Local asymptotic normality and asymptotical minimax efficiency of the MLE under random censorship

Here we study the problems of local asymptotic normality of the parametric family of distributions and asymptotic minimax efficient estimators when the observations are subject to right censoring. Local asymptotic normality will be established under some mild regularity conditions. A lower bound for...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 43; no. 6; pp. 591 - 600
Main Authors Wang, Qihua, Jing, Bingyi
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.06.2000
Department of Probability and Statistics, Peking University, Beijing 100871, China%Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here we study the problems of local asymptotic normality of the parametric family of distributions and asymptotic minimax efficient estimators when the observations are subject to right censoring. Local asymptotic normality will be established under some mild regularity conditions. A lower bound for local asymptotic minimax risk is given with respect to a bowl-shaped loss function, and furthermore a necessary and sufficient condition is given in order to achieve this lower bound. Finally, we show that this lower bound can be attained by the maximum likelihood estimator in the censored case and hence it is local asymptotic minimax efficient.
AbstractList Here we study the problems of local asymptotic normality of the parametric family of distributions and asymptotic minimax efficient estimators when the observations are subject to right censoring. Local asymptotic normality will be established under some mild regularity conditions. A lower bound for local asymptotic minimax risk is given with respect to a bowl-shaped loss function, and furthermore a necessary and sufficient condition is given in order to achieve this lower bound. Finally, we show that this lower bound can be attained by the maximum likelihood estimator in the censored case and hence it is local asymptotic minimax efficient.
O1; Here we study the problems of local asymptotic normality of the parametric family of distributions and asymptotic minimax efficient estimators when the observations are subject to right censoring. Local asymptotic normality will be established under some mild regularity conditions. A lower bound for local asymptotic minimax risk is given with respect to a bowl-shaped loss function, and furthermore a necessary and sufficient condition is given in order to achieve this lower bound. Finally, we show that this lower bound can be attained by the maximum likelihood estimator in the censored case and hence it is local asymptotic minimax efficient.
Author Wang, Qihua
Jing, Bingyi
AuthorAffiliation Department of Probability and Statistics, Peking University, Beijing 100871, China%Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
AuthorAffiliation_xml – name: Department of Probability and Statistics, Peking University, Beijing 100871, China%Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
Author_xml – sequence: 1
  givenname: Qihua
  surname: Wang
  fullname: Wang, Qihua
– sequence: 2
  givenname: Bingyi
  surname: Jing
  fullname: Jing, Bingyi
BookMark eNpNkE1LAzEQhoNUsNZe_AUBLyKs5mM32RxVWhUqXvS8TLNJu9pN1mSLXX-9kQp1LjMwz3y87ykaOe8MQueUXFNC5M3dnDBFSinJERrTUrCMScFHqSZEZIqV_ARNY2yWpOBc5UKqMYKF17DBEIe2633faOx8aGHT9AMGV_9rJKptXNPCDhtrG90YpwfsLe7XBj8vZnjrahNwSFO-xdq46ENcN90ZOrawiWb6lyfobT57vX_MFi8PT_e3i0yzXPVZbtPDomZFriTjFFQhuJFEA4cStJXAaVlAzsSyEFYwMMZoQWuqVF4ashR8gi73e7_AWXCr6t1vg0sXq-_Vx64ywEgKQZL4CbrYo13wn1sT-wPLZCkUFayUibraUzr4GIOxVReS_DBUlFS_hlcHw_kPn_N0AQ
Cites_doi 10.1214/aoms/1177729952
10.1007/BF00587353
10.1214/aoms/1177696960
10.1007/978-1-4899-0027-2
10.1080/01621459.1984.10478044
ClassificationCodes O1
ContentType Journal Article
Copyright Science in China Press 2000.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Science in China Press 2000.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/BF02908770
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1862-2763
1869-1862
EndPage 600
ExternalDocumentID zgkx_ea200006005
10_1007_BF02908770
GrantInformation_xml – fundername: the National Natural Science Foundation of China; the grant for the authors of excellent Ph.D dissertation in China(HKUST6162/97P); Hong Kong RGC(HKUST6162/97P)
  funderid: (19871003); the grant for the authors of excellent Ph.D dissertation in China(HKUST6162/97P); Hong Kong RGC(HKUST6162/97P)
GroupedDBID .86
06D
2JN
2LR
4.4
406
408
40E
6NX
8UJ
95-
95.
96X
AABHQ
AAYXX
ADHHG
AEGNC
AEXYK
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMYQR
B-.
BA0
BGNMA
CAG
CITATION
COF
CW9
EBS
EJD
FNLPD
HF~
IHE
I~Z
KOV
M4Y
MA-
NB0
NU0
PF0
QOS
ROL
RPX
RSV
S27
SAP
SDH
SMT
SNX
SOJ
T13
TR2
U2A
VC2
W48
~A9
-SA
-S~
-Y2
.VR
0R~
0VY
2J2
2JY
2KG
2KM
30V
5VR
5VS
5XA
5XB
8TC
92E
92I
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACSNA
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEGAL
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHPBZ
AHYZX
AIAKS
AILAN
AITGF
AJBLW
AJZVZ
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
BAPOH
BDATZ
BSONS
CAJEA
CCEZO
CCVFK
CHBEP
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FINBP
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
J-C
JBSCW
LLZTM
NPVJJ
NQJWS
O9J
P9R
PT4
Q--
R89
S16
S3B
SCL
SHX
SJYHP
SNE
SNPRN
SOHCF
SPISZ
SRMVM
SSLCW
SZN
TCJ
TGP
TSG
TUC
U1G
U5K
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W23
YLTOR
ZMTXR
2B.
4A8
93N
PSX
ID FETCH-LOGICAL-c249t-4f8626d25497231a9563e70ca3a8acf7a3185a426b56f62aeeec61d19948e0b63
ISSN 1006-9283
1674-7283
IngestDate Thu May 29 04:06:57 EDT 2025
Sat Jul 26 00:06:59 EDT 2025
Tue Jul 01 03:54:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords maximum likelihood estimator random censorship
local asymptotic normality
asymptotic minimax efficiency
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-4f8626d25497231a9563e70ca3a8acf7a3185a426b56f62aeeec61d19948e0b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2786916287
PQPubID 2043629
PageCount 10
ParticipantIDs wanfang_journals_zgkx_ea200006005
proquest_journals_2786916287
crossref_primary_10_1007_BF02908770
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2000-06-01
PublicationDateYYYYMMDD 2000-06-01
PublicationDate_xml – month: 06
  year: 2000
  text: 2000-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Science China. Mathematics
PublicationTitle_FL SCIENCE IN CHINA (MATHEMATICS)
PublicationYear 2000
Publisher Springer Nature B.V
Department of Probability and Statistics, Peking University, Beijing 100871, China%Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
Publisher_xml – name: Springer Nature B.V
– name: Department of Probability and Statistics, Peking University, Beijing 100871, China%Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
References I. A. Ibragimov (BF02908770_CR3) 1981
G. R. Shorack (BF02908770_CR5) 1987
S. C. Saunders (BF02908770_CR7) 1984; 79
L. LeCam (BF02908770_CR1) 1970; 41
R. Rebolledo (BF02908770_CR6) 1980; 51
J. Hájek (BF02908770_CR2) 1972; 1
A. Wald (BF02908770_CR4) 1949; 20
References_xml – volume-title: Empirical Processes With Applications to Statistics
  year: 1987
  ident: BF02908770_CR5
– volume: 20
  start-page: 595
  issue: 2
  year: 1949
  ident: BF02908770_CR4
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729952
– volume: 51
  start-page: 269
  year: 1980
  ident: BF02908770_CR6
  publication-title: Wahrsch Verw Gebiete
  doi: 10.1007/BF00587353
– volume: 41
  start-page: 802
  year: 1970
  ident: BF02908770_CR1
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177696960
– volume: 1
  start-page: 175
  year: 1972
  ident: BF02908770_CR2
  publication-title: Proc. 6th Berkeley Symp. on Math. Stat. and Prob.
– volume-title: Statistical Estimation
  year: 1981
  ident: BF02908770_CR3
  doi: 10.1007/978-1-4899-0027-2
– volume: 79
  start-page: 294
  issue: 836
  year: 1984
  ident: BF02908770_CR7
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1984.10478044
SSID ssib053394679
ssib014149344
ssj0039546
ssj0000390473
Score 1.4775845
Snippet Here we study the problems of local asymptotic normality of the parametric family of distributions and asymptotic minimax efficient estimators when the...
O1; Here we study the problems of local asymptotic normality of the parametric family of distributions and asymptotic minimax efficient estimators when the...
SourceID wanfang
proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 591
SubjectTerms Asymptotic properties
Lower bounds
Maximum likelihood estimators
Minimax technique
Normality
Title Local asymptotic normality and asymptotical minimax efficiency of the MLE under random censorship
URI https://www.proquest.com/docview/2786916287
https://d.wanfangdata.com.cn/periodical/zgkx-ea200006005
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVkhwQDxFSqkWwXKJghI_1uujXdxGbVOB1IhyitavYqrYVeoI0l_PzK6fwKFwsZxZex3NjHdm1jPfEPIuicGxN0NzlIbYwgy7hckkseFnwl0RS3DKsd55dsanc-v4wr7Yuve-k7W0LsMP0e1f60r-R6pAA7lilew_SLaZFAhwDvKFI0gYjneS8WmhSv1vNsvrskDk1Rw9UOVYKwzWZgBLRLI8W8qfmMCRqfd5U6cHzE4D1Q13NQS7FRfLYQShbdGkN9euKwss5gvmfWSBzVyf-XDiMM9h7gQpQPe4xwLB_ECRDpl_wIRAioCrgcKZy5lw8DbhqiF9TbMX8cU7Oxp-zr6tG1txjJtpPpjXTdbbnxi3eVQ6yQSs6qqsExs-rWCVUlm_mhHoUWtAap2SjJ8HOikpSseT7DtSEYXImehEhAzr5ez-1LMG5lbNNcVWTSdFbzpVB1Qtmfj09utF747mGR27gBsvrqF77tSGQ-NLVS9I1wrYugFZ5VBwBcX6p60a1xn4houojOPWIjd5kreXV6Do0lBehYLq3TEgHMJOHXPDqz0O09UFac2f7MPwVtP3Ha82mrr_Q-apzC87btX5Y_Koioeop5X7CdlK8qfkYYfLz4hUak5bbaaNmlPgL-2qOa3UnLZqTouUwmwU1JwqNadazWmr5s_J_DA4P5iOqs4go8iw3HJkpRiIx7i54UCAIiHINxNnHElTChmljkRMAAnOZ2jzlBuw-iQRn8SIgy2SccjNF2Q7L_LkJaFhKA3TAqdVuhAsi1iYiFlpG3ZkQSiXigF5W7Ntca0BYBY11HfL3AHZqzm6qBaIm4XhCA7RlyGcAXlTcbkd_V22u3e45hV50L5ie2S7XK2T1-AUl-E-2fGOvp4E-0ozfgE6k7Hi
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+asymptotic+normality+and+asymptotical+minimax+efficiency+of+the+MLE+under+random+censorship&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6A%E8%BE%91%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=WANG+Qihua&rft.au=JING+Bingyi&rft.date=2000-06-01&rft.pub=Department+of+Probability+and+Statistics%2C+Peking+University%2C+Beijing+100871%2C+China%25Department+of+Mathematics%2C+Hong+Kong+University+of+Science+and+Technology%2C+Hong+Kong%2C+China&rft.issn=1006-9283&rft.volume=43&rft.issue=6&rft.spage=591&rft.epage=600&rft_id=info:doi/10.1007%2FBF02908770&rft.externalDocID=zgkx_ea200006005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgkx-ea%2Fzgkx-ea.jpg