: 17 start-page: 767 issue: 4 year: 2021 ident: 9595_CR38 publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-021-09536-y |
SSID | ssj0030188 |
Score | 2.2606392 |
Snippet | This paper focuses on the numerical analysis of the properties of porous piezoelectric composites with metal-doped pore surfaces and assesses their... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 611 |
SubjectTerms | Actuation Actuators Anisotropy Characterization and Evaluation of Materials Classical Mechanics Dielectric properties Engineering Engineering Design Finite element method Homogenization Numerical analysis Piezoelectric ceramics Piezoelectric transducers Piezoelectricity Porosity Shape effects Solid Mechanics Substrates Transverse oscillation Vibration mode |
Title | Numerical characterization of a piezoelectric composite with hollow metal fillers including new figures of merit, pore shape effects, and distinct piezoceramic types |
URI | https://link.springer.com/article/10.1007/s10999-022-09595-9 https://www.proquest.com/docview/2699982638 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfGK1ljl4s4Ek3Tz2WKS1KPRkoZ5C9hEt1LQ0CYL_x__p7CZpq6jgKZBsdiCzme-b3XkQci2ptEVPOVbAdFFtFepfinGLConLiVE74SbaYuyPJvR-6k2rpLCsjnavjySNpd5KdjMZ8-g86b0rz2K7pOmh764DuSZuv7a_KMJ0m0THhFkO-mBVqszPc3yFow3H_HYsatBmeEgOKpoI_VKvR2RHpcdkf6t44An5GBflacscxLrqcplUCYsEYljO1PuibHMzE6Bjx3WAlgK99Qpo9OaLN3hVSL4hMQmBGcxSMS80mAGSbbz7XKAzrifTgvIuIFdXkL3ESwVVHEgX4lSC1IYiFXkpUqiVbnIPenc3OyWT4eDxdmRVTRcsgZ5YbnlMMYcHgZ9QaivEc1chzHlMaiRXgRfwRCCqJx6nEv1bX_CYe8jqfBuvCsH_jDTSRarOCXCTGBsgRwg4RRwMQxEwLiVLfGRFLm0Rp_72kagqkuvGGPNoU0tZ6ytCfUVGXxFrkZv1O8uyHsefo9u1SqPq38wiF6Uz9Kp6YYt0azVvHv8-28X_hl-SPbdcaZbttEkjXxXqChlMzjuk2b97ehh0zML9BF2G6j0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HtSD-MRq1Tl4s4Ek3Tz2WMRStfbUQm-h-4gWalKaFMH_4_90dpO0VVTwFEg2u5CZzPfN7jwIuZZU2qKlHCtguqi2CvUvxbhFhUR1YtSOuYm26PvdIX0YeaMyKSyrot2rI0ljqdeS3UzGPDpPeu_Ks9gm2UIyEGpdHrrtyv7iEqbbJDomzHLQBytTZX6e4yscrTjmt2NRgzadfbJX0kRoF3I9IBsqOSS7a8UDj8hHf1GctkxBLKsuF0mVkMYwhtlEvadFm5uJAB07rgO0FOitV0CjN03f4FUh-YbYJARmMEnEdKHBDJBs493nBTrjejK9UN4E5OoKspfxTEEZB9KEcSJBakORiLxYUqi5bnIPenc3OybDzt3gtmuVTRcsgZ5YbnlMMYcHgR9TaivEc1chzHlMaiRXgRfwWCCqxx6nEv1bX_Ax95DV-TZeFYL_CaklaaJOCXCTGBsgRwg4RRwMQxEwLiWLfWRFLq0Tp_r2kSgrkuvGGNNoVUtZyytCeUVGXhGrk5vlO7OiHsefoxuVSKPy38wiF1dn6FW1wjppVmJePf59trP_Db8i293BUy_q3fcfz8mOW2idZTsNUsvnC3WBbCbnl0Z5PwEzj-uc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16hy82WCSbpLusajFF8WDhd5C9xEt1LS0KYL_x__pzCaxVVTwFEg2O5CZ7HyzO98MY6eaa1c1jOdEgopqmyb9UkI6XGk0J8HdRNpsi0543eW3vaC3wOK32e7lkWTOaaAqTWl2PtbJ-QLxzbLnMZCifazAEctshRMbGC2667fKtRjF2c6TGKQIx8N4rKDN_DzHV9c0x5vfjkit52lvso0CMkIr1_EWWzLpNltfKCS4w947s_zkZQjqswJzTrCEUQJ9GA_M2yhveTNQQHnklKxlgLZhARfA4egVXgwCcUgsOXAKg1QNZ-TYAIE33n2aYWBOk5GgrA6I2w1Mn_tjA0VOSB36qQZNi0aqslykMhNqeA-00zvdZd321ePFtVM0YHAURmWZEwgjPBlFYcK5a9C3-wZdXiA0eXUTBZFMFHr4JJBcY6wbKtmXASK80MWrQSCwxyrpKDX7DKQlyUaIFyLJ0Sc2myoSUmuRhIiQfF5lXvntY1VUJ6cmGcN4XleZ9BWjvmKrr1hU2dnnO-O8Nsefo2ulSuPiP53GPkoXGGE1mlVWL9U8f_z7bAf_G37CVh8u2_H9TefukK35udE5rldjlWwyM0cIbDJ5bG33A5vP788 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+characterization+of+a+piezoelectric+composite+with+hollow+metal+fillers+including+new+figures+of+merit%2C+pore+shape+effects%2C+and+distinct+piezoceramic+types&rft.jtitle=International+journal+of+mechanics+and+materials+in+design&rft.au=Nasedkin%2C+Andrey&rft.au=Nassar%2C+Mohamed+Elsayed&rft.date=2022-09-01&rft.issn=1569-1713&rft.eissn=1573-8841&rft.volume=18&rft.issue=3&rft.spage=611&rft.epage=631&rft_id=info:doi/10.1007%2Fs10999-022-09595-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10999_022_09595_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-1713&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-1713&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-1713&client=summon |