An EEG-based subject-independent emotion recognition model using a differential-evolution-based feature selection algorithm

Electroencephalogram (EEG)-based emotion recognition models are gaining interest as they show the intrinsic state of human. A wide range of features are extracted from the scalp EEG recorded using a different set of electrodes across the brain regions. However, there are no standard set of features...

Full description

Saved in:
Bibliographic Details
Published inKnowledge and information systems Vol. 65; no. 1; pp. 341 - 377
Main Authors Kannadasan, K., Veerasingam, Sridevi, Shameedha Begum, B., Ramasubramanian, N.
Format Journal Article
LanguageEnglish
Published London Springer London 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram (EEG)-based emotion recognition models are gaining interest as they show the intrinsic state of human. A wide range of features are extracted from the scalp EEG recorded using a different set of electrodes across the brain regions. However, there are no standard set of features accepted amongst researchers for emotion recognition. As a result, new researchers in the field use all features reported in the literature which leads to the curse of dimensionality problem and performance degradation due to high correlation within the feature set. Thus, the primary objective of this work is to improve the performance of the emotion recognition model by using an optimal feature set. This research article proposes differential-evolution-based feature selection (DEFS) algorithm to obtain an optimal feature set for effective subject-independent emotion recognition. The optimal feature set obtained from the DEFS algorithm is used to train the SVM classifier. A wide range of experiments are conducted to analyze the performance of our proposed model using a publicly available EEG-based emotion recognition dataset. The proposed model has been compared with several state-of-the-art feature selection and optimization algorithms. The results are analyzed in the aspects of classification performance, fitness value optimization and computational time. In addition, to assure the subject-independent behavior of the proposed model, subject-wise performance has been analyzed. The proposed DEFS-SVM emotion recognition model has got the classification accuracies of 73.60, 74.23, 71.88 and 71.80% to detect valence arousal, valence, dominance, and liking emotional states, respectively. The experimental results assured that our proposed model outperforms all other algorithms in all aspects. Also, the proposed feature selection algorithm is suitable for any EEG-based emotion recognition model to optimize the feature set.
AbstractList Electroencephalogram (EEG)-based emotion recognition models are gaining interest as they show the intrinsic state of human. A wide range of features are extracted from the scalp EEG recorded using a different set of electrodes across the brain regions. However, there are no standard set of features accepted amongst researchers for emotion recognition. As a result, new researchers in the field use all features reported in the literature which leads to the curse of dimensionality problem and performance degradation due to high correlation within the feature set. Thus, the primary objective of this work is to improve the performance of the emotion recognition model by using an optimal feature set. This research article proposes differential-evolution-based feature selection (DEFS) algorithm to obtain an optimal feature set for effective subject-independent emotion recognition. The optimal feature set obtained from the DEFS algorithm is used to train the SVM classifier. A wide range of experiments are conducted to analyze the performance of our proposed model using a publicly available EEG-based emotion recognition dataset. The proposed model has been compared with several state-of-the-art feature selection and optimization algorithms. The results are analyzed in the aspects of classification performance, fitness value optimization and computational time. In addition, to assure the subject-independent behavior of the proposed model, subject-wise performance has been analyzed. The proposed DEFS-SVM emotion recognition model has got the classification accuracies of 73.60, 74.23, 71.88 and 71.80% to detect valence arousal, valence, dominance, and liking emotional states, respectively. The experimental results assured that our proposed model outperforms all other algorithms in all aspects. Also, the proposed feature selection algorithm is suitable for any EEG-based emotion recognition model to optimize the feature set.
Author Kannadasan, K.
Ramasubramanian, N.
Shameedha Begum, B.
Veerasingam, Sridevi
Author_xml – sequence: 1
  givenname: K.
  orcidid: 0000-0001-6892-3264
  surname: Kannadasan
  fullname: Kannadasan, K.
  email: kannadasankk@gmail.com
  organization: Department of Computer Science and Engineering, National Institute of Technology Tiruchirappalli
– sequence: 2
  givenname: Sridevi
  surname: Veerasingam
  fullname: Veerasingam, Sridevi
  organization: Department of Instrumentation and Control Engineering, National Institute of Technology Tiruchirappalli
– sequence: 3
  givenname: B.
  surname: Shameedha Begum
  fullname: Shameedha Begum, B.
  organization: Department of Computer Science and Engineering, National Institute of Technology Tiruchirappalli
– sequence: 4
  givenname: N.
  surname: Ramasubramanian
  fullname: Ramasubramanian, N.
  organization: Department of Computer Science and Engineering, National Institute of Technology Tiruchirappalli
BookMark eNp9kMFLwzAUxoNMcJv-A54KnqNJujbZcYw5hYEXPYe0fa0ZbTKTVBH_edN1IHjYJXkhv-97730zNDHWAEK3lNxTQviDp4TSDBPGMKE8Z_jrAk0Jo0ucUppPTjVNOb9CM-_3ZKAonaKflUk2my0ulIcq8X2xhzJgbSo4QDxMSKCzQVuTOChtY_Sx7mwFbdJ7bZpEJZWua3CR1arF8GnbfoBOljWo0DtIPLTReRCrtrFOh_fuGl3WqvVwc7rn6O1x87p-wruX7fN6tcMlWywDzkguRMZJzfiCVmVcqGJlntaK8Dov0oUQSuXxk6rhnadccEaKQsWNCYcK0jm6G30Pzn704IPc296Z2FIynmdCxARJpMRIlc5676CWpQ5qmDg4pVtJiRyilmPUMkYtj1HLryhl_6QHpzvlvs-L0lHkI2wacH9TnVH9AmhvlY4
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106352
crossref_primary_10_3389_fnins_2023_1221512
crossref_primary_10_1016_j_heliyon_2024_e30174
crossref_primary_10_1145_3666002
crossref_primary_10_3390_electronics12183810
crossref_primary_10_1007_s00521_024_10240_z
crossref_primary_10_1016_j_bspc_2024_107347
crossref_primary_10_3390_e27010096
crossref_primary_10_1109_TIM_2023_3347790
Cites_doi 10.1007/978-3-319-46672-9_58
10.1007/11510888_57
10.1007/s00521-021-06224-y
10.1038/s41598-021-86345-5
10.1109/IPTC.2010.60
10.1109/NER.2011.5910636
10.1016/j.neucom.2015.09.085
10.1097/WNP.0000000000000533
10.1109/TAFFC.2018.2800046
10.1109/ASYU48272.2019.8946364
10.1037/0033-2909.117.1.39
10.1109/NAFIPS.1996.534789
10.1109/TIPTEKNO.2019.8895124
10.3390/computers7040058
10.1016/j.neulet.2018.12.045
10.1016/j.biopsycho.2004.03.002
10.1109/TMM.2016.2598092
10.1097/WNP.0b013e3181775993
10.1016/j.eswa.2018.06.031
10.1109/ICOSP.2008.4697464
10.1109/TAFFC.2014.2339834
10.1007/s11517-015-1303-x
10.1109/TAFFC.2017.2714671
10.1016/j.biopsycho.2009.10.008
10.1007/s10044-016-0567-6
10.1109/TCYB.2016.2549639
10.7551/mitpress/1140.001.0001
10.3390/computation7010012
10.1109/TRE.2000.847807
10.1142/S0219720005001004
10.1016/j.eswa.2011.03.028
10.1016/j.eswa.2006.04.010
10.1016/0013-4694(70)90143-4
10.1016/j.paid.2018.09.040
10.1007/s40435-020-00708-w
10.1080/02699930143000392
10.1109/TAFFC.2016.2625250
10.1016/j.eswa.2017.09.062
10.1109/EMBC.2015.7320065
10.1007/s12065-020-00441-5
10.1023/A:1025667309714
10.1109/T-AFFC.2011.15
10.3389/fnsys.2020.00043
10.1007/s11227-020-03378-9
10.1016/j.neubiorev.2016.09.010
10.1109/TNN.2005.860849
10.1109/TSMCB.2005.854502
10.1109/IndianCMIT.2013.6529408
10.1109/ACCESS.2019.2908285
10.1177/1550147720911009
10.3390/ijerph15112461
10.1097/MD.0000000000006879
10.1007/s10115-021-01605-0
10.1016/j.nicl.2017.07.006
10.1016/j.eswa.2017.07.033
10.1109/ACCESS.2019.2891579
10.1109/TCDS.2016.2587290
10.1007/978-3-642-24571-8_58
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10115-022-01762-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0219-3116
EndPage 377
ExternalDocumentID 10_1007_s10115_022_01762_w
GrantInformation_xml – fundername: Ministry of Human Resource Development
  grantid: PMRF December 2020 Cycle
  funderid: http://dx.doi.org/10.13039/501100004541
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c249t-50688570f2741dc311d2c63fa07f6b3488aa6f271a7f6b6378720bba21907ede3
IEDL.DBID U2A
ISSN 0219-1377
IngestDate Sat Aug 16 17:13:27 EDT 2025
Tue Jul 01 01:10:59 EDT 2025
Thu Apr 24 23:12:26 EDT 2025
Fri Feb 21 02:45:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Swarm optimization
Differential evolution
Emotion recognition
Feature selection
Electroencephalogram
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-50688570f2741dc311d2c63fa07f6b3488aa6f271a7f6b6378720bba21907ede3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6892-3264
PQID 2765880070
PQPubID 43394
PageCount 37
ParticipantIDs proquest_journals_2765880070
crossref_citationtrail_10_1007_s10115_022_01762_w
crossref_primary_10_1007_s10115_022_01762_w
springer_journals_10_1007_s10115_022_01762_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Al-Ani A (2005) Feature subset selection using ant colony optimization. Int J Comput Intell
Cai J, Liu G, Hao M (2009) The research on emotion recognition from ECG signal. In: 2009 International conference on information technology and computer science, IEEE, pp 497–500
PutmanPvan PeerJMaimariIEEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traitsBiol Psychol2010832737810.1016/j.biopsycho.2009.10.008
HegazyAEMakhloufMEl-TawelGSImproved salp swarm algorithm for feature selectionJ King Saud Univ-Comput Inf Sci2020323335344
PhilippotPChapelleGBlairySRespiratory feedback in the generation of emotionCognit Emot200216560562710.1080/02699930143000392
Donmez H, Ozkurt N (2019) Emotion classification from EEG signals in convolutional neural networks. In: 2019 Innovations in intelligent systems and applications conference (ASYU), IEEE, pp 1–6
GannouniSAledailyABelwafiKEmotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identificationSci Rep202111111710.1038/s41598-021-86345-5
Picard RW (2000) Affective computing. MIT press
Khushaba RN, Al-Ani A, Al-Jumaily A (2011) Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst Appl 38(9):11515–11526
ZhangTZhengWCuiZA deep neural network-driven feature learning method for multi-view facial expression recognitionIEEE Trans Multimedia201618122528253610.1109/TMM.2016.2598092
ZhangYChenJTanJHAn investigation of deep learning models for EEG-based emotion recognitionFront Neurosci202014622759
Chen J, Zhang P, Mao Z, et al (2019) Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks. IEEE Access 7:44317–44328
Gunes C, Ozdemir MA, Akan A (2019) Emotion recognition with multi-channel EEG signals using auditory stimulus. In: 2019 Medical Technologies Congress (TIPTEKNO), pp 1–4. https://doi.org/10.1109/TIPTEKNO.2019.8895124
TooJAbdullahARA new and fast rival genetic algorithm for feature selectionJ Supercomput20217732844287410.1007/s11227-020-03378-9
Naser DS, Saha G (2013) Recognition of emotions induced by music videos using DT-CWPT. In: 2013 Indian conference on medical informatics and telemedicine (ICMIT), IEEE, pp 53–57
HuXChuLPeiJModel complexity of deep learning: a surveyKnowl Inf Syst202163102585261910.1007/s10115-021-01605-0
Nie D, Wang XW, Shi LC, et al (2011) EEG-based emotion recognition during watching movies. In: 2011 5th international IEEE/EMBS conference on neural engineering, IEEE, pp 667–670
ForgasJPMood and judgment: the affect infusion model (aim)Psychol Bull199511713910.1037/0033-2909.117.1.39
Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of North American fuzzy information processing, IEEE, pp 519–523
TooJAbdullahARMohd SaadNA new competitive binary grey wolf optimizer to solve the feature selection problem in EMG signals classificationComputers2018745810.3390/computers7040058
YinZLiuLChenJLocally robust EEG feature selection for individual-independent emotion recognitionExpert Syst Appl2020162113768
King RB, dela Rosa ED (2019) Are your emotions under your control or not? implicit theories of emotion predict well-being via cognitive reappraisal. Personal Individual Differ 138:177–182
DingCPengHMinimum redundancy feature selection from microarray gene expression dataJ Bioinform Comput Biol200530218520510.1142/S0219720005001004
TooJAbdullahAROpposition based competitive grey wolf optimizer for EMG feature selectionEvol Intell20211441691170510.1007/s12065-020-00441-5
Wen T, Zhang Z (2017) Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification. Medicine 96(19)
LaredoDMaSFLeylazGAutomatic model selection for fully connected neural networksInt J Dyn Control2020841063107910.1007/s40435-020-00708-w
Song T, Zheng W, Lu C, et al (2019) Mped: A multi-modal physiological emotion database for discrete emotion recognition. IEEE Access 7:12177–12191
Wu G, Liu G, Hao M (2010) The analysis of emotion recognition from GSR based on PSO. In: 2010 International symposium on intelligence information processing and trusted computing, IEEE, pp 360–363
JenkeRPeerABussMFeature extraction and selection for emotion recognition from EEGIEEE Trans Affect Comput20145332733910.1109/TAFFC.2014.2339834
Anderson K, McOwan PW (2006) A real-time automated system for the recognition of human facial expressions. IEEE Trans Syst Man Cybern Part B (Cybernetics) 36(1):96–105
NakisaBRastgooMNTjondronegoroDEvolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensorsExpert Syst Appl20189314315510.1016/j.eswa.2017.09.062
LogesparanLRodriguez-VillegasECassonAJThe impact of signal normalization on seizure detection using line length featuresMed Biol Eng Comput2015531092994210.1007/s11517-015-1303-x
SrideviVReddyMRSrinivasanKImproved patient-independent system for detection of electrical onset of seizuresJ Clin Neurophysiol20193611410.1097/WNP.0000000000000533
AlazraiRAlwanniHDaoudMIEEG-based BCI system for decoding finger movements within the same handNeurosci Lett201969811312010.1016/j.neulet.2018.12.045
LiuJWuGLuoYEEG-based emotion classification using a deep neural network and sparse autoencoderFront Syst Neurosci2020144310.3389/fnsys.2020.00043
HjorthBEEG analysis based on time domain propertiesElectroencephalogr Clin Neurophysiol197029330631010.1016/0013-4694(70)90143-4
CoanJAAllenJJFrontal EEG asymmetry as a moderator and mediator of emotionBiol Psychol2004671–275010.1016/j.biopsycho.2004.03.002
RaghuSSriraamNClassification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithmsExpert Syst Appl2018113183210.1016/j.eswa.2018.06.031
Kroupi E, Yazdani A, Ebrahimi T (2011) EEG correlates of different emotional states elicited during watching music videos. In: International conference on affective computing and intelligent interaction. Springer, pp 457–466
ZhengWZhouXZouCFacial expression recognition using kernel canonical correlation analysis (KCCA)IEEE Trans Neural Netw200617123323810.1109/TNN.2005.860849
ShonDImKParkJHEmotional stress state detection using genetic algorithm-based feature selection on EEG signalsInt J Environ Res Public Health20181511246110.3390/ijerph15112461
SubramanianRWacheJAbadiMKAscertain: emotion and personality recognition using commercial sensorsIEEE Trans Affect Comput20189214716010.1109/TAFFC.2016.2625250
PankseppJLaneRDSolmsMReconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experienceNeurosci Biobehav Rev20177618721510.1016/j.neubiorev.2016.09.010
RichhariyaBTanveerMRashidADiagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE)Biomed Signal Process Control202059101903
BahassineSMadaniAAl-SaremMFeature selection using an improved chi-square for Arabic text classificationJ King Saud Univ-Comput Inf Sci2020322225231
Makrehchi M, Kamel MS (2005) Text classification using small number of features. In: International workshop on machine learning and data mining in pattern recognition, Springer, pp 580–589
Zhang S, Zhao Z (2008) Feature selection filtering methods for emotion recognition in Chinese speech signal. In: 2008 9th international conference on signal processing, IEEE, pp 1699–1702
Liu W, Zheng WL, Lu BL (2016) Emotion recognition using multimodal deep learning. In: International conference on neural information processing, Springer, pp 521–529
TooJAbdullahARMohd SaadNEMG feature selection and classification using a Pbest-guide binary particle swarm optimizationComputation2019711210.3390/computation7010012
ZhengWMultichannel EEG-based emotion recognition via group sparse canonical correlation analysisIEEE Trans Cognit Dev Syst20169328129010.1109/TCDS.2016.2587290
WolpawJRBirbaumerNHeetderksWJBrain-computer interface technology: a review of the first international meetingIEEE Trans Rehabil Eng20008216417310.1109/TRE.2000.847807
Al-Qerem A, Kharbat F, Nashwan S, et al (2020) General model for best feature extraction of eeg using discrete wavelet transform wavelet family and differential evolution. Int J Distrib Sens Netw 16(3):1550147720911009
KoelstraSMuhlCSoleymaniMDeap: a database for emotion analysis; using physiological signalsIEEE Trans Affect Comput201131183110.1109/T-AFFC.2011.15
Candra H, Yuwono M, Chai R, et al (2015) Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In: 37th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp 7250–7253
MistryKZhangLNeohSCA micro-GA embedded PSO feature selection approach to intelligent facial emotion recognitionIEEE Trans Cybern20164761496150910.1109/TCYB.2016.2549639
BaigMZAslamNShumHPDifferential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEGExpert Syst Appl20179018419510.1016/j.eswa.2017.07.033
SivagaminathanRKRamakrishnanSA hybrid approach for feature subset selection using neural networks and ant colony optimizationExpert Syst Appl2007331496010.1016/j.eswa.2006.04.010
MeierRDittrichHSchulze-BonhageADetecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patternsJ Clin Neurophysiol200825311913110.1097/WNP.0b013e3181775993
Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer
GuptaRFalkTHRelevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterizationNeurocomputing201617487588410.1016/j.neucom.2015.09.085
Robnik-ŠikonjaMKononenkoITheoretical and empirical analysis of ReliefF and RReliefFMach Learn200353123691076.6806510.1023/A:1025667309714
MowlaMRCa
C Ding (1762_CR12) 2005; 3
X Hu (1762_CR20) 2021; 63
1762_CR28
J Liu (1762_CR27) 2020; 14
J Too (1762_CR55) 2018; 7
RK Sivagaminathan (1762_CR47) 2007; 33
R Meier (1762_CR31) 2008; 25
1762_CR61
1762_CR25
P Putman (1762_CR42) 2010; 83
JA Coan (1762_CR11) 2004; 67
1762_CR23
1762_CR22
1762_CR63
W Zheng (1762_CR67) 2006; 17
1762_CR16
1762_CR59
J Too (1762_CR54) 2021; 14
J Too (1762_CR56) 2019; 7
W Zheng (1762_CR66) 2016; 9
R Jenke (1762_CR21) 2014; 5
P Philippot (1762_CR39) 2002; 16
J Too (1762_CR53) 2021; 77
K Mistry (1762_CR33) 2016; 47
D Shon (1762_CR46) 2018; 15
R Subramanian (1762_CR52) 2018; 9
1762_CR58
R Alazrai (1762_CR4) 2019; 698
1762_CR13
1762_CR57
S Gannouni (1762_CR15) 2021; 11
1762_CR10
B Hjorth (1762_CR19) 1970; 29
1762_CR51
S Raghu (1762_CR43) 2018; 113
SM Alarcao (1762_CR3) 2017; 10
1762_CR49
J Panksepp (1762_CR38) 2017; 76
AE Hegazy (1762_CR18) 2020; 32
MR Mowla (1762_CR34) 2020; 126
B Nakisa (1762_CR35) 2018; 93
D Laredo (1762_CR26) 2020; 8
P Song (1762_CR48) 2018; 11
B Richhariya (1762_CR44) 2020; 59
MZ Baig (1762_CR7) 2017; 90
S Koelstra (1762_CR24) 2011; 3
1762_CR41
1762_CR40
T Zhang (1762_CR64) 2016; 18
1762_CR2
1762_CR1
1762_CR37
1762_CR5
1762_CR8
1762_CR9
JP Forgas (1762_CR14) 1995; 117
A Mert (1762_CR32) 2018; 21
JR Wolpaw (1762_CR60) 2000; 8
R Gupta (1762_CR17) 2016; 174
L Logesparan (1762_CR29) 2015; 53
M Robnik-Šikonja (1762_CR45) 2003; 53
1762_CR36
Y Zhang (1762_CR65) 2020; 14
V Sridevi (1762_CR50) 2019; 36
S Bahassine (1762_CR6) 2020; 32
Z Yin (1762_CR62) 2020; 162
1762_CR30
References_xml – reference: JenkeRPeerABussMFeature extraction and selection for emotion recognition from EEGIEEE Trans Affect Comput20145332733910.1109/TAFFC.2014.2339834
– reference: BahassineSMadaniAAl-SaremMFeature selection using an improved chi-square for Arabic text classificationJ King Saud Univ-Comput Inf Sci2020322225231
– reference: Song T, Zheng W, Lu C, et al (2019) Mped: A multi-modal physiological emotion database for discrete emotion recognition. IEEE Access 7:12177–12191
– reference: HuXChuLPeiJModel complexity of deep learning: a surveyKnowl Inf Syst202163102585261910.1007/s10115-021-01605-0
– reference: RichhariyaBTanveerMRashidADiagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE)Biomed Signal Process Control202059101903
– reference: TooJAbdullahARMohd SaadNEMG feature selection and classification using a Pbest-guide binary particle swarm optimizationComputation2019711210.3390/computation7010012
– reference: ZhangTZhengWCuiZA deep neural network-driven feature learning method for multi-view facial expression recognitionIEEE Trans Multimedia201618122528253610.1109/TMM.2016.2598092
– reference: MowlaMRCanoRIDhuyvetterKJAffective brain-computer interfaces: choosing a meaningful performance measuring metricComput Biol Med2020126104001
– reference: Candra H, Yuwono M, Chai R, et al (2015) Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In: 37th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp 7250–7253
– reference: TooJAbdullahARMohd SaadNA new competitive binary grey wolf optimizer to solve the feature selection problem in EMG signals classificationComputers2018745810.3390/computers7040058
– reference: ZhengWZhouXZouCFacial expression recognition using kernel canonical correlation analysis (KCCA)IEEE Trans Neural Netw200617123323810.1109/TNN.2005.860849
– reference: Wu G, Liu G, Hao M (2010) The analysis of emotion recognition from GSR based on PSO. In: 2010 International symposium on intelligence information processing and trusted computing, IEEE, pp 360–363
– reference: MertAAkanAEmotion recognition from EEG signals by using multivariate empirical mode decompositionPattern Anal Appl20182118189376459510.1007/s10044-016-0567-6
– reference: GuptaRFalkTHRelevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterizationNeurocomputing201617487588410.1016/j.neucom.2015.09.085
– reference: MeierRDittrichHSchulze-BonhageADetecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patternsJ Clin Neurophysiol200825311913110.1097/WNP.0b013e3181775993
– reference: SivagaminathanRKRamakrishnanSA hybrid approach for feature subset selection using neural networks and ant colony optimizationExpert Syst Appl2007331496010.1016/j.eswa.2006.04.010
– reference: TooJAbdullahARA new and fast rival genetic algorithm for feature selectionJ Supercomput20217732844287410.1007/s11227-020-03378-9
– reference: SongPZhengWFeature selection based transfer subspace learning for speech emotion recognitionIEEE Trans Affect Comput201811337338210.1109/TAFFC.2018.2800046
– reference: AlarcaoSMFonsecaMJEmotions recognition using EEG signals: a surveyIEEE Trans Affect Comput201710337439310.1109/TAFFC.2017.2714671
– reference: TooJAbdullahAROpposition based competitive grey wolf optimizer for EMG feature selectionEvol Intell20211441691170510.1007/s12065-020-00441-5
– reference: Donmez H, Ozkurt N (2019) Emotion classification from EEG signals in convolutional neural networks. In: 2019 Innovations in intelligent systems and applications conference (ASYU), IEEE, pp 1–6
– reference: DingCPengHMinimum redundancy feature selection from microarray gene expression dataJ Bioinform Comput Biol200530218520510.1142/S0219720005001004
– reference: Makrehchi M, Kamel MS (2005) Text classification using small number of features. In: International workshop on machine learning and data mining in pattern recognition, Springer, pp 580–589
– reference: King RB, dela Rosa ED (2019) Are your emotions under your control or not? implicit theories of emotion predict well-being via cognitive reappraisal. Personal Individual Differ 138:177–182
– reference: Too J, Mafarja M, Mirjalili S (2021) Spatial bound whale optimization algorithm: an efficient high-dimensional feature selection approach. Neural Comput Appl 33(23):16229–16250
– reference: Wen T, Zhang Z (2017) Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification. Medicine 96(19)
– reference: Liu W, Zheng WL, Lu BL (2016) Emotion recognition using multimodal deep learning. In: International conference on neural information processing, Springer, pp 521–529
– reference: RaghuSSriraamNClassification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithmsExpert Syst Appl2018113183210.1016/j.eswa.2018.06.031
– reference: BaigMZAslamNShumHPDifferential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEGExpert Syst Appl20179018419510.1016/j.eswa.2017.07.033
– reference: ZhengWMultichannel EEG-based emotion recognition via group sparse canonical correlation analysisIEEE Trans Cognit Dev Syst20169328129010.1109/TCDS.2016.2587290
– reference: PhilippotPChapelleGBlairySRespiratory feedback in the generation of emotionCognit Emot200216560562710.1080/02699930143000392
– reference: WolpawJRBirbaumerNHeetderksWJBrain-computer interface technology: a review of the first international meetingIEEE Trans Rehabil Eng20008216417310.1109/TRE.2000.847807
– reference: Zhang S, Zhao Z (2008) Feature selection filtering methods for emotion recognition in Chinese speech signal. In: 2008 9th international conference on signal processing, IEEE, pp 1699–1702
– reference: Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of North American fuzzy information processing, IEEE, pp 519–523
– reference: MistryKZhangLNeohSCA micro-GA embedded PSO feature selection approach to intelligent facial emotion recognitionIEEE Trans Cybern20164761496150910.1109/TCYB.2016.2549639
– reference: Kroupi E, Yazdani A, Ebrahimi T (2011) EEG correlates of different emotional states elicited during watching music videos. In: International conference on affective computing and intelligent interaction. Springer, pp 457–466
– reference: SubramanianRWacheJAbadiMKAscertain: emotion and personality recognition using commercial sensorsIEEE Trans Affect Comput20189214716010.1109/TAFFC.2016.2625250
– reference: Picard RW (2000) Affective computing. MIT press
– reference: ForgasJPMood and judgment: the affect infusion model (aim)Psychol Bull199511713910.1037/0033-2909.117.1.39
– reference: Khushaba RN, Al-Ani A, Al-Jumaily A (2011) Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst Appl 38(9):11515–11526
– reference: PutmanPvan PeerJMaimariIEEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traitsBiol Psychol2010832737810.1016/j.biopsycho.2009.10.008
– reference: Anderson K, McOwan PW (2006) A real-time automated system for the recognition of human facial expressions. IEEE Trans Syst Man Cybern Part B (Cybernetics) 36(1):96–105
– reference: LogesparanLRodriguez-VillegasECassonAJThe impact of signal normalization on seizure detection using line length featuresMed Biol Eng Comput2015531092994210.1007/s11517-015-1303-x
– reference: Naser DS, Saha G (2013) Recognition of emotions induced by music videos using DT-CWPT. In: 2013 Indian conference on medical informatics and telemedicine (ICMIT), IEEE, pp 53–57
– reference: Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer
– reference: AlazraiRAlwanniHDaoudMIEEG-based BCI system for decoding finger movements within the same handNeurosci Lett201969811312010.1016/j.neulet.2018.12.045
– reference: ShonDImKParkJHEmotional stress state detection using genetic algorithm-based feature selection on EEG signalsInt J Environ Res Public Health20181511246110.3390/ijerph15112461
– reference: LaredoDMaSFLeylazGAutomatic model selection for fully connected neural networksInt J Dyn Control2020841063107910.1007/s40435-020-00708-w
– reference: Gunes C, Ozdemir MA, Akan A (2019) Emotion recognition with multi-channel EEG signals using auditory stimulus. In: 2019 Medical Technologies Congress (TIPTEKNO), pp 1–4. https://doi.org/10.1109/TIPTEKNO.2019.8895124
– reference: Al-Ani A (2005) Feature subset selection using ant colony optimization. Int J Comput Intell
– reference: Van Der Vinne N, Vollebregt MA, Van Putten MJ, et al (2017) Frontal alpha asymmetry as a diagnostic marker in depression: fact or fiction? a meta-analysis. Neuroimage: Clinical 16:79–87
– reference: NakisaBRastgooMNTjondronegoroDEvolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensorsExpert Syst Appl20189314315510.1016/j.eswa.2017.09.062
– reference: Al-Qerem A, Kharbat F, Nashwan S, et al (2020) General model for best feature extraction of eeg using discrete wavelet transform wavelet family and differential evolution. Int J Distrib Sens Netw 16(3):1550147720911009
– reference: HjorthBEEG analysis based on time domain propertiesElectroencephalogr Clin Neurophysiol197029330631010.1016/0013-4694(70)90143-4
– reference: KoelstraSMuhlCSoleymaniMDeap: a database for emotion analysis; using physiological signalsIEEE Trans Affect Comput201131183110.1109/T-AFFC.2011.15
– reference: CoanJAAllenJJFrontal EEG asymmetry as a moderator and mediator of emotionBiol Psychol2004671–275010.1016/j.biopsycho.2004.03.002
– reference: HegazyAEMakhloufMEl-TawelGSImproved salp swarm algorithm for feature selectionJ King Saud Univ-Comput Inf Sci2020323335344
– reference: LiuJWuGLuoYEEG-based emotion classification using a deep neural network and sparse autoencoderFront Syst Neurosci2020144310.3389/fnsys.2020.00043
– reference: SrideviVReddyMRSrinivasanKImproved patient-independent system for detection of electrical onset of seizuresJ Clin Neurophysiol20193611410.1097/WNP.0000000000000533
– reference: PankseppJLaneRDSolmsMReconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experienceNeurosci Biobehav Rev20177618721510.1016/j.neubiorev.2016.09.010
– reference: GannouniSAledailyABelwafiKEmotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identificationSci Rep202111111710.1038/s41598-021-86345-5
– reference: YinZLiuLChenJLocally robust EEG feature selection for individual-independent emotion recognitionExpert Syst Appl2020162113768
– reference: Nie D, Wang XW, Shi LC, et al (2011) EEG-based emotion recognition during watching movies. In: 2011 5th international IEEE/EMBS conference on neural engineering, IEEE, pp 667–670
– reference: ZhangYChenJTanJHAn investigation of deep learning models for EEG-based emotion recognitionFront Neurosci202014622759
– reference: Cai J, Liu G, Hao M (2009) The research on emotion recognition from ECG signal. In: 2009 International conference on information technology and computer science, IEEE, pp 497–500
– reference: Chen J, Zhang P, Mao Z, et al (2019) Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks. IEEE Access 7:44317–44328
– reference: Robnik-ŠikonjaMKononenkoITheoretical and empirical analysis of ReliefF and RReliefFMach Learn200353123691076.6806510.1023/A:1025667309714
– ident: 1762_CR28
  doi: 10.1007/978-3-319-46672-9_58
– ident: 1762_CR30
  doi: 10.1007/11510888_57
– ident: 1762_CR57
  doi: 10.1007/s00521-021-06224-y
– volume: 32
  start-page: 225
  issue: 2
  year: 2020
  ident: 1762_CR6
  publication-title: J King Saud Univ-Comput Inf Sci
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 1762_CR15
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-86345-5
– ident: 1762_CR61
  doi: 10.1109/IPTC.2010.60
– ident: 1762_CR37
  doi: 10.1109/NER.2011.5910636
– volume: 174
  start-page: 875
  year: 2016
  ident: 1762_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.085
– volume: 36
  start-page: 14
  issue: 1
  year: 2019
  ident: 1762_CR50
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0000000000000533
– volume: 14
  start-page: 759
  issue: 622
  year: 2020
  ident: 1762_CR65
  publication-title: Front Neurosci
– volume: 11
  start-page: 373
  issue: 3
  year: 2018
  ident: 1762_CR48
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2018.2800046
– volume: 32
  start-page: 335
  issue: 3
  year: 2020
  ident: 1762_CR18
  publication-title: J King Saud Univ-Comput Inf Sci
– ident: 1762_CR13
  doi: 10.1109/ASYU48272.2019.8946364
– volume: 117
  start-page: 39
  issue: 1
  year: 1995
  ident: 1762_CR14
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.117.1.39
– volume: 126
  start-page: 001
  issue: 104
  year: 2020
  ident: 1762_CR34
  publication-title: Comput Biol Med
– ident: 1762_CR51
  doi: 10.1109/NAFIPS.1996.534789
– ident: 1762_CR16
  doi: 10.1109/TIPTEKNO.2019.8895124
– volume: 7
  start-page: 58
  issue: 4
  year: 2018
  ident: 1762_CR55
  publication-title: Computers
  doi: 10.3390/computers7040058
– volume: 698
  start-page: 113
  year: 2019
  ident: 1762_CR4
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2018.12.045
– volume: 67
  start-page: 7
  issue: 1–2
  year: 2004
  ident: 1762_CR11
  publication-title: Biol Psychol
  doi: 10.1016/j.biopsycho.2004.03.002
– volume: 18
  start-page: 2528
  issue: 12
  year: 2016
  ident: 1762_CR64
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2016.2598092
– volume: 25
  start-page: 119
  issue: 3
  year: 2008
  ident: 1762_CR31
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0b013e3181775993
– volume: 113
  start-page: 18
  year: 2018
  ident: 1762_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.06.031
– ident: 1762_CR63
  doi: 10.1109/ICOSP.2008.4697464
– volume: 5
  start-page: 327
  issue: 3
  year: 2014
  ident: 1762_CR21
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2014.2339834
– volume: 53
  start-page: 929
  issue: 10
  year: 2015
  ident: 1762_CR29
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-015-1303-x
– volume: 10
  start-page: 374
  issue: 3
  year: 2017
  ident: 1762_CR3
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2017.2714671
– volume: 83
  start-page: 73
  issue: 2
  year: 2010
  ident: 1762_CR42
  publication-title: Biol Psychol
  doi: 10.1016/j.biopsycho.2009.10.008
– volume: 21
  start-page: 81
  issue: 1
  year: 2018
  ident: 1762_CR32
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-016-0567-6
– volume: 47
  start-page: 1496
  issue: 6
  year: 2016
  ident: 1762_CR33
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2549639
– ident: 1762_CR40
  doi: 10.7551/mitpress/1140.001.0001
– volume: 7
  start-page: 12
  issue: 1
  year: 2019
  ident: 1762_CR56
  publication-title: Computation
  doi: 10.3390/computation7010012
– ident: 1762_CR8
– volume: 8
  start-page: 164
  issue: 2
  year: 2000
  ident: 1762_CR60
  publication-title: IEEE Trans Rehabil Eng
  doi: 10.1109/TRE.2000.847807
– volume: 59
  start-page: 903
  issue: 101
  year: 2020
  ident: 1762_CR44
  publication-title: Biomed Signal Process Control
– volume: 3
  start-page: 185
  issue: 02
  year: 2005
  ident: 1762_CR12
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720005001004
– ident: 1762_CR22
  doi: 10.1016/j.eswa.2011.03.028
– volume: 33
  start-page: 49
  issue: 1
  year: 2007
  ident: 1762_CR47
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.04.010
– volume: 29
  start-page: 306
  issue: 3
  year: 1970
  ident: 1762_CR19
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(70)90143-4
– ident: 1762_CR23
  doi: 10.1016/j.paid.2018.09.040
– volume: 8
  start-page: 1063
  issue: 4
  year: 2020
  ident: 1762_CR26
  publication-title: Int J Dyn Control
  doi: 10.1007/s40435-020-00708-w
– volume: 16
  start-page: 605
  issue: 5
  year: 2002
  ident: 1762_CR39
  publication-title: Cognit Emot
  doi: 10.1080/02699930143000392
– volume: 9
  start-page: 147
  issue: 2
  year: 2018
  ident: 1762_CR52
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2016.2625250
– volume: 93
  start-page: 143
  year: 2018
  ident: 1762_CR35
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.09.062
– ident: 1762_CR9
  doi: 10.1109/EMBC.2015.7320065
– volume: 14
  start-page: 1691
  issue: 4
  year: 2021
  ident: 1762_CR54
  publication-title: Evol Intell
  doi: 10.1007/s12065-020-00441-5
– volume: 53
  start-page: 23
  issue: 1
  year: 2003
  ident: 1762_CR45
  publication-title: Mach Learn
  doi: 10.1023/A:1025667309714
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: 1762_CR24
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2011.15
– ident: 1762_CR41
– volume: 14
  start-page: 43
  year: 2020
  ident: 1762_CR27
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2020.00043
– volume: 77
  start-page: 2844
  issue: 3
  year: 2021
  ident: 1762_CR53
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03378-9
– volume: 76
  start-page: 187
  year: 2017
  ident: 1762_CR38
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2016.09.010
– volume: 17
  start-page: 233
  issue: 1
  year: 2006
  ident: 1762_CR67
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.860849
– ident: 1762_CR5
  doi: 10.1109/TSMCB.2005.854502
– ident: 1762_CR36
  doi: 10.1109/IndianCMIT.2013.6529408
– ident: 1762_CR10
  doi: 10.1109/ACCESS.2019.2908285
– ident: 1762_CR2
  doi: 10.1177/1550147720911009
– ident: 1762_CR1
– volume: 15
  start-page: 2461
  issue: 11
  year: 2018
  ident: 1762_CR46
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph15112461
– ident: 1762_CR59
  doi: 10.1097/MD.0000000000006879
– volume: 162
  start-page: 768
  issue: 113
  year: 2020
  ident: 1762_CR62
  publication-title: Expert Syst Appl
– volume: 63
  start-page: 2585
  issue: 10
  year: 2021
  ident: 1762_CR20
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-021-01605-0
– ident: 1762_CR58
  doi: 10.1016/j.nicl.2017.07.006
– volume: 90
  start-page: 184
  year: 2017
  ident: 1762_CR7
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.07.033
– ident: 1762_CR49
  doi: 10.1109/ACCESS.2019.2891579
– volume: 9
  start-page: 281
  issue: 3
  year: 2016
  ident: 1762_CR66
  publication-title: IEEE Trans Cognit Dev Syst
  doi: 10.1109/TCDS.2016.2587290
– ident: 1762_CR25
  doi: 10.1007/978-3-642-24571-8_58
SSID ssj0017611
Score 2.3792481
Snippet Electroencephalogram (EEG)-based emotion recognition models are gaining interest as they show the intrinsic state of human. A wide range of features are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 341
SubjectTerms Algorithms
Arousal
Classification
Computer Science
Computing time
Data Mining and Knowledge Discovery
Database Management
Electroencephalography
Emotion recognition
Emotional factors
Emotions
Evolution
Feature extraction
Feature selection
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Optimization
Performance degradation
Performance enhancement
Regular Paper
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWADi7yTTqigloqhQohK3SK_AkglLSSlA3-eu8RJBBLdEvkx-Hy-8935-wi5UNwNlBcJJkJHwgUFVCoSScRUT1kejyLtJEWV7zgYTbyHqT81AbfMlFVWZ2JxUKu5xBj5tROCrYwQneZm8cGQNQqzq4ZCY5O04QiOohZp3w7Gj091HgEu6QVnHuglQ2w982zGPJ4Db4hhNTv2c9jqt2lq_M0_KdLC8gx3ybZxGWm_lPEe2dDpPtmp6Bio0c4D8t1P6WBwz9AwKZotBYZY2FvNc5tTXXL20LpqCL4LKhyK5e8vlNOKLwX0fsb0l9mXZspEFyigNCu4c3Awn73AGuWv74dkMhw8342Y4VZgEi5cOfORbMYPrQTha5R0bVs5MnATboVJIFxQa84DaLQ5_gcu6LVjCcFhIa1QK-0ekVY6T_UxoR6-hpVach1anvR73AZ7p3u2p0KlpeIdYlfLGksDPI78F7O4gUxGUcQgirgQRbzqkMt6zKKE3Vjbu1tJKzYqmMXNhumQq0qCTfP_s52sn-2UbCHlfBmG6ZJW_rnUZ-CY5OLc7L4fPdHhBQ
  priority: 102
  providerName: ProQuest
Title An EEG-based subject-independent emotion recognition model using a differential-evolution-based feature selection algorithm
URI https://link.springer.com/article/10.1007/s10115-022-01762-w
https://www.proquest.com/docview/2765880070
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xXLiwI8pS-cANLGVPegyQtmITAiqVU-TYTkEqBTUpHPh5xo7TAgIkTknk5eDxZGbsmfcADgRzA-FFGc1Ch2OAgioVZXlERUtYHosi6eQ6y_cq6Pa8s77fN0VhRZ3tXl9J6j_1p2I39F6oyj7HXRQ49G0eFn2M3VUiV8-Jp3cHGJhrnjzURarw9EypzM9zfDVHMx_z27WotjbtVVg2biKJK7muwZwcrcNKTcFAjEZuwHs8IknSocoYCVJMMnWsQh-n3LYlkRVPD5lmCuG7pr8hKuV9QBipOVJQ14dUvpq9aKbMpUb-JIXmy1GD2XDwPH4sH542oddO7k661PApUI5BVkl9RTDjh1auIGsEd21bODxwc2aFeZC5qMqMBdhoM_UduKjLjpVlDBfSCqWQ7hYsjJ5HchuIpypgueRMhpbH_Raz0cbJlu2JUEguWAPsellTbsDGFefFMJ3BJCtRpCiKVIsifWvA4XTMSwW18WfvvVpaqVG7InVCdKgiBWHUgKNagrPm32fb-V_3XVhStPPVUcweLJTjidxH56TMmjAftTtNWIxPLy9u1bNzf57g8zi5ur5p6p36ARTL4pw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjSgU8AATWOTVJB0QqqClPCeQ2IJjOwWplEcDFeI_8Ru5c5xWIMHGlsj2Db6n7bv7ALaU8EMVxClPI0_iAQVVKk6zmKu6cgIRx9rLTJbvZdi-Dk5vajdj8FnWwlBaZWkTjaFWj5LuyPe8CH1lTN1pDp6eOaFG0etqCaFRiMWZfh_gka2_f3KE_N32vFbz6rDNLaoAl3jUyHmNYFZqkZNR4xYlfddVngz9TDhRFqY-CrQQIQ66gv5DHyXac9JUoGo7kVbaR7rjMBn46MmpMr11PHy1iEKD94tus86pk58t0rGlehh7ccqdp3keH3x3hKPo9seDrPFzrTmYsQEqaxQSNQ9jurcAsyX4A7O2YBE-Gj3WbB5zcoOK9V9TutDh90NU3ZzpAiGIDXOU8NsA7zBKtu8wwUp0FrQyXa7frBZYkpk2PUdZ3yD10GLR7SBH8ruHJbj-lz1fhoneY0-vAAuo9lZqKXTkBLJWFy56V113AxUpLZWogFtuayJtm3NC2-gmowbNxIoEWZEYViSDCuwM1zwVTT7-nF0tuZVYhe8nI_GswG7JwdHw79RW_6a2CVPtq4vz5Pzk8mwNpgnsvrgAqsJE_vKq1zEkytMNI4cMbv9b8L8AphgbOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xRVrthdeyojx9gNNikThpnB4Q4tHyVIUQSNyyju0AUimPBirEP-PXMZM4rRYJbtwS2Z6D52l7Zj6AVaOCyIRxylMpNB5QUKXiNIu5aRovVHFsRVZk-Xaig4vw6LJxOQZvVS0MpVVWNrEw1OZO0x35hpDoK2PqTrORubSI07321v0DJwQpemmt4DRKETm2LwM8vvU3D_eQ12tCtFvnuwfcIQxwjceOnDcIcqUhvYyauBgd-L4ROgoy5cksSgMUbqUiHPQV_UcBSrfw0lShmnvSGhsg3R8wLulUVIPxnVbn9Gz4hiGjAv0XnWiTU18_V7LjCvcwEuOUSU_zBB_87xZHse6H59nC67WnYMKFq2y7lK9pGLO9GZisoCCYswy_4XW7x1qtfU5O0bD-U0rXO_xmiLGbM1viBbFhxhJ-FzA8jFLvr5hiFVYL2pwut89OJxzJzBYdSFm_wO2hxap7hTzJr29n4eJbdv0P1Hp3PTsHLKRKXG21stILdaOpfPS1tumHRhqrjaqDX21rol3Tc8Le6Cajds3EigRZkRSsSAZ1-Dtcc1-2_Phy9mLFrcSpfz8ZCWsd1isOjoY_pzb_NbUV-IlCn5wcdo4X4JfAeKu8DVqEWv74ZJcwPsrTZSeIDP59t-y_A6NWIMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EEG-based+subject-independent+emotion+recognition+model+using+a+differential-evolution-based+feature+selection+algorithm&rft.jtitle=Knowledge+and+information+systems&rft.au=Kannadasan%2C+K.&rft.au=Veerasingam%2C+Sridevi&rft.au=Shameedha%C2%A0Begum%2C+B.&rft.au=Ramasubramanian%2C+N.&rft.date=2023-01-01&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=65&rft.issue=1&rft.spage=341&rft.epage=377&rft_id=info:doi/10.1007%2Fs10115-022-01762-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10115_022_01762_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon