An EEG-based subject-independent emotion recognition model using a differential-evolution-based feature selection algorithm
Electroencephalogram (EEG)-based emotion recognition models are gaining interest as they show the intrinsic state of human. A wide range of features are extracted from the scalp EEG recorded using a different set of electrodes across the brain regions. However, there are no standard set of features...
Saved in:
Published in | Knowledge and information systems Vol. 65; no. 1; pp. 341 - 377 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalogram (EEG)-based emotion recognition models are gaining interest as they show the intrinsic state of human. A wide range of features are extracted from the scalp EEG recorded using a different set of electrodes across the brain regions. However, there are no standard set of features accepted amongst researchers for emotion recognition. As a result, new researchers in the field use all features reported in the literature which leads to the curse of dimensionality problem and performance degradation due to high correlation within the feature set. Thus, the primary objective of this work is to improve the performance of the emotion recognition model by using an optimal feature set. This research article proposes differential-evolution-based feature selection (DEFS) algorithm to obtain an optimal feature set for effective subject-independent emotion recognition. The optimal feature set obtained from the DEFS algorithm is used to train the SVM classifier. A wide range of experiments are conducted to analyze the performance of our proposed model using a publicly available EEG-based emotion recognition dataset. The proposed model has been compared with several state-of-the-art feature selection and optimization algorithms. The results are analyzed in the aspects of classification performance, fitness value optimization and computational time. In addition, to assure the subject-independent behavior of the proposed model, subject-wise performance has been analyzed. The proposed DEFS-SVM emotion recognition model has got the classification accuracies of 73.60, 74.23, 71.88 and 71.80% to detect valence arousal, valence, dominance, and liking emotional states, respectively. The experimental results assured that our proposed model outperforms all other algorithms in all aspects. Also, the proposed feature selection algorithm is suitable for any EEG-based emotion recognition model to optimize the feature set. |
---|---|
AbstractList | Electroencephalogram (EEG)-based emotion recognition models are gaining interest as they show the intrinsic state of human. A wide range of features are extracted from the scalp EEG recorded using a different set of electrodes across the brain regions. However, there are no standard set of features accepted amongst researchers for emotion recognition. As a result, new researchers in the field use all features reported in the literature which leads to the curse of dimensionality problem and performance degradation due to high correlation within the feature set. Thus, the primary objective of this work is to improve the performance of the emotion recognition model by using an optimal feature set. This research article proposes differential-evolution-based feature selection (DEFS) algorithm to obtain an optimal feature set for effective subject-independent emotion recognition. The optimal feature set obtained from the DEFS algorithm is used to train the SVM classifier. A wide range of experiments are conducted to analyze the performance of our proposed model using a publicly available EEG-based emotion recognition dataset. The proposed model has been compared with several state-of-the-art feature selection and optimization algorithms. The results are analyzed in the aspects of classification performance, fitness value optimization and computational time. In addition, to assure the subject-independent behavior of the proposed model, subject-wise performance has been analyzed. The proposed DEFS-SVM emotion recognition model has got the classification accuracies of 73.60, 74.23, 71.88 and 71.80% to detect valence arousal, valence, dominance, and liking emotional states, respectively. The experimental results assured that our proposed model outperforms all other algorithms in all aspects. Also, the proposed feature selection algorithm is suitable for any EEG-based emotion recognition model to optimize the feature set. |
Author | Kannadasan, K. Ramasubramanian, N. Shameedha Begum, B. Veerasingam, Sridevi |
Author_xml | – sequence: 1 givenname: K. orcidid: 0000-0001-6892-3264 surname: Kannadasan fullname: Kannadasan, K. email: kannadasankk@gmail.com organization: Department of Computer Science and Engineering, National Institute of Technology Tiruchirappalli – sequence: 2 givenname: Sridevi surname: Veerasingam fullname: Veerasingam, Sridevi organization: Department of Instrumentation and Control Engineering, National Institute of Technology Tiruchirappalli – sequence: 3 givenname: B. surname: Shameedha Begum fullname: Shameedha Begum, B. organization: Department of Computer Science and Engineering, National Institute of Technology Tiruchirappalli – sequence: 4 givenname: N. surname: Ramasubramanian fullname: Ramasubramanian, N. organization: Department of Computer Science and Engineering, National Institute of Technology Tiruchirappalli |
BookMark | eNp9kMFLwzAUxoNMcJv-A54KnqNJujbZcYw5hYEXPYe0fa0ZbTKTVBH_edN1IHjYJXkhv-97730zNDHWAEK3lNxTQviDp4TSDBPGMKE8Z_jrAk0Jo0ucUppPTjVNOb9CM-_3ZKAonaKflUk2my0ulIcq8X2xhzJgbSo4QDxMSKCzQVuTOChtY_Sx7mwFbdJ7bZpEJZWua3CR1arF8GnbfoBOljWo0DtIPLTReRCrtrFOh_fuGl3WqvVwc7rn6O1x87p-wruX7fN6tcMlWywDzkguRMZJzfiCVmVcqGJlntaK8Dov0oUQSuXxk6rhnadccEaKQsWNCYcK0jm6G30Pzn704IPc296Z2FIynmdCxARJpMRIlc5676CWpQ5qmDg4pVtJiRyilmPUMkYtj1HLryhl_6QHpzvlvs-L0lHkI2wacH9TnVH9AmhvlY4 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106352 crossref_primary_10_3389_fnins_2023_1221512 crossref_primary_10_1016_j_heliyon_2024_e30174 crossref_primary_10_1145_3666002 crossref_primary_10_3390_electronics12183810 crossref_primary_10_1007_s00521_024_10240_z crossref_primary_10_1016_j_bspc_2024_107347 crossref_primary_10_3390_e27010096 crossref_primary_10_1109_TIM_2023_3347790 |
Cites_doi | 10.1007/978-3-319-46672-9_58 10.1007/11510888_57 10.1007/s00521-021-06224-y 10.1038/s41598-021-86345-5 10.1109/IPTC.2010.60 10.1109/NER.2011.5910636 10.1016/j.neucom.2015.09.085 10.1097/WNP.0000000000000533 10.1109/TAFFC.2018.2800046 10.1109/ASYU48272.2019.8946364 10.1037/0033-2909.117.1.39 10.1109/NAFIPS.1996.534789 10.1109/TIPTEKNO.2019.8895124 10.3390/computers7040058 10.1016/j.neulet.2018.12.045 10.1016/j.biopsycho.2004.03.002 10.1109/TMM.2016.2598092 10.1097/WNP.0b013e3181775993 10.1016/j.eswa.2018.06.031 10.1109/ICOSP.2008.4697464 10.1109/TAFFC.2014.2339834 10.1007/s11517-015-1303-x 10.1109/TAFFC.2017.2714671 10.1016/j.biopsycho.2009.10.008 10.1007/s10044-016-0567-6 10.1109/TCYB.2016.2549639 10.7551/mitpress/1140.001.0001 10.3390/computation7010012 10.1109/TRE.2000.847807 10.1142/S0219720005001004 10.1016/j.eswa.2011.03.028 10.1016/j.eswa.2006.04.010 10.1016/0013-4694(70)90143-4 10.1016/j.paid.2018.09.040 10.1007/s40435-020-00708-w 10.1080/02699930143000392 10.1109/TAFFC.2016.2625250 10.1016/j.eswa.2017.09.062 10.1109/EMBC.2015.7320065 10.1007/s12065-020-00441-5 10.1023/A:1025667309714 10.1109/T-AFFC.2011.15 10.3389/fnsys.2020.00043 10.1007/s11227-020-03378-9 10.1016/j.neubiorev.2016.09.010 10.1109/TNN.2005.860849 10.1109/TSMCB.2005.854502 10.1109/IndianCMIT.2013.6529408 10.1109/ACCESS.2019.2908285 10.1177/1550147720911009 10.3390/ijerph15112461 10.1097/MD.0000000000006879 10.1007/s10115-021-01605-0 10.1016/j.nicl.2017.07.006 10.1016/j.eswa.2017.07.033 10.1109/ACCESS.2019.2891579 10.1109/TCDS.2016.2587290 10.1007/978-3-642-24571-8_58 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10115-022-01762-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 0219-3116 |
EndPage | 377 |
ExternalDocumentID | 10_1007_s10115_022_01762_w |
GrantInformation_xml | – fundername: Ministry of Human Resource Development grantid: PMRF December 2020 Cycle funderid: http://dx.doi.org/10.13039/501100004541 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6KP 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAS LLZTM M0C M0N M4Y MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c249t-50688570f2741dc311d2c63fa07f6b3488aa6f271a7f6b6378720bba21907ede3 |
IEDL.DBID | U2A |
ISSN | 0219-1377 |
IngestDate | Sat Aug 16 17:13:27 EDT 2025 Tue Jul 01 01:10:59 EDT 2025 Thu Apr 24 23:12:26 EDT 2025 Fri Feb 21 02:45:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Swarm optimization Differential evolution Emotion recognition Feature selection Electroencephalogram |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-50688570f2741dc311d2c63fa07f6b3488aa6f271a7f6b6378720bba21907ede3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6892-3264 |
PQID | 2765880070 |
PQPubID | 43394 |
PageCount | 37 |
ParticipantIDs | proquest_journals_2765880070 crossref_citationtrail_10_1007_s10115_022_01762_w crossref_primary_10_1007_s10115_022_01762_w springer_journals_10_1007_s10115_022_01762_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationSubtitle | An International Journal |
PublicationTitle | Knowledge and information systems |
PublicationTitleAbbrev | Knowl Inf Syst |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Al-Ani A (2005) Feature subset selection using ant colony optimization. Int J Comput Intell Cai J, Liu G, Hao M (2009) The research on emotion recognition from ECG signal. In: 2009 International conference on information technology and computer science, IEEE, pp 497–500 PutmanPvan PeerJMaimariIEEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traitsBiol Psychol2010832737810.1016/j.biopsycho.2009.10.008 HegazyAEMakhloufMEl-TawelGSImproved salp swarm algorithm for feature selectionJ King Saud Univ-Comput Inf Sci2020323335344 PhilippotPChapelleGBlairySRespiratory feedback in the generation of emotionCognit Emot200216560562710.1080/02699930143000392 Donmez H, Ozkurt N (2019) Emotion classification from EEG signals in convolutional neural networks. In: 2019 Innovations in intelligent systems and applications conference (ASYU), IEEE, pp 1–6 GannouniSAledailyABelwafiKEmotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identificationSci Rep202111111710.1038/s41598-021-86345-5 Picard RW (2000) Affective computing. MIT press Khushaba RN, Al-Ani A, Al-Jumaily A (2011) Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst Appl 38(9):11515–11526 ZhangTZhengWCuiZA deep neural network-driven feature learning method for multi-view facial expression recognitionIEEE Trans Multimedia201618122528253610.1109/TMM.2016.2598092 ZhangYChenJTanJHAn investigation of deep learning models for EEG-based emotion recognitionFront Neurosci202014622759 Chen J, Zhang P, Mao Z, et al (2019) Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks. IEEE Access 7:44317–44328 Gunes C, Ozdemir MA, Akan A (2019) Emotion recognition with multi-channel EEG signals using auditory stimulus. In: 2019 Medical Technologies Congress (TIPTEKNO), pp 1–4. https://doi.org/10.1109/TIPTEKNO.2019.8895124 TooJAbdullahARA new and fast rival genetic algorithm for feature selectionJ Supercomput20217732844287410.1007/s11227-020-03378-9 Naser DS, Saha G (2013) Recognition of emotions induced by music videos using DT-CWPT. In: 2013 Indian conference on medical informatics and telemedicine (ICMIT), IEEE, pp 53–57 HuXChuLPeiJModel complexity of deep learning: a surveyKnowl Inf Syst202163102585261910.1007/s10115-021-01605-0 Nie D, Wang XW, Shi LC, et al (2011) EEG-based emotion recognition during watching movies. In: 2011 5th international IEEE/EMBS conference on neural engineering, IEEE, pp 667–670 ForgasJPMood and judgment: the affect infusion model (aim)Psychol Bull199511713910.1037/0033-2909.117.1.39 Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of North American fuzzy information processing, IEEE, pp 519–523 TooJAbdullahARMohd SaadNA new competitive binary grey wolf optimizer to solve the feature selection problem in EMG signals classificationComputers2018745810.3390/computers7040058 YinZLiuLChenJLocally robust EEG feature selection for individual-independent emotion recognitionExpert Syst Appl2020162113768 King RB, dela Rosa ED (2019) Are your emotions under your control or not? implicit theories of emotion predict well-being via cognitive reappraisal. Personal Individual Differ 138:177–182 DingCPengHMinimum redundancy feature selection from microarray gene expression dataJ Bioinform Comput Biol200530218520510.1142/S0219720005001004 TooJAbdullahAROpposition based competitive grey wolf optimizer for EMG feature selectionEvol Intell20211441691170510.1007/s12065-020-00441-5 Wen T, Zhang Z (2017) Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification. Medicine 96(19) LaredoDMaSFLeylazGAutomatic model selection for fully connected neural networksInt J Dyn Control2020841063107910.1007/s40435-020-00708-w Song T, Zheng W, Lu C, et al (2019) Mped: A multi-modal physiological emotion database for discrete emotion recognition. IEEE Access 7:12177–12191 Wu G, Liu G, Hao M (2010) The analysis of emotion recognition from GSR based on PSO. In: 2010 International symposium on intelligence information processing and trusted computing, IEEE, pp 360–363 JenkeRPeerABussMFeature extraction and selection for emotion recognition from EEGIEEE Trans Affect Comput20145332733910.1109/TAFFC.2014.2339834 Anderson K, McOwan PW (2006) A real-time automated system for the recognition of human facial expressions. IEEE Trans Syst Man Cybern Part B (Cybernetics) 36(1):96–105 NakisaBRastgooMNTjondronegoroDEvolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensorsExpert Syst Appl20189314315510.1016/j.eswa.2017.09.062 LogesparanLRodriguez-VillegasECassonAJThe impact of signal normalization on seizure detection using line length featuresMed Biol Eng Comput2015531092994210.1007/s11517-015-1303-x SrideviVReddyMRSrinivasanKImproved patient-independent system for detection of electrical onset of seizuresJ Clin Neurophysiol20193611410.1097/WNP.0000000000000533 AlazraiRAlwanniHDaoudMIEEG-based BCI system for decoding finger movements within the same handNeurosci Lett201969811312010.1016/j.neulet.2018.12.045 LiuJWuGLuoYEEG-based emotion classification using a deep neural network and sparse autoencoderFront Syst Neurosci2020144310.3389/fnsys.2020.00043 HjorthBEEG analysis based on time domain propertiesElectroencephalogr Clin Neurophysiol197029330631010.1016/0013-4694(70)90143-4 CoanJAAllenJJFrontal EEG asymmetry as a moderator and mediator of emotionBiol Psychol2004671–275010.1016/j.biopsycho.2004.03.002 RaghuSSriraamNClassification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithmsExpert Syst Appl2018113183210.1016/j.eswa.2018.06.031 Kroupi E, Yazdani A, Ebrahimi T (2011) EEG correlates of different emotional states elicited during watching music videos. In: International conference on affective computing and intelligent interaction. Springer, pp 457–466 ZhengWZhouXZouCFacial expression recognition using kernel canonical correlation analysis (KCCA)IEEE Trans Neural Netw200617123323810.1109/TNN.2005.860849 ShonDImKParkJHEmotional stress state detection using genetic algorithm-based feature selection on EEG signalsInt J Environ Res Public Health20181511246110.3390/ijerph15112461 SubramanianRWacheJAbadiMKAscertain: emotion and personality recognition using commercial sensorsIEEE Trans Affect Comput20189214716010.1109/TAFFC.2016.2625250 PankseppJLaneRDSolmsMReconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experienceNeurosci Biobehav Rev20177618721510.1016/j.neubiorev.2016.09.010 RichhariyaBTanveerMRashidADiagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE)Biomed Signal Process Control202059101903 BahassineSMadaniAAl-SaremMFeature selection using an improved chi-square for Arabic text classificationJ King Saud Univ-Comput Inf Sci2020322225231 Makrehchi M, Kamel MS (2005) Text classification using small number of features. In: International workshop on machine learning and data mining in pattern recognition, Springer, pp 580–589 Zhang S, Zhao Z (2008) Feature selection filtering methods for emotion recognition in Chinese speech signal. In: 2008 9th international conference on signal processing, IEEE, pp 1699–1702 Liu W, Zheng WL, Lu BL (2016) Emotion recognition using multimodal deep learning. In: International conference on neural information processing, Springer, pp 521–529 TooJAbdullahARMohd SaadNEMG feature selection and classification using a Pbest-guide binary particle swarm optimizationComputation2019711210.3390/computation7010012 ZhengWMultichannel EEG-based emotion recognition via group sparse canonical correlation analysisIEEE Trans Cognit Dev Syst20169328129010.1109/TCDS.2016.2587290 WolpawJRBirbaumerNHeetderksWJBrain-computer interface technology: a review of the first international meetingIEEE Trans Rehabil Eng20008216417310.1109/TRE.2000.847807 Al-Qerem A, Kharbat F, Nashwan S, et al (2020) General model for best feature extraction of eeg using discrete wavelet transform wavelet family and differential evolution. Int J Distrib Sens Netw 16(3):1550147720911009 KoelstraSMuhlCSoleymaniMDeap: a database for emotion analysis; using physiological signalsIEEE Trans Affect Comput201131183110.1109/T-AFFC.2011.15 Candra H, Yuwono M, Chai R, et al (2015) Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In: 37th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp 7250–7253 MistryKZhangLNeohSCA micro-GA embedded PSO feature selection approach to intelligent facial emotion recognitionIEEE Trans Cybern20164761496150910.1109/TCYB.2016.2549639 BaigMZAslamNShumHPDifferential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEGExpert Syst Appl20179018419510.1016/j.eswa.2017.07.033 SivagaminathanRKRamakrishnanSA hybrid approach for feature subset selection using neural networks and ant colony optimizationExpert Syst Appl2007331496010.1016/j.eswa.2006.04.010 MeierRDittrichHSchulze-BonhageADetecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patternsJ Clin Neurophysiol200825311913110.1097/WNP.0b013e3181775993 Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer GuptaRFalkTHRelevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterizationNeurocomputing201617487588410.1016/j.neucom.2015.09.085 Robnik-ŠikonjaMKononenkoITheoretical and empirical analysis of ReliefF and RReliefFMach Learn200353123691076.6806510.1023/A:1025667309714 MowlaMRCa C Ding (1762_CR12) 2005; 3 X Hu (1762_CR20) 2021; 63 1762_CR28 J Liu (1762_CR27) 2020; 14 J Too (1762_CR55) 2018; 7 RK Sivagaminathan (1762_CR47) 2007; 33 R Meier (1762_CR31) 2008; 25 1762_CR61 1762_CR25 P Putman (1762_CR42) 2010; 83 JA Coan (1762_CR11) 2004; 67 1762_CR23 1762_CR22 1762_CR63 W Zheng (1762_CR67) 2006; 17 1762_CR16 1762_CR59 J Too (1762_CR54) 2021; 14 J Too (1762_CR56) 2019; 7 W Zheng (1762_CR66) 2016; 9 R Jenke (1762_CR21) 2014; 5 P Philippot (1762_CR39) 2002; 16 J Too (1762_CR53) 2021; 77 K Mistry (1762_CR33) 2016; 47 D Shon (1762_CR46) 2018; 15 R Subramanian (1762_CR52) 2018; 9 1762_CR58 R Alazrai (1762_CR4) 2019; 698 1762_CR13 1762_CR57 S Gannouni (1762_CR15) 2021; 11 1762_CR10 B Hjorth (1762_CR19) 1970; 29 1762_CR51 S Raghu (1762_CR43) 2018; 113 SM Alarcao (1762_CR3) 2017; 10 1762_CR49 J Panksepp (1762_CR38) 2017; 76 AE Hegazy (1762_CR18) 2020; 32 MR Mowla (1762_CR34) 2020; 126 B Nakisa (1762_CR35) 2018; 93 D Laredo (1762_CR26) 2020; 8 P Song (1762_CR48) 2018; 11 B Richhariya (1762_CR44) 2020; 59 MZ Baig (1762_CR7) 2017; 90 S Koelstra (1762_CR24) 2011; 3 1762_CR41 1762_CR40 T Zhang (1762_CR64) 2016; 18 1762_CR2 1762_CR1 1762_CR37 1762_CR5 1762_CR8 1762_CR9 JP Forgas (1762_CR14) 1995; 117 A Mert (1762_CR32) 2018; 21 JR Wolpaw (1762_CR60) 2000; 8 R Gupta (1762_CR17) 2016; 174 L Logesparan (1762_CR29) 2015; 53 M Robnik-Šikonja (1762_CR45) 2003; 53 1762_CR36 Y Zhang (1762_CR65) 2020; 14 V Sridevi (1762_CR50) 2019; 36 S Bahassine (1762_CR6) 2020; 32 Z Yin (1762_CR62) 2020; 162 1762_CR30 |
References_xml | – reference: JenkeRPeerABussMFeature extraction and selection for emotion recognition from EEGIEEE Trans Affect Comput20145332733910.1109/TAFFC.2014.2339834 – reference: BahassineSMadaniAAl-SaremMFeature selection using an improved chi-square for Arabic text classificationJ King Saud Univ-Comput Inf Sci2020322225231 – reference: Song T, Zheng W, Lu C, et al (2019) Mped: A multi-modal physiological emotion database for discrete emotion recognition. IEEE Access 7:12177–12191 – reference: HuXChuLPeiJModel complexity of deep learning: a surveyKnowl Inf Syst202163102585261910.1007/s10115-021-01605-0 – reference: RichhariyaBTanveerMRashidADiagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE)Biomed Signal Process Control202059101903 – reference: TooJAbdullahARMohd SaadNEMG feature selection and classification using a Pbest-guide binary particle swarm optimizationComputation2019711210.3390/computation7010012 – reference: ZhangTZhengWCuiZA deep neural network-driven feature learning method for multi-view facial expression recognitionIEEE Trans Multimedia201618122528253610.1109/TMM.2016.2598092 – reference: MowlaMRCanoRIDhuyvetterKJAffective brain-computer interfaces: choosing a meaningful performance measuring metricComput Biol Med2020126104001 – reference: Candra H, Yuwono M, Chai R, et al (2015) Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In: 37th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp 7250–7253 – reference: TooJAbdullahARMohd SaadNA new competitive binary grey wolf optimizer to solve the feature selection problem in EMG signals classificationComputers2018745810.3390/computers7040058 – reference: ZhengWZhouXZouCFacial expression recognition using kernel canonical correlation analysis (KCCA)IEEE Trans Neural Netw200617123323810.1109/TNN.2005.860849 – reference: Wu G, Liu G, Hao M (2010) The analysis of emotion recognition from GSR based on PSO. In: 2010 International symposium on intelligence information processing and trusted computing, IEEE, pp 360–363 – reference: MertAAkanAEmotion recognition from EEG signals by using multivariate empirical mode decompositionPattern Anal Appl20182118189376459510.1007/s10044-016-0567-6 – reference: GuptaRFalkTHRelevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterizationNeurocomputing201617487588410.1016/j.neucom.2015.09.085 – reference: MeierRDittrichHSchulze-BonhageADetecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patternsJ Clin Neurophysiol200825311913110.1097/WNP.0b013e3181775993 – reference: SivagaminathanRKRamakrishnanSA hybrid approach for feature subset selection using neural networks and ant colony optimizationExpert Syst Appl2007331496010.1016/j.eswa.2006.04.010 – reference: TooJAbdullahARA new and fast rival genetic algorithm for feature selectionJ Supercomput20217732844287410.1007/s11227-020-03378-9 – reference: SongPZhengWFeature selection based transfer subspace learning for speech emotion recognitionIEEE Trans Affect Comput201811337338210.1109/TAFFC.2018.2800046 – reference: AlarcaoSMFonsecaMJEmotions recognition using EEG signals: a surveyIEEE Trans Affect Comput201710337439310.1109/TAFFC.2017.2714671 – reference: TooJAbdullahAROpposition based competitive grey wolf optimizer for EMG feature selectionEvol Intell20211441691170510.1007/s12065-020-00441-5 – reference: Donmez H, Ozkurt N (2019) Emotion classification from EEG signals in convolutional neural networks. In: 2019 Innovations in intelligent systems and applications conference (ASYU), IEEE, pp 1–6 – reference: DingCPengHMinimum redundancy feature selection from microarray gene expression dataJ Bioinform Comput Biol200530218520510.1142/S0219720005001004 – reference: Makrehchi M, Kamel MS (2005) Text classification using small number of features. In: International workshop on machine learning and data mining in pattern recognition, Springer, pp 580–589 – reference: King RB, dela Rosa ED (2019) Are your emotions under your control or not? implicit theories of emotion predict well-being via cognitive reappraisal. Personal Individual Differ 138:177–182 – reference: Too J, Mafarja M, Mirjalili S (2021) Spatial bound whale optimization algorithm: an efficient high-dimensional feature selection approach. Neural Comput Appl 33(23):16229–16250 – reference: Wen T, Zhang Z (2017) Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification. Medicine 96(19) – reference: Liu W, Zheng WL, Lu BL (2016) Emotion recognition using multimodal deep learning. In: International conference on neural information processing, Springer, pp 521–529 – reference: RaghuSSriraamNClassification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithmsExpert Syst Appl2018113183210.1016/j.eswa.2018.06.031 – reference: BaigMZAslamNShumHPDifferential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEGExpert Syst Appl20179018419510.1016/j.eswa.2017.07.033 – reference: ZhengWMultichannel EEG-based emotion recognition via group sparse canonical correlation analysisIEEE Trans Cognit Dev Syst20169328129010.1109/TCDS.2016.2587290 – reference: PhilippotPChapelleGBlairySRespiratory feedback in the generation of emotionCognit Emot200216560562710.1080/02699930143000392 – reference: WolpawJRBirbaumerNHeetderksWJBrain-computer interface technology: a review of the first international meetingIEEE Trans Rehabil Eng20008216417310.1109/TRE.2000.847807 – reference: Zhang S, Zhao Z (2008) Feature selection filtering methods for emotion recognition in Chinese speech signal. In: 2008 9th international conference on signal processing, IEEE, pp 1699–1702 – reference: Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of North American fuzzy information processing, IEEE, pp 519–523 – reference: MistryKZhangLNeohSCA micro-GA embedded PSO feature selection approach to intelligent facial emotion recognitionIEEE Trans Cybern20164761496150910.1109/TCYB.2016.2549639 – reference: Kroupi E, Yazdani A, Ebrahimi T (2011) EEG correlates of different emotional states elicited during watching music videos. In: International conference on affective computing and intelligent interaction. Springer, pp 457–466 – reference: SubramanianRWacheJAbadiMKAscertain: emotion and personality recognition using commercial sensorsIEEE Trans Affect Comput20189214716010.1109/TAFFC.2016.2625250 – reference: Picard RW (2000) Affective computing. MIT press – reference: ForgasJPMood and judgment: the affect infusion model (aim)Psychol Bull199511713910.1037/0033-2909.117.1.39 – reference: Khushaba RN, Al-Ani A, Al-Jumaily A (2011) Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst Appl 38(9):11515–11526 – reference: PutmanPvan PeerJMaimariIEEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traitsBiol Psychol2010832737810.1016/j.biopsycho.2009.10.008 – reference: Anderson K, McOwan PW (2006) A real-time automated system for the recognition of human facial expressions. IEEE Trans Syst Man Cybern Part B (Cybernetics) 36(1):96–105 – reference: LogesparanLRodriguez-VillegasECassonAJThe impact of signal normalization on seizure detection using line length featuresMed Biol Eng Comput2015531092994210.1007/s11517-015-1303-x – reference: Naser DS, Saha G (2013) Recognition of emotions induced by music videos using DT-CWPT. In: 2013 Indian conference on medical informatics and telemedicine (ICMIT), IEEE, pp 53–57 – reference: Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer – reference: AlazraiRAlwanniHDaoudMIEEG-based BCI system for decoding finger movements within the same handNeurosci Lett201969811312010.1016/j.neulet.2018.12.045 – reference: ShonDImKParkJHEmotional stress state detection using genetic algorithm-based feature selection on EEG signalsInt J Environ Res Public Health20181511246110.3390/ijerph15112461 – reference: LaredoDMaSFLeylazGAutomatic model selection for fully connected neural networksInt J Dyn Control2020841063107910.1007/s40435-020-00708-w – reference: Gunes C, Ozdemir MA, Akan A (2019) Emotion recognition with multi-channel EEG signals using auditory stimulus. In: 2019 Medical Technologies Congress (TIPTEKNO), pp 1–4. https://doi.org/10.1109/TIPTEKNO.2019.8895124 – reference: Al-Ani A (2005) Feature subset selection using ant colony optimization. Int J Comput Intell – reference: Van Der Vinne N, Vollebregt MA, Van Putten MJ, et al (2017) Frontal alpha asymmetry as a diagnostic marker in depression: fact or fiction? a meta-analysis. Neuroimage: Clinical 16:79–87 – reference: NakisaBRastgooMNTjondronegoroDEvolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensorsExpert Syst Appl20189314315510.1016/j.eswa.2017.09.062 – reference: Al-Qerem A, Kharbat F, Nashwan S, et al (2020) General model for best feature extraction of eeg using discrete wavelet transform wavelet family and differential evolution. Int J Distrib Sens Netw 16(3):1550147720911009 – reference: HjorthBEEG analysis based on time domain propertiesElectroencephalogr Clin Neurophysiol197029330631010.1016/0013-4694(70)90143-4 – reference: KoelstraSMuhlCSoleymaniMDeap: a database for emotion analysis; using physiological signalsIEEE Trans Affect Comput201131183110.1109/T-AFFC.2011.15 – reference: CoanJAAllenJJFrontal EEG asymmetry as a moderator and mediator of emotionBiol Psychol2004671–275010.1016/j.biopsycho.2004.03.002 – reference: HegazyAEMakhloufMEl-TawelGSImproved salp swarm algorithm for feature selectionJ King Saud Univ-Comput Inf Sci2020323335344 – reference: LiuJWuGLuoYEEG-based emotion classification using a deep neural network and sparse autoencoderFront Syst Neurosci2020144310.3389/fnsys.2020.00043 – reference: SrideviVReddyMRSrinivasanKImproved patient-independent system for detection of electrical onset of seizuresJ Clin Neurophysiol20193611410.1097/WNP.0000000000000533 – reference: PankseppJLaneRDSolmsMReconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experienceNeurosci Biobehav Rev20177618721510.1016/j.neubiorev.2016.09.010 – reference: GannouniSAledailyABelwafiKEmotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identificationSci Rep202111111710.1038/s41598-021-86345-5 – reference: YinZLiuLChenJLocally robust EEG feature selection for individual-independent emotion recognitionExpert Syst Appl2020162113768 – reference: Nie D, Wang XW, Shi LC, et al (2011) EEG-based emotion recognition during watching movies. In: 2011 5th international IEEE/EMBS conference on neural engineering, IEEE, pp 667–670 – reference: ZhangYChenJTanJHAn investigation of deep learning models for EEG-based emotion recognitionFront Neurosci202014622759 – reference: Cai J, Liu G, Hao M (2009) The research on emotion recognition from ECG signal. In: 2009 International conference on information technology and computer science, IEEE, pp 497–500 – reference: Chen J, Zhang P, Mao Z, et al (2019) Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks. IEEE Access 7:44317–44328 – reference: Robnik-ŠikonjaMKononenkoITheoretical and empirical analysis of ReliefF and RReliefFMach Learn200353123691076.6806510.1023/A:1025667309714 – ident: 1762_CR28 doi: 10.1007/978-3-319-46672-9_58 – ident: 1762_CR30 doi: 10.1007/11510888_57 – ident: 1762_CR57 doi: 10.1007/s00521-021-06224-y – volume: 32 start-page: 225 issue: 2 year: 2020 ident: 1762_CR6 publication-title: J King Saud Univ-Comput Inf Sci – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 1762_CR15 publication-title: Sci Rep doi: 10.1038/s41598-021-86345-5 – ident: 1762_CR61 doi: 10.1109/IPTC.2010.60 – ident: 1762_CR37 doi: 10.1109/NER.2011.5910636 – volume: 174 start-page: 875 year: 2016 ident: 1762_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.085 – volume: 36 start-page: 14 issue: 1 year: 2019 ident: 1762_CR50 publication-title: J Clin Neurophysiol doi: 10.1097/WNP.0000000000000533 – volume: 14 start-page: 759 issue: 622 year: 2020 ident: 1762_CR65 publication-title: Front Neurosci – volume: 11 start-page: 373 issue: 3 year: 2018 ident: 1762_CR48 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2018.2800046 – volume: 32 start-page: 335 issue: 3 year: 2020 ident: 1762_CR18 publication-title: J King Saud Univ-Comput Inf Sci – ident: 1762_CR13 doi: 10.1109/ASYU48272.2019.8946364 – volume: 117 start-page: 39 issue: 1 year: 1995 ident: 1762_CR14 publication-title: Psychol Bull doi: 10.1037/0033-2909.117.1.39 – volume: 126 start-page: 001 issue: 104 year: 2020 ident: 1762_CR34 publication-title: Comput Biol Med – ident: 1762_CR51 doi: 10.1109/NAFIPS.1996.534789 – ident: 1762_CR16 doi: 10.1109/TIPTEKNO.2019.8895124 – volume: 7 start-page: 58 issue: 4 year: 2018 ident: 1762_CR55 publication-title: Computers doi: 10.3390/computers7040058 – volume: 698 start-page: 113 year: 2019 ident: 1762_CR4 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2018.12.045 – volume: 67 start-page: 7 issue: 1–2 year: 2004 ident: 1762_CR11 publication-title: Biol Psychol doi: 10.1016/j.biopsycho.2004.03.002 – volume: 18 start-page: 2528 issue: 12 year: 2016 ident: 1762_CR64 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2016.2598092 – volume: 25 start-page: 119 issue: 3 year: 2008 ident: 1762_CR31 publication-title: J Clin Neurophysiol doi: 10.1097/WNP.0b013e3181775993 – volume: 113 start-page: 18 year: 2018 ident: 1762_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.06.031 – ident: 1762_CR63 doi: 10.1109/ICOSP.2008.4697464 – volume: 5 start-page: 327 issue: 3 year: 2014 ident: 1762_CR21 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2014.2339834 – volume: 53 start-page: 929 issue: 10 year: 2015 ident: 1762_CR29 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-015-1303-x – volume: 10 start-page: 374 issue: 3 year: 2017 ident: 1762_CR3 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2017.2714671 – volume: 83 start-page: 73 issue: 2 year: 2010 ident: 1762_CR42 publication-title: Biol Psychol doi: 10.1016/j.biopsycho.2009.10.008 – volume: 21 start-page: 81 issue: 1 year: 2018 ident: 1762_CR32 publication-title: Pattern Anal Appl doi: 10.1007/s10044-016-0567-6 – volume: 47 start-page: 1496 issue: 6 year: 2016 ident: 1762_CR33 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2549639 – ident: 1762_CR40 doi: 10.7551/mitpress/1140.001.0001 – volume: 7 start-page: 12 issue: 1 year: 2019 ident: 1762_CR56 publication-title: Computation doi: 10.3390/computation7010012 – ident: 1762_CR8 – volume: 8 start-page: 164 issue: 2 year: 2000 ident: 1762_CR60 publication-title: IEEE Trans Rehabil Eng doi: 10.1109/TRE.2000.847807 – volume: 59 start-page: 903 issue: 101 year: 2020 ident: 1762_CR44 publication-title: Biomed Signal Process Control – volume: 3 start-page: 185 issue: 02 year: 2005 ident: 1762_CR12 publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720005001004 – ident: 1762_CR22 doi: 10.1016/j.eswa.2011.03.028 – volume: 33 start-page: 49 issue: 1 year: 2007 ident: 1762_CR47 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2006.04.010 – volume: 29 start-page: 306 issue: 3 year: 1970 ident: 1762_CR19 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(70)90143-4 – ident: 1762_CR23 doi: 10.1016/j.paid.2018.09.040 – volume: 8 start-page: 1063 issue: 4 year: 2020 ident: 1762_CR26 publication-title: Int J Dyn Control doi: 10.1007/s40435-020-00708-w – volume: 16 start-page: 605 issue: 5 year: 2002 ident: 1762_CR39 publication-title: Cognit Emot doi: 10.1080/02699930143000392 – volume: 9 start-page: 147 issue: 2 year: 2018 ident: 1762_CR52 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2016.2625250 – volume: 93 start-page: 143 year: 2018 ident: 1762_CR35 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.09.062 – ident: 1762_CR9 doi: 10.1109/EMBC.2015.7320065 – volume: 14 start-page: 1691 issue: 4 year: 2021 ident: 1762_CR54 publication-title: Evol Intell doi: 10.1007/s12065-020-00441-5 – volume: 53 start-page: 23 issue: 1 year: 2003 ident: 1762_CR45 publication-title: Mach Learn doi: 10.1023/A:1025667309714 – volume: 3 start-page: 18 issue: 1 year: 2011 ident: 1762_CR24 publication-title: IEEE Trans Affect Comput doi: 10.1109/T-AFFC.2011.15 – ident: 1762_CR41 – volume: 14 start-page: 43 year: 2020 ident: 1762_CR27 publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2020.00043 – volume: 77 start-page: 2844 issue: 3 year: 2021 ident: 1762_CR53 publication-title: J Supercomput doi: 10.1007/s11227-020-03378-9 – volume: 76 start-page: 187 year: 2017 ident: 1762_CR38 publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2016.09.010 – volume: 17 start-page: 233 issue: 1 year: 2006 ident: 1762_CR67 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2005.860849 – ident: 1762_CR5 doi: 10.1109/TSMCB.2005.854502 – ident: 1762_CR36 doi: 10.1109/IndianCMIT.2013.6529408 – ident: 1762_CR10 doi: 10.1109/ACCESS.2019.2908285 – ident: 1762_CR2 doi: 10.1177/1550147720911009 – ident: 1762_CR1 – volume: 15 start-page: 2461 issue: 11 year: 2018 ident: 1762_CR46 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph15112461 – ident: 1762_CR59 doi: 10.1097/MD.0000000000006879 – volume: 162 start-page: 768 issue: 113 year: 2020 ident: 1762_CR62 publication-title: Expert Syst Appl – volume: 63 start-page: 2585 issue: 10 year: 2021 ident: 1762_CR20 publication-title: Knowl Inf Syst doi: 10.1007/s10115-021-01605-0 – ident: 1762_CR58 doi: 10.1016/j.nicl.2017.07.006 – volume: 90 start-page: 184 year: 2017 ident: 1762_CR7 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.07.033 – ident: 1762_CR49 doi: 10.1109/ACCESS.2019.2891579 – volume: 9 start-page: 281 issue: 3 year: 2016 ident: 1762_CR66 publication-title: IEEE Trans Cognit Dev Syst doi: 10.1109/TCDS.2016.2587290 – ident: 1762_CR25 doi: 10.1007/978-3-642-24571-8_58 |
SSID | ssj0017611 |
Score | 2.3792481 |
Snippet | Electroencephalogram (EEG)-based emotion recognition models are gaining interest as they show the intrinsic state of human. A wide range of features are... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 341 |
SubjectTerms | Algorithms Arousal Classification Computer Science Computing time Data Mining and Knowledge Discovery Database Management Electroencephalography Emotion recognition Emotional factors Emotions Evolution Feature extraction Feature selection Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Optimization Performance degradation Performance enhancement Regular Paper Support vector machines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWADi7yTTqigloqhQohK3SK_AkglLSSlA3-eu8RJBBLdEvkx-Hy-8935-wi5UNwNlBcJJkJHwgUFVCoSScRUT1kejyLtJEWV7zgYTbyHqT81AbfMlFVWZ2JxUKu5xBj5tROCrYwQneZm8cGQNQqzq4ZCY5O04QiOohZp3w7Gj091HgEu6QVnHuglQ2w982zGPJ4Db4hhNTv2c9jqt2lq_M0_KdLC8gx3ybZxGWm_lPEe2dDpPtmp6Bio0c4D8t1P6WBwz9AwKZotBYZY2FvNc5tTXXL20LpqCL4LKhyK5e8vlNOKLwX0fsb0l9mXZspEFyigNCu4c3Awn73AGuWv74dkMhw8342Y4VZgEi5cOfORbMYPrQTha5R0bVs5MnATboVJIFxQa84DaLQ5_gcu6LVjCcFhIa1QK-0ekVY6T_UxoR6-hpVach1anvR73AZ7p3u2p0KlpeIdYlfLGksDPI78F7O4gUxGUcQgirgQRbzqkMt6zKKE3Vjbu1tJKzYqmMXNhumQq0qCTfP_s52sn-2UbCHlfBmG6ZJW_rnUZ-CY5OLc7L4fPdHhBQ priority: 102 providerName: ProQuest |
Title | An EEG-based subject-independent emotion recognition model using a differential-evolution-based feature selection algorithm |
URI | https://link.springer.com/article/10.1007/s10115-022-01762-w https://www.proquest.com/docview/2765880070 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xXLiwI8pS-cANLGVPegyQtmITAiqVU-TYTkEqBTUpHPh5xo7TAgIkTknk5eDxZGbsmfcADgRzA-FFGc1Ch2OAgioVZXlERUtYHosi6eQ6y_cq6Pa8s77fN0VhRZ3tXl9J6j_1p2I39F6oyj7HXRQ49G0eFn2M3VUiV8-Jp3cHGJhrnjzURarw9EypzM9zfDVHMx_z27WotjbtVVg2biKJK7muwZwcrcNKTcFAjEZuwHs8IknSocoYCVJMMnWsQh-n3LYlkRVPD5lmCuG7pr8hKuV9QBipOVJQ14dUvpq9aKbMpUb-JIXmy1GD2XDwPH4sH542oddO7k661PApUI5BVkl9RTDjh1auIGsEd21bODxwc2aFeZC5qMqMBdhoM_UduKjLjpVlDBfSCqWQ7hYsjJ5HchuIpypgueRMhpbH_Raz0cbJlu2JUEguWAPsellTbsDGFefFMJ3BJCtRpCiKVIsifWvA4XTMSwW18WfvvVpaqVG7InVCdKgiBWHUgKNagrPm32fb-V_3XVhStPPVUcweLJTjidxH56TMmjAftTtNWIxPLy9u1bNzf57g8zi5ur5p6p36ARTL4pw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjSgU8AATWOTVJB0QqqClPCeQ2IJjOwWplEcDFeI_8Ru5c5xWIMHGlsj2Db6n7bv7ALaU8EMVxClPI0_iAQVVKk6zmKu6cgIRx9rLTJbvZdi-Dk5vajdj8FnWwlBaZWkTjaFWj5LuyPe8CH1lTN1pDp6eOaFG0etqCaFRiMWZfh_gka2_f3KE_N32vFbz6rDNLaoAl3jUyHmNYFZqkZNR4xYlfddVngz9TDhRFqY-CrQQIQ66gv5DHyXac9JUoGo7kVbaR7rjMBn46MmpMr11PHy1iEKD94tus86pk58t0rGlehh7ccqdp3keH3x3hKPo9seDrPFzrTmYsQEqaxQSNQ9jurcAsyX4A7O2YBE-Gj3WbB5zcoOK9V9TutDh90NU3ZzpAiGIDXOU8NsA7zBKtu8wwUp0FrQyXa7frBZYkpk2PUdZ3yD10GLR7SBH8ruHJbj-lz1fhoneY0-vAAuo9lZqKXTkBLJWFy56V113AxUpLZWogFtuayJtm3NC2-gmowbNxIoEWZEYViSDCuwM1zwVTT7-nF0tuZVYhe8nI_GswG7JwdHw79RW_6a2CVPtq4vz5Pzk8mwNpgnsvrgAqsJE_vKq1zEkytMNI4cMbv9b8L8AphgbOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xRVrthdeyojx9gNNikThpnB4Q4tHyVIUQSNyyju0AUimPBirEP-PXMZM4rRYJbtwS2Z6D52l7Zj6AVaOCyIRxylMpNB5QUKXiNIu5aRovVHFsRVZk-Xaig4vw6LJxOQZvVS0MpVVWNrEw1OZO0x35hpDoK2PqTrORubSI07321v0DJwQpemmt4DRKETm2LwM8vvU3D_eQ12tCtFvnuwfcIQxwjceOnDcIcqUhvYyauBgd-L4ROgoy5cksSgMUbqUiHPQV_UcBSrfw0lShmnvSGhsg3R8wLulUVIPxnVbn9Gz4hiGjAv0XnWiTU18_V7LjCvcwEuOUSU_zBB_87xZHse6H59nC67WnYMKFq2y7lK9pGLO9GZisoCCYswy_4XW7x1qtfU5O0bD-U0rXO_xmiLGbM1viBbFhxhJ-FzA8jFLvr5hiFVYL2pwut89OJxzJzBYdSFm_wO2hxap7hTzJr29n4eJbdv0P1Hp3PTsHLKRKXG21stILdaOpfPS1tumHRhqrjaqDX21rol3Tc8Le6Cajds3EigRZkRSsSAZ1-Dtcc1-2_Phy9mLFrcSpfz8ZCWsd1isOjoY_pzb_NbUV-IlCn5wcdo4X4JfAeKu8DVqEWv74ZJcwPsrTZSeIDP59t-y_A6NWIMo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EEG-based+subject-independent+emotion+recognition+model+using+a+differential-evolution-based+feature+selection+algorithm&rft.jtitle=Knowledge+and+information+systems&rft.au=Kannadasan%2C+K.&rft.au=Veerasingam%2C+Sridevi&rft.au=Shameedha%C2%A0Begum%2C+B.&rft.au=Ramasubramanian%2C+N.&rft.date=2023-01-01&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=65&rft.issue=1&rft.spage=341&rft.epage=377&rft_id=info:doi/10.1007%2Fs10115-022-01762-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10115_022_01762_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon |