Exploring the impact of rolling temperature on interface microstructure and mechanical properties of steel–bronze explosive welded bilayer composite sheets

In this study, the microstructure evolution and mechanical properties of the explosive welded (EXWed) steel–bronze bilayer composite sheets before and after rolling are presented. Dissimilar welding was performed at two stand-off distances with various charge thicknesses. The welded bilayer sheets w...

Full description

Saved in:
Bibliographic Details
Published inWelding in the world Vol. 67; no. 6; pp. 1411 - 1425
Main Authors Khalaj, Gholamreza, Moradi, Moein, Asadian, Ebrahim
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, the microstructure evolution and mechanical properties of the explosive welded (EXWed) steel–bronze bilayer composite sheets before and after rolling are presented. Dissimilar welding was performed at two stand-off distances with various charge thicknesses. The welded bilayer sheets were rolled at ambient and 300 °C with a 33.3% thickness reduction. A feasibility welding window based on the process parameters was developed, and the samples were fabricated accordingly. Steel–bronze interfaces were divided into four distinct categories based on changes in microstructure and elemental distribution. After rolling, the initially formed wavy interface was stretched and flattened, and the vortex zones were compressed and, in some cases, submerged inside the steel part. Despite the proper connection in most parts of the interface, some parts suffered from local discontinuities. By implementing rolling, depending on the force and the rolling temperature, the diffusion barriers were partially removed, separate boundaries were brought closer, and a metallic bond was established at the bronze/steel interface. In addition, shrinkage cavities and pores were compressed and compacted. EXW and subsequent cold rolling increased the hardness since hot rolling diminished the interface hardness.
AbstractList In this study, the microstructure evolution and mechanical properties of the explosive welded (EXWed) steel–bronze bilayer composite sheets before and after rolling are presented. Dissimilar welding was performed at two stand-off distances with various charge thicknesses. The welded bilayer sheets were rolled at ambient and 300 °C with a 33.3% thickness reduction. A feasibility welding window based on the process parameters was developed, and the samples were fabricated accordingly. Steel–bronze interfaces were divided into four distinct categories based on changes in microstructure and elemental distribution. After rolling, the initially formed wavy interface was stretched and flattened, and the vortex zones were compressed and, in some cases, submerged inside the steel part. Despite the proper connection in most parts of the interface, some parts suffered from local discontinuities. By implementing rolling, depending on the force and the rolling temperature, the diffusion barriers were partially removed, separate boundaries were brought closer, and a metallic bond was established at the bronze/steel interface. In addition, shrinkage cavities and pores were compressed and compacted. EXW and subsequent cold rolling increased the hardness since hot rolling diminished the interface hardness.
In this study, the microstructure evolution and mechanical properties of the explosive welded (EXWed) steel–bronze bilayer composite sheets before and after rolling are presented. Dissimilar welding was performed at two stand-off distances with various charge thicknesses. The welded bilayer sheets were rolled at ambient and 300 °C with a 33.3% thickness reduction. A feasibility welding window based on the process parameters was developed, and the samples were fabricated accordingly. Steel–bronze interfaces were divided into four distinct categories based on changes in microstructure and elemental distribution. After rolling, the initially formed wavy interface was stretched and flattened, and the vortex zones were compressed and, in some cases, submerged inside the steel part. Despite the proper connection in most parts of the interface, some parts suffered from local discontinuities. By implementing rolling, depending on the force and the rolling temperature, the diffusion barriers were partially removed, separate boundaries were brought closer, and a metallic bond was established at the bronze/steel interface. In addition, shrinkage cavities and pores were compressed and compacted. EXW and subsequent cold rolling increased the hardness since hot rolling diminished the interface hardness.
Author Khalaj, Gholamreza
Asadian, Ebrahim
Moradi, Moein
Author_xml – sequence: 1
  givenname: Gholamreza
  orcidid: 0000-0001-8510-4981
  surname: Khalaj
  fullname: Khalaj, Gholamreza
  email: gh.khalaj@srbiau.ac.ir
  organization: Department of Engineering, Saveh Branch, Islamic Azad University
– sequence: 2
  givenname: Moein
  surname: Moradi
  fullname: Moradi, Moein
  organization: Department of Engineering, Saveh Branch, Islamic Azad University
– sequence: 3
  givenname: Ebrahim
  surname: Asadian
  fullname: Asadian, Ebrahim
  organization: Department of Engineering, Saveh Branch, Islamic Azad University
BookMark eNp9kc2KFDEQgIOs4OzqC3gKeG5N0un8HGVZXWHBy3oO6aTayZJO2iSjrqd9B8--nE9i94wgeNhDEaiqr6rCd47OUk6A0EtKXlNC5JvKCdW8I6zvCOV66MQTtKNKqk4Ioc_QjhDed4wp9Qyd13pHCNFr7NCvq-9LzCWkz7jtAYd5sa7hPOGSYzxmYV6g2HYogHPCITUok3WA5-BKrq0c3LFmk8czuL1NwdmIl5JXrAWo27DaAOLvh59jyekHYNh21vAV8DeIHjweQ7T3ULDL87IWGuC6B2j1OXo62Vjhxd_3An16d3V7ed3dfHz_4fLtTecY163jnnI3Eaa8HEbmQXOQ3sqhH3o9CCt6Kv1IFWiwWlLnhRotFwMfQQ39KFV_gV6d5q5nfzlAbeYuH0paVxqmKCOCESbXLnbq2j5eC0xmKWG25d5QYjYN5qTBrBrMUYMRK6T-g1xotoWcWrEhPo72J7QumyAo_656hPoDEWqkOQ
CitedBy_id crossref_primary_10_1016_j_matchar_2023_113462
crossref_primary_10_3390_met14030328
crossref_primary_10_2298_JMMB240505020A
crossref_primary_10_1016_j_matlet_2023_135528
crossref_primary_10_1007_s11665_023_08806_4
crossref_primary_10_1080_00084433_2023_2241733
crossref_primary_10_1016_j_enganabound_2024_01_003
crossref_primary_10_1016_j_tsep_2023_102331
crossref_primary_10_1016_j_jmrt_2023_07_079
crossref_primary_10_1016_j_jmrt_2023_03_071
crossref_primary_10_1016_j_mtcomm_2023_106880
crossref_primary_10_1016_j_jmrt_2023_07_281
crossref_primary_10_1016_j_jmrt_2023_07_161
crossref_primary_10_1080_07370652_2025_2472659
Cites_doi 10.1016/j.jallcom.2017.04.063
10.1016/j.jmatprotec.2011.08.017
10.1016/j.msea.2012.07.012
10.1007/s11041-017-0112-2
10.1016/j.jmapro.2018.09.014
10.1016/j.matdes.2018.05.027
10.1016/j.fusengdes.2018.08.017
10.1007/s11041-016-9991-x
10.1016/j.jmapro.2018.10.046
10.1016/S1006-706X(15)30095-9
10.1016/j.jallcom.2017.11.285
10.1016/j.ijpvp.2020.104216
10.1016/j.matdes.2015.07.114
10.1080/09507116.2016.1140417
10.1016/j.ijimpeng.2010.08.003
10.1016/j.matlet.2020.127574
10.3390/ma13122686
10.1016/j.msea.2019.04.064
10.1016/j.msea.2012.07.102
10.1016/j.jallcom.2014.02.140
10.1016/j.jmapro.2019.10.004
10.1016/j.matchar.2018.08.004
10.1016/j.jmps.2005.06.001
10.1016/j.scriptamat.2021.113860
10.1016/j.matdes.2019.108348
10.1007/s12613-017-1519-x
10.1016/j.matchar.2018.06.005
10.1016/j.matdes.2004.07.021
10.1080/10426910600611136
10.1007/BF01233153
10.1063/1.1721278
10.3390/met9030339
10.1016/j.matchar.2019.06.008
10.1016/j.msea.2010.11.092
10.3390/met9121323
10.1007/s10853-010-4494-4
10.1016/j.jallcom.2008.05.002
10.1007/s11771-018-3874-9
10.1016/j.matdes.2015.08.021
10.1016/j.msea.2009.12.007
10.1016/0025-5416(87)90300-4
10.1016/j.msea.2018.06.051
10.1007/s11665-020-05117-w
10.3390/ma13081930
10.1016/j.matdes.2008.06.016
10.1007/s11665-018-3315-9
10.1088/2053-1591/ab8095
10.1016/j.matdes.2007.07.012
10.1007/s10853-011-5841-9
10.1007/s00170-021-07999-z
10.1016/j.matdes.2016.08.088
10.1007/s11661-016-3729-7
10.1016/j.acme.2019.09.002
10.3390/met9020144
10.1016/j.mser.2005.07.001
10.1016/j.msea.2021.141995
10.3390/met10050634
10.1007/BF02814967
10.1590/1980-5373-mr-2016-0516
10.3390/met9070779
10.1016/S0924-0136(98)00286-6
10.1016/0924-0136(94)90373-5
10.1007/s00170-021-06800-5
10.1016/j.matdes.2019.107649
10.1016/j.msea.2018.03.042
10.1016/j.matdes.2021.109873
10.1016/j.ijimpeng.2009.07.008
10.1016/j.jmatprotec.2004.04.186
10.1016/S0261-3069(03)00066-9
10.4028/www.scientific.net/MSF.465-466.219
10.1007/s00170-021-08502-4
10.1115/PVP2019-93655
10.1016/j.tsep.2022.101240
10.1007/s11665-022-06693-9
10.1007/BF00750461
10.2351/1.5062231
10.4028/www.scientific.net/MSF.673.95
10.4028/www.scientific.net/AMR.445.729
10.1590/1980-5373-mr-2017-0619
ContentType Journal Article
Copyright International Institute of Welding 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: International Institute of Welding 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40194-023-01495-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-6669
EndPage 1425
ExternalDocumentID 10_1007_s40194_023_01495_6
GroupedDBID --K
-EM
06D
0R~
1B1
203
2LR
30V
4.4
406
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
IHE
IKXTQ
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M41
M4Y
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9J
P2P
PT4
RIG
ROL
RPZ
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XPP
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z85
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c249t-4d14cf028d75b2de94e7da75353956a6317db18e9ea971cd68ba4654be853b783
IEDL.DBID AGYKE
ISSN 0043-2288
IngestDate Sat Aug 23 01:10:54 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
Tue Jul 01 04:25:39 EDT 2025
Fri Feb 21 02:44:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Welding window
Dissimilar joining
Microstructure
Bilayer composite
Hot rolling
Explosive welding (EXW)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-4d14cf028d75b2de94e7da75353956a6317db18e9ea971cd68ba4654be853b783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8510-4981
PQID 2812062027
PQPubID 2043671
PageCount 15
ParticipantIDs proquest_journals_2812062027
crossref_primary_10_1007_s40194_023_01495_6
crossref_citationtrail_10_1007_s40194_023_01495_6
springer_journals_10_1007_s40194_023_01495_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle The International Journal of Materials Joining
PublicationTitle Welding in the world
PublicationTitleAbbrev Weld World
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Shi, Yu, Zhao, Hou, Ge (CR24) 2015; 22
Zhang, Jiao, Zhang, Liu (CR1) 2019; 756
Wachowski, Kosturek, Śnieżek, Mróz, Stefanik, Szota (CR78) 2020; 13
Zhang, Jiao, Zhang, Liu (CR2) 2018; 731
CR36
Athar, Tolaminejad (CR16) 2015; 86
CR77
Ben-Artzy, Stern, Frage, Shribman, Sadot (CR5) 2010; 37
Szulc, Pietrzyk, Dyja, Pilarczyk (CR43) 1994; 45
Wang, Li, Wang, Yan (CR35) 2018; 137
Gladkovsky, Kuteneva, Sergeev (CR37) 2019; 154
Livne, Munitz (CR40) 1987; 22
Borchers, Arlt, Nowak, Gärtner, Hammerschmidt, Kreye, Volkert, Kirchheim (CR68) 2021; 199
Dyja, Mróz, Stradomski (CR38) 2003; 42
Nan, Lu, Chen, Sun, Yu, Liu, Chen, Xiong, Gao, Li (CR79) 2020; 268
Cowan, Bergmann, Holtzman (CR52) 1971; 2
De Rosset (CR49) 2006; 21
Zhang, Jiao, Zhang, Liu (CR3) 2018; 154
Émurlaeva, Bataev, Zhou, Lazurenko, Ivanov, Riabinkina, Tanaka, Chen (CR46) 2019; 9
Pouraliakbar, Khalaj, Jandaghi, Fadaei, Ghareh-Shiran, Shiran, Shim, Hong (CR74) 2020; 188
Carvalho, Galvão, Mendes, Leal, Loureiro (CR59) 2018; 142
CR9
CR47
Liu, Huang, Geng, Wang, Liu, Zhang (CR7) 2014; 602
CR45
Shmorgun, Bogdanov, Arisova, Trykov (CR58) 2016; 30
Jaramillo, Szecket, Inal (CR20) 1987; 91
CR42
Asemabadi, Sedighi, Honarpisheh (CR26) 2012; 558
Sherpa, Kumar, Upadhyay, Kumar, Agarwal, Tyagi (CR61) 2021; 113
Shmorgun, Arisova, Slautin, Taube, Bakuntseva (CR72) 2017; 59
Shargh, Saadat, Najafi, Shiran, Khalaj (CR75) 2020; 7
Shiran, Khoshakhlagh, Khalaj, Bakhtiari, Banihashemi (CR41) 2018; 25
Mousavi, Sartangi (CR4) 2009; 30
Acarer, Gülenç, Findik (CR19) 2003; 24
Fu, Qiu, Li (CR62) 2018; 27
Atifeh, Rouzbeh, Hashemi, Sedighi (CR71) 2022; 118
Wang, Wang (CR6) 2019; 9
Hokamoto, Fujita, Shimokawa, Okugawa (CR14) 1999; 85
Durgutlu, Okuyucu, Gulenc (CR32) 2008; 29
Durgutlu, Gülenç, Findik (CR33) 2005; 26
Lysak, Kuzmin (CR50) 2012; 212
Zamani, Liaghat (CR48) 2012; 47
Song, Kostka, Veehmayer, Raabe (CR27) 2011; 528
Paul, Chulist, Lityńska-Dobrzyńska, Prażmowski, Faryna, Mania, Szulc, Miszczyk, Kurek (CR65) 2021; 208
Greenberg, Ivanov, Pushkin, Inozemtsev, Patselov, Tankeyev, Kuzmin, Lysak (CR67) 2016; 47
Fronczek, Saksl, Chulist, Michalik, Wojewoda-Budka, Sniezek, Wachowski, Torzewski, Sulikova, Sulova, Lachova (CR64) 2018; 144
Bazarnik, Adamczyk-Cieślak, Gałka, Płonka, Snieżek, Cantoni, Lewandowska (CR31) 2016; 111
Shiran, Khalaj, Pouraliakbar, Jandaghi, Bakhtiari, Shirazi (CR54) 2017; 24
CR57
CR10
CR53
Wu, Kondo, Yu, Okuno, Ando, Kurotaki, Tanaka, Hokamoto, Ochiai, Konishi, Kasada (CR69) 2021; 826
Wang, Beom, Sun, Lin (CR18) 2011; 38
Jandaghi, Saboori, Khalaj, Shiran (CR55) 2020; 10
Kwiecien, Bobrowski, Janusz-Skuza, Wierzbicka-Miernik, Tarasek, Szulc, Wojewoda-Budka (CR60) 2020; 29
Xie, Zhang, Zhang, Zhang, Bi, Li (CR23) 2015; 87
Bataev, Tanaka, Zhou, Lazurenko, Junior, Bataev, Hokamoto, Mori, Chen (CR66) 2019; 169
Chen, Wang, Cao, Yang, Wang (CR11) 2018; 723
Dyja, Mróz, Milenin (CR39) 2004; 153
Wu, Lu, Tan, Jiang, Sun (CR13) 2018; 36
Rajani, Mousavi (CR29) 2012; 556
Zhou, Xu, Shen, Ma (CR28) 2019; 47
Liu, Li, Hu, Yin, Liu (CR34) 2019; 9
Yan, Zhang, Shen, Wang, Zhang, Chin (CR25) 2010; 527
Mousavi, Al-Hassani (CR15) 2005; 53
CR22
Walsh, Shreffler, Willig (CR51) 1953; 24
Qin, Wang, Wu, Guo, Tao (CR30) 2017; 712
Chen, Li, Inao, Tanaka, Hokamoto (CR81) 2021; 116
Shiran, Bakhtiari, Mousavi, Khalaj, Mirhashemi (CR56) 2017; 20
Gurevich, Arisova, Trykov, Ponomareva, Trudov (CR73) 2016; 58
Hokamoto, Nakata, Mori, Tsuda, Tsumura, Inoue (CR17) 2009; 472
Yu, Xu, Li, Zhao, Dai, Ma, Yang (CR80) 2019; 19
Mishra, Ma (CR8) 2005; 50
Szachogluchowicz, Sniezek, Grzelak, Sulym, Turchyn, Pasternak (CR63) 2019; 9
Shiran, Khalaj, Pouraliakbar, Jandaghi, Dehnavi, Bakhtiari (CR76) 2018; 35
Karolczuk, Kluger, Derda, Prażmowski, Paul (CR44) 2020; 13
Wronka (CR21) 2010; 45
Zhang, Wang, Zhang, Wei, Cao, Yan, Zhou (CR12) 2018; 735
Yang, Ma, Shen, Huang, Tian, Tian (CR70) 2020; 186
WS De Rosset (1495_CR49) 2006; 21
X Wu (1495_CR69) 2021; 826
Z Chen (1495_CR11) 2018; 723
M Acarer (1495_CR19) 2003; 24
E Zamani (1495_CR48) 2012; 47
SM Atifeh (1495_CR71) 2022; 118
X Nan (1495_CR79) 2020; 268
Y Liu (1495_CR34) 2019; 9
1495_CR42
YB Yan (1495_CR25) 2010; 527
A Durgutlu (1495_CR32) 2008; 29
Z Livne (1495_CR40) 1987; 22
I Kwiecien (1495_CR60) 2020; 29
LM Gurevich (1495_CR73) 2016; 58
H Pouraliakbar (1495_CR74) 2020; 188
M Yang (1495_CR70) 2020; 186
SF Shargh (1495_CR75) 2020; 7
1495_CR45
JM Walsh (1495_CR51) 1953; 24
A Ben-Artzy (1495_CR5) 2010; 37
1495_CR47
M Wachowski (1495_CR78) 2020; 13
MRKG Shiran (1495_CR41) 2018; 25
I Szachogluchowicz (1495_CR63) 2019; 9
MRKG Shiran (1495_CR56) 2017; 20
BX Liu (1495_CR7) 2014; 602
W Szulc (1495_CR43) 1994; 45
K Hokamoto (1495_CR17) 2009; 472
B Wronka (1495_CR21) 2010; 45
H Dyja (1495_CR39) 2004; 153
VI Lysak (1495_CR50) 2012; 212
CG Shi (1495_CR24) 2015; 22
VG Shmorgun (1495_CR72) 2017; 59
P Bazarnik (1495_CR31) 2016; 111
Y Wang (1495_CR35) 2018; 137
1495_CR77
H Dyja (1495_CR38) 2003; 42
K Hokamoto (1495_CR14) 1999; 85
G Zhou (1495_CR28) 2019; 47
MR Jandaghi (1495_CR55) 2020; 10
A Karolczuk (1495_CR44) 2020; 13
D Jaramillo (1495_CR20) 1987; 91
VG Shmorgun (1495_CR58) 2016; 30
H Zhang (1495_CR3) 2018; 154
1495_CR36
SA Mousavi (1495_CR4) 2009; 30
MX Xie (1495_CR23) 2015; 87
X Chen (1495_CR81) 2021; 116
Y Yu (1495_CR80) 2019; 19
H Wang (1495_CR6) 2019; 9
L Qin (1495_CR30) 2017; 712
MKG Shiran (1495_CR76) 2018; 35
RS Mishra (1495_CR8) 2005; 50
1495_CR22
YY Émurlaeva (1495_CR46) 2019; 9
J Song (1495_CR27) 2011; 528
HZ Rajani (1495_CR29) 2012; 556
Y Wu (1495_CR13) 2018; 36
1495_CR9
BA Greenberg (1495_CR67) 2016; 47
IA Bataev (1495_CR66) 2019; 169
Y Wang (1495_CR18) 2011; 38
MRKG Shiran (1495_CR54) 2017; 24
SV Gladkovsky (1495_CR37) 2019; 154
1495_CR53
1495_CR10
M Asemabadi (1495_CR26) 2012; 558
T Zhang (1495_CR12) 2018; 735
GHSFL Carvalho (1495_CR59) 2018; 142
MH Athar (1495_CR16) 2015; 86
1495_CR57
C Borchers (1495_CR68) 2021; 199
H Zhang (1495_CR1) 2019; 756
AA Mousavi (1495_CR15) 2005; 53
H Paul (1495_CR65) 2021; 208
BB Sherpa (1495_CR61) 2021; 113
Y Fu (1495_CR62) 2018; 27
A Durgutlu (1495_CR33) 2005; 26
GR Cowan (1495_CR52) 1971; 2
DM Fronczek (1495_CR64) 2018; 144
H Zhang (1495_CR2) 2018; 731
References_xml – volume: 712
  start-page: 69
  year: 2017
  end-page: 75
  ident: CR30
  article-title: In-situ observation of crack initiation and propagation in Ti/Al composite laminates during tensile test
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2017.04.063
– ident: CR45
– volume: 212
  start-page: 150
  issue: 1
  year: 2012
  end-page: 156
  ident: CR50
  article-title: Lower boundary in metal explosive welding. Evolution of ideas
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2011.08.017
– ident: CR22
– volume: 556
  start-page: 454
  year: 2012
  end-page: 464
  ident: CR29
  article-title: The effect of explosive welding parameters on metallurgical and mechanical interfacial features of Inconel 625/plain carbon steel bimetal plate
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2012.07.012
– volume: 59
  start-page: 106
  issue: 1
  year: 2017
  end-page: 109
  ident: CR72
  article-title: Effect of heat treatment on the structure and properties of explosion welded bimetal Kh20N80+ AD1
  publication-title: Met Sci Heat Treat
  doi: 10.1007/s11041-017-0112-2
– volume: 35
  start-page: 657
  year: 2018
  end-page: 663
  ident: CR76
  article-title: Multilayer Cu/Al/Cu explosive welded joints: characterizing heat treatment effect on the interface microstructure and mechanical properties
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2018.09.014
– volume: 154
  start-page: 140
  year: 2018
  end-page: 152
  ident: CR3
  article-title: Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.05.027
– volume: 137
  start-page: 91
  year: 2018
  end-page: 96
  ident: CR35
  article-title: Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding
  publication-title: Fusion Eng Des
  doi: 10.1016/j.fusengdes.2018.08.017
– volume: 58
  start-page: 214
  issue: 3
  year: 2016
  end-page: 218
  ident: CR73
  article-title: Special features of structure formation in an explosion-welded magnesium-aluminum composite under deformation and subsequent heat treatment
  publication-title: Met Sci Heat Treat
  doi: 10.1007/s11041-016-9991-x
– volume: 36
  start-page: 417
  year: 2018
  end-page: 425
  ident: CR13
  article-title: Modified implementation strategy in explosive welding for joining between precipitate-hardened alloys
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2018.10.046
– volume: 22
  start-page: 949
  issue: 10
  year: 2015
  end-page: 953
  ident: CR24
  article-title: Detonation mechanism in double vertical explosive welding of stainless steel/steel
  publication-title: J Iron Steel Res Int
  doi: 10.1016/S1006-706X(15)30095-9
– volume: 735
  start-page: 1759
  year: 2018
  end-page: 1768
  ident: CR12
  article-title: Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2017.11.285
– volume: 188
  start-page: 104216
  year: 2020
  ident: CR74
  article-title: Three-layered SS321/AA1050/AA5083 explosive welds: effect of PWHT on the interface evolution and its mechanical strength
  publication-title: Int J Press Vessels Pip
  doi: 10.1016/j.ijpvp.2020.104216
– volume: 86
  start-page: 516
  year: 2015
  end-page: 525
  ident: CR16
  article-title: Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.07.114
– volume: 30
  start-page: 625
  issue: 8
  year: 2016
  end-page: 629
  ident: CR58
  article-title: Growth kinetics of the diffusion zone at the interface of the explosion-welded nickel–aluminium composite
  publication-title: Weld Int
  doi: 10.1080/09507116.2016.1140417
– ident: CR77
– volume: 38
  start-page: 51
  issue: 1
  year: 2011
  end-page: 60
  ident: CR18
  article-title: Numerical simulation of explosive welding using the material point method
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2010.08.003
– ident: CR42
– volume: 268
  start-page: 127574
  year: 2020
  ident: CR79
  article-title: Preparation of laminated structure in AZ31 magnesium alloy by explosive welding
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2020.127574
– volume: 13
  start-page: 2686
  issue: 12
  year: 2020
  ident: CR44
  article-title: Influence of impact velocity on the residual stress, tensile strength, and structural properties of an explosively welded composite plate
  publication-title: Materials
  doi: 10.3390/ma13122686
– volume: 756
  start-page: 430
  year: 2019
  end-page: 441
  ident: CR1
  article-title: Comparisons of the microstructures and micro-mechanical properties of copper/steel explosive-bonded wave interfaces
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2019.04.064
– volume: 558
  start-page: 144
  year: 2012
  end-page: 149
  ident: CR26
  article-title: Investigation of cold rolling influence on the mechanical properties of explosive-welded Al/Cu bimetal
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2012.07.102
– volume: 602
  start-page: 187
  year: 2014
  end-page: 192
  ident: CR7
  article-title: Fabrication and superior ductility of laminated Ti–TiBw/Ti composites by diffusion welding
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2014.02.140
– volume: 116
  start-page: 3779
  issue: 11
  year: 2021
  end-page: 3794
  ident: CR81
  article-title: Study of explosive welding of A6061/SUS821L1 using interlayers with different thicknesses and the air shockwave between plates
  publication-title: Int J Adv Manuf Technol
– volume: 47
  start-page: 244
  year: 2019
  end-page: 253
  ident: CR28
  article-title: Microstructure and mechanical properties of simultaneously explosively-welded Steel/Cu pipes and Al/Cu pipe/rod
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.10.004
– volume: 144
  start-page: 461
  year: 2018
  end-page: 468
  ident: CR64
  article-title: Residual stresses distribution, correlated with bending tests, within explosively welded Ti gr. 2/A1050 bimetals
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2018.08.004
– ident: CR9
– volume: 53
  start-page: 2501
  issue: 11
  year: 2005
  end-page: 2528
  ident: CR15
  article-title: Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2005.06.001
– ident: CR57
– volume: 199
  start-page: 113860
  year: 2021
  ident: CR68
  article-title: Influence of element distribution on mechanical properties in the bonding zone of explosively welded steels
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2021.113860
– volume: 186
  start-page: 108348
  year: 2020
  ident: CR70
  article-title: Dissimilar material welding of tantalum foil and Q235 steel plate using improved explosive welding technique
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.108348
– ident: CR36
– volume: 24
  start-page: 1267
  issue: 11
  year: 2017
  end-page: 1277
  ident: CR54
  article-title: Effects of heat treatment on the intermetallic compounds and mechanical properties of the stainless steel 321–aluminum 1230 explosive-welding interface
  publication-title: Int J Miner Metall Mater
  doi: 10.1007/s12613-017-1519-x
– volume: 142
  start-page: 432
  year: 2018
  end-page: 442
  ident: CR59
  article-title: Formation of intermetallic structures at the interface of steel-to-aluminium explosive welds
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2018.06.005
– volume: 26
  start-page: 497
  issue: 6
  year: 2005
  end-page: 507
  ident: CR33
  article-title: Examination of copper/stainless steel joints formed by explosive welding
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2004.07.021
– volume: 21
  start-page: 634
  issue: 6
  year: 2006
  end-page: 638
  ident: CR49
  article-title: Analysis of explosive bonding parameters
  publication-title: Mater Manuf Process
  doi: 10.1080/10426910600611136
– volume: 22
  start-page: 1495
  issue: 4
  year: 1987
  end-page: 1500
  ident: CR40
  article-title: Characterization of explosively bonded iron and copper plates
  publication-title: J Mater Sci
  doi: 10.1007/BF01233153
– volume: 24
  start-page: 349
  issue: 3
  year: 1953
  end-page: 359
  ident: CR51
  article-title: Limiting conditions for jet formation in high velocity collisions
  publication-title: J Appl Phys
  doi: 10.1063/1.1721278
– volume: 9
  start-page: 339
  issue: 3
  year: 2019
  ident: CR34
  article-title: Explosive welding of copper to high nitrogen austenitic stainless steel
  publication-title: Metals
  doi: 10.3390/met9030339
– volume: 154
  start-page: 294
  year: 2019
  end-page: 303
  ident: CR37
  article-title: Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2019.06.008
– volume: 528
  start-page: 2641
  issue: 6
  year: 2011
  end-page: 2647
  ident: CR27
  article-title: Hierarchical microstructure of explosive joints: example of titanium to steel cladding
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2010.11.092
– volume: 9
  start-page: 1323
  issue: 12
  year: 2019
  ident: CR46
  article-title: Welding window: comparison of Deribas’ and Wittman’s approaches and SPH simulation results
  publication-title: Metals
  doi: 10.3390/met9121323
– volume: 45
  start-page: 4078
  issue: 15
  year: 2010
  end-page: 4083
  ident: CR21
  article-title: Testing of explosive welding and welded joints: joint mechanism and properties of explosive welded joints
  publication-title: J Mater Sci
  doi: 10.1007/s10853-010-4494-4
– volume: 472
  start-page: 507
  issue: 1–2
  year: 2009
  end-page: 511
  ident: CR17
  article-title: Dissimilar material welding of rapidly solidified foil and stainless steel plate using underwater explosive welding technique
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2008.05.002
– volume: 25
  start-page: 1849
  issue: 8
  year: 2018
  end-page: 1861
  ident: CR41
  article-title: Effect of postweld heat treatment on interface microstructure and metallurgical properties of explosively welded bronze—carbon steel
  publication-title: J Central South Univ
  doi: 10.1007/s11771-018-3874-9
– volume: 87
  start-page: 181
  year: 2015
  end-page: 197
  ident: CR23
  article-title: Microstructure and mechanical properties of CP-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.08.021
– ident: CR47
– volume: 527
  start-page: 2241
  issue: 9
  year: 2010
  end-page: 2245
  ident: CR25
  article-title: Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2009.12.007
– volume: 91
  start-page: 217
  year: 1987
  end-page: 222
  ident: CR20
  article-title: On the transition from a waveless to a wavy interface in explosive welding
  publication-title: Mater Sci Eng
  doi: 10.1016/0025-5416(87)90300-4
– ident: CR53
– volume: 731
  start-page: 278
  year: 2018
  end-page: 287
  ident: CR2
  article-title: Microstructure and mechanical properties investigations of copper-steel composite fabricated by explosive welding
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2018.06.051
– volume: 29
  start-page: 6286
  issue: 10
  year: 2020
  end-page: 6294
  ident: CR60
  article-title: Interface characterization of Ni/Al bimetallic explosively welded plate manufactured with application of exceptionally high detonation speed
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-020-05117-w
– ident: CR10
– volume: 13
  start-page: 1930
  issue: 8
  year: 2020
  ident: CR78
  article-title: The effect of post-weld hot-rolling on the properties of explosively welded Mg/Al/Ti multilayer composite
  publication-title: Materials
  doi: 10.3390/ma13081930
– volume: 30
  start-page: 459
  issue: 3
  year: 2009
  end-page: 468
  ident: CR4
  article-title: Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2008.06.016
– volume: 27
  start-page: 2556
  issue: 5
  year: 2018
  end-page: 2565
  ident: CR62
  article-title: Experimental study and fractal analysis on the anisotropic performance of explosively welded interfaces of 304 stainless Steel/245 carbon steel
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-018-3315-9
– volume: 7
  start-page: 036529
  issue: 3
  year: 2020
  ident: CR75
  article-title: Investigating the effect of post weld heat treatment on corrosion properties of explosive bonded interface of AA5083/AA1050/SS 321 tubes
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/ab8095
– volume: 29
  start-page: 1480
  issue: 7
  year: 2008
  end-page: 1484
  ident: CR32
  article-title: Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2007.07.012
– volume: 47
  start-page: 685
  issue: 2
  year: 2012
  end-page: 695
  ident: CR48
  article-title: Explosive welding of stainless steel–carbon steel coaxial pipes
  publication-title: J Mater Sci
  doi: 10.1007/s10853-011-5841-9
– volume: 118
  start-page: 775
  issue: 3
  year: 2022
  end-page: 784
  ident: CR71
  article-title: Effect of annealing on formability and mechanical properties of AA1050/Mg-AZ31B bilayer sheets fabricated by explosive welding method
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-021-07999-z
– volume: 111
  start-page: 146
  year: 2016
  end-page: 157
  ident: CR31
  article-title: Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 laminates manufactured by explosive welding
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.08.088
– volume: 47
  start-page: 5461
  issue: 11
  year: 2016
  end-page: 5473
  ident: CR67
  article-title: Formation of intermetallic compounds during explosive welding
  publication-title: Metall and Mater Trans A
  doi: 10.1007/s11661-016-3729-7
– volume: 42
  start-page: 185
  issue: 3
  year: 2003
  end-page: 191
  ident: CR38
  article-title: Properties of joint in the bimetallic rods Cu-Al and Cu-steel after explosive cladding and the process of rolling
  publication-title: Metalurgija
– volume: 19
  start-page: 1390
  issue: 4
  year: 2019
  end-page: 1398
  ident: CR80
  article-title: Study on modalities and microdefects of Al-Cu bimetallic tube by underwater explosive cladding
  publication-title: Arch Civil Mech Eng
  doi: 10.1016/j.acme.2019.09.002
– volume: 9
  start-page: 144
  issue: 2
  year: 2019
  ident: CR6
  article-title: High-velocity impact welding process: a review
  publication-title: Metals
  doi: 10.3390/met9020144
– volume: 50
  start-page: 1
  issue: 1–2
  year: 2005
  end-page: 78
  ident: CR8
  article-title: Friction stir welding and processing
  publication-title: Mater Sci Eng R Rep
  doi: 10.1016/j.mser.2005.07.001
– volume: 826
  start-page: 141995
  year: 2021
  ident: CR69
  article-title: Bonding strength evaluation of explosive welding joint of tungsten to ferritic steel using ultra-small testing technologies
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2021.141995
– volume: 10
  start-page: 634
  issue: 5
  year: 2020
  ident: CR55
  article-title: Microstructural evolutions and its impact on the corrosion behaviour of explosively welded Al/Cu bimetal
  publication-title: Metals
  doi: 10.3390/met10050634
– volume: 2
  start-page: 3145
  issue: 11
  year: 1971
  end-page: 3155
  ident: CR52
  article-title: Mechanism of bond zone wave formation in explosion-clad metals
  publication-title: Metall Mater Trans B
  doi: 10.1007/BF02814967
– volume: 20
  start-page: 291
  year: 2017
  end-page: 302
  ident: CR56
  article-title: Effect of stand-off distance on the mechanical and metallurgical properties of explosively bonded 321 austenitic stainless steel-1230 aluminum alloy tubes
  publication-title: Mater Res
  doi: 10.1590/1980-5373-mr-2016-0516
– volume: 9
  start-page: 779
  issue: 7
  year: 2019
  ident: CR63
  article-title: The analytical model of stress zone formation of Ti6Al4V/AA1050/AA2519 laminate produced by explosive bonding
  publication-title: Metals
  doi: 10.3390/met9070779
– volume: 85
  start-page: 175
  issue: 1–3
  year: 1999
  end-page: 179
  ident: CR14
  article-title: A new method for explosive welding of Al/ZrO2 joint using regulated underwater shock wave
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(98)00286-6
– volume: 45
  start-page: 401
  issue: 1–4
  year: 1994
  end-page: 406
  ident: CR43
  article-title: Theoretical and experimental analysis of drawing of steel rods covered with copper
  publication-title: J Mater Process Technol
  doi: 10.1016/0924-0136(94)90373-5
– volume: 113
  start-page: 3303
  issue: 11
  year: 2021
  end-page: 3317
  ident: CR61
  article-title: Effect of explosive welding parameters on Al/LCS interface cladded by low velocity of detonation explosive welding (LVEW) process
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-021-06800-5
– volume: 169
  start-page: 107649
  year: 2019
  ident: CR66
  article-title: Towards better understanding of explosive welding by combination of numerical simulation and experimental study
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.107649
– volume: 723
  start-page: 97
  year: 2018
  end-page: 108
  ident: CR11
  article-title: Influence of multi-pass rolling and subsequent annealing on the interface microstructure and mechanical properties of the explosive welding Mg/Al composite plates
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2018.03.042
– volume: 208
  start-page: 109873
  year: 2021
  ident: CR65
  article-title: Interfacial reactions and microstructure related properties of explosively welded tantalum and steel sheets with copper interlayer
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2021.109873
– volume: 37
  start-page: 397
  issue: 4
  year: 2010
  end-page: 404
  ident: CR5
  article-title: Wave formation mechanism in magnetic pulse welding
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.07.008
– volume: 153
  start-page: 100
  year: 2004
  end-page: 107
  ident: CR39
  article-title: Theoretical and experimental analysis of the rolling process of bimetallic rods Cu-steel and Cu-Al
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.04.186
– volume: 24
  start-page: 659
  issue: 8
  year: 2003
  end-page: 664
  ident: CR19
  article-title: Investigation of explosive welding parameters and their effects on microhardness and shear strength
  publication-title: Mater Des
  doi: 10.1016/S0261-3069(03)00066-9
– volume: 87
  start-page: 181
  year: 2015
  ident: 1495_CR23
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.08.021
– volume: 37
  start-page: 397
  issue: 4
  year: 2010
  ident: 1495_CR5
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.07.008
– volume: 212
  start-page: 150
  issue: 1
  year: 2012
  ident: 1495_CR50
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2011.08.017
– volume: 528
  start-page: 2641
  issue: 6
  year: 2011
  ident: 1495_CR27
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2010.11.092
– volume: 25
  start-page: 1849
  issue: 8
  year: 2018
  ident: 1495_CR41
  publication-title: J Central South Univ
  doi: 10.1007/s11771-018-3874-9
– volume: 86
  start-page: 516
  year: 2015
  ident: 1495_CR16
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.07.114
– volume: 47
  start-page: 244
  year: 2019
  ident: 1495_CR28
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.10.004
– volume: 22
  start-page: 949
  issue: 10
  year: 2015
  ident: 1495_CR24
  publication-title: J Iron Steel Res Int
  doi: 10.1016/S1006-706X(15)30095-9
– volume: 199
  start-page: 113860
  year: 2021
  ident: 1495_CR68
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2021.113860
– volume: 154
  start-page: 294
  year: 2019
  ident: 1495_CR37
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2019.06.008
– volume: 723
  start-page: 97
  year: 2018
  ident: 1495_CR11
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2018.03.042
– volume: 35
  start-page: 657
  year: 2018
  ident: 1495_CR76
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2018.09.014
– volume: 91
  start-page: 217
  year: 1987
  ident: 1495_CR20
  publication-title: Mater Sci Eng
  doi: 10.1016/0025-5416(87)90300-4
– volume: 9
  start-page: 1323
  issue: 12
  year: 2019
  ident: 1495_CR46
  publication-title: Metals
  doi: 10.3390/met9121323
– ident: 1495_CR53
  doi: 10.4028/www.scientific.net/MSF.465-466.219
– volume: 2
  start-page: 3145
  issue: 11
  year: 1971
  ident: 1495_CR52
  publication-title: Metall Mater Trans B
  doi: 10.1007/BF02814967
– volume: 116
  start-page: 3779
  issue: 11
  year: 2021
  ident: 1495_CR81
  publication-title: Int J Adv Manuf Technol
– volume: 50
  start-page: 1
  issue: 1–2
  year: 2005
  ident: 1495_CR8
  publication-title: Mater Sci Eng R Rep
  doi: 10.1016/j.mser.2005.07.001
– ident: 1495_CR77
  doi: 10.1007/s00170-021-08502-4
– volume: 59
  start-page: 106
  issue: 1
  year: 2017
  ident: 1495_CR72
  publication-title: Met Sci Heat Treat
  doi: 10.1007/s11041-017-0112-2
– ident: 1495_CR10
  doi: 10.1115/PVP2019-93655
– volume: 472
  start-page: 507
  issue: 1–2
  year: 2009
  ident: 1495_CR17
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2008.05.002
– volume: 47
  start-page: 685
  issue: 2
  year: 2012
  ident: 1495_CR48
  publication-title: J Mater Sci
  doi: 10.1007/s10853-011-5841-9
– volume: 24
  start-page: 1267
  issue: 11
  year: 2017
  ident: 1495_CR54
  publication-title: Int J Miner Metall Mater
  doi: 10.1007/s12613-017-1519-x
– volume: 22
  start-page: 1495
  issue: 4
  year: 1987
  ident: 1495_CR40
  publication-title: J Mater Sci
  doi: 10.1007/BF01233153
– volume: 137
  start-page: 91
  year: 2018
  ident: 1495_CR35
  publication-title: Fusion Eng Des
  doi: 10.1016/j.fusengdes.2018.08.017
– volume: 10
  start-page: 634
  issue: 5
  year: 2020
  ident: 1495_CR55
  publication-title: Metals
  doi: 10.3390/met10050634
– ident: 1495_CR45
  doi: 10.1016/j.tsep.2022.101240
– ident: 1495_CR57
  doi: 10.1007/s11665-022-06693-9
– volume: 118
  start-page: 775
  issue: 3
  year: 2022
  ident: 1495_CR71
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-021-07999-z
– volume: 19
  start-page: 1390
  issue: 4
  year: 2019
  ident: 1495_CR80
  publication-title: Arch Civil Mech Eng
  doi: 10.1016/j.acme.2019.09.002
– volume: 9
  start-page: 144
  issue: 2
  year: 2019
  ident: 1495_CR6
  publication-title: Metals
  doi: 10.3390/met9020144
– volume: 85
  start-page: 175
  issue: 1–3
  year: 1999
  ident: 1495_CR14
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(98)00286-6
– volume: 268
  start-page: 127574
  year: 2020
  ident: 1495_CR79
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2020.127574
– volume: 731
  start-page: 278
  year: 2018
  ident: 1495_CR2
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2018.06.051
– ident: 1495_CR47
  doi: 10.1007/BF00750461
– volume: 38
  start-page: 51
  issue: 1
  year: 2011
  ident: 1495_CR18
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2010.08.003
– volume: 13
  start-page: 1930
  issue: 8
  year: 2020
  ident: 1495_CR78
  publication-title: Materials
  doi: 10.3390/ma13081930
– volume: 9
  start-page: 779
  issue: 7
  year: 2019
  ident: 1495_CR63
  publication-title: Metals
  doi: 10.3390/met9070779
– volume: 169
  start-page: 107649
  year: 2019
  ident: 1495_CR66
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.107649
– volume: 29
  start-page: 1480
  issue: 7
  year: 2008
  ident: 1495_CR32
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2007.07.012
– volume: 113
  start-page: 3303
  issue: 11
  year: 2021
  ident: 1495_CR61
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-021-06800-5
– volume: 208
  start-page: 109873
  year: 2021
  ident: 1495_CR65
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2021.109873
– volume: 13
  start-page: 2686
  issue: 12
  year: 2020
  ident: 1495_CR44
  publication-title: Materials
  doi: 10.3390/ma13122686
– volume: 20
  start-page: 291
  year: 2017
  ident: 1495_CR56
  publication-title: Mater Res
  doi: 10.1590/1980-5373-mr-2016-0516
– ident: 1495_CR9
  doi: 10.2351/1.5062231
– volume: 21
  start-page: 634
  issue: 6
  year: 2006
  ident: 1495_CR49
  publication-title: Mater Manuf Process
  doi: 10.1080/10426910600611136
– volume: 556
  start-page: 454
  year: 2012
  ident: 1495_CR29
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2012.07.012
– volume: 30
  start-page: 459
  issue: 3
  year: 2009
  ident: 1495_CR4
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2008.06.016
– ident: 1495_CR22
  doi: 10.4028/www.scientific.net/MSF.673.95
– volume: 29
  start-page: 6286
  issue: 10
  year: 2020
  ident: 1495_CR60
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-020-05117-w
– volume: 756
  start-page: 430
  year: 2019
  ident: 1495_CR1
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2019.04.064
– volume: 53
  start-page: 2501
  issue: 11
  year: 2005
  ident: 1495_CR15
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2005.06.001
– volume: 47
  start-page: 5461
  issue: 11
  year: 2016
  ident: 1495_CR67
  publication-title: Metall and Mater Trans A
  doi: 10.1007/s11661-016-3729-7
– volume: 712
  start-page: 69
  year: 2017
  ident: 1495_CR30
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2017.04.063
– volume: 30
  start-page: 625
  issue: 8
  year: 2016
  ident: 1495_CR58
  publication-title: Weld Int
  doi: 10.1080/09507116.2016.1140417
– volume: 27
  start-page: 2556
  issue: 5
  year: 2018
  ident: 1495_CR62
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-018-3315-9
– ident: 1495_CR36
  doi: 10.4028/www.scientific.net/AMR.445.729
– volume: 36
  start-page: 417
  year: 2018
  ident: 1495_CR13
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2018.10.046
– volume: 24
  start-page: 659
  issue: 8
  year: 2003
  ident: 1495_CR19
  publication-title: Mater Des
  doi: 10.1016/S0261-3069(03)00066-9
– volume: 9
  start-page: 339
  issue: 3
  year: 2019
  ident: 1495_CR34
  publication-title: Metals
  doi: 10.3390/met9030339
– volume: 186
  start-page: 108348
  year: 2020
  ident: 1495_CR70
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.108348
– volume: 111
  start-page: 146
  year: 2016
  ident: 1495_CR31
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.08.088
– volume: 558
  start-page: 144
  year: 2012
  ident: 1495_CR26
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2012.07.102
– volume: 142
  start-page: 432
  year: 2018
  ident: 1495_CR59
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2018.06.005
– volume: 26
  start-page: 497
  issue: 6
  year: 2005
  ident: 1495_CR33
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2004.07.021
– volume: 188
  start-page: 104216
  year: 2020
  ident: 1495_CR74
  publication-title: Int J Press Vessels Pip
  doi: 10.1016/j.ijpvp.2020.104216
– volume: 45
  start-page: 4078
  issue: 15
  year: 2010
  ident: 1495_CR21
  publication-title: J Mater Sci
  doi: 10.1007/s10853-010-4494-4
– volume: 58
  start-page: 214
  issue: 3
  year: 2016
  ident: 1495_CR73
  publication-title: Met Sci Heat Treat
  doi: 10.1007/s11041-016-9991-x
– volume: 7
  start-page: 036529
  issue: 3
  year: 2020
  ident: 1495_CR75
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/ab8095
– volume: 24
  start-page: 349
  issue: 3
  year: 1953
  ident: 1495_CR51
  publication-title: J Appl Phys
  doi: 10.1063/1.1721278
– volume: 826
  start-page: 141995
  year: 2021
  ident: 1495_CR69
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2021.141995
– volume: 527
  start-page: 2241
  issue: 9
  year: 2010
  ident: 1495_CR25
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2009.12.007
– volume: 42
  start-page: 185
  issue: 3
  year: 2003
  ident: 1495_CR38
  publication-title: Metalurgija
– volume: 144
  start-page: 461
  year: 2018
  ident: 1495_CR64
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2018.08.004
– volume: 602
  start-page: 187
  year: 2014
  ident: 1495_CR7
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2014.02.140
– volume: 735
  start-page: 1759
  year: 2018
  ident: 1495_CR12
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2017.11.285
– volume: 45
  start-page: 401
  issue: 1–4
  year: 1994
  ident: 1495_CR43
  publication-title: J Mater Process Technol
  doi: 10.1016/0924-0136(94)90373-5
– volume: 154
  start-page: 140
  year: 2018
  ident: 1495_CR3
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.05.027
– volume: 153
  start-page: 100
  year: 2004
  ident: 1495_CR39
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.04.186
– ident: 1495_CR42
  doi: 10.1590/1980-5373-mr-2017-0619
SSID ssj0009000
Score 2.4462335
Snippet In this study, the microstructure evolution and mechanical properties of the explosive welded (EXWed) steel–bronze bilayer composite sheets before and after...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1411
SubjectTerms Bilayers
Bronzes
Chemistry and Materials Science
Cold rolling
Diffusion barriers
Hardness
Hot rolling
Interfaces
Materials Science
Mechanical properties
Metal sheets
Metallic Materials
Microstructure
Process parameters
Research Paper
Solid Mechanics
Steel
Theoretical and Applied Mechanics
Thickness
Welding
Title Exploring the impact of rolling temperature on interface microstructure and mechanical properties of steel–bronze explosive welded bilayer composite sheets
URI https://link.springer.com/article/10.1007/s40194-023-01495-6
https://www.proquest.com/docview/2812062027
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BeoEDb9RAqebADVwlXq_Xe2xRQwWiJyKV08qPiUCkmyoJQuqJ_8CZP8cvYWYfCVSA1LO93l177PnG_uYzwPMspCiOXvmZjsoQGeWLolRWj5xnd2aNk3znd6f2ZGrenOVnXVLYqme790eSzUq9SXbjSEBkbLXwfxjWK3sTdhh_jMwAdg5ff3h7vBXbHfWpJ5nS2rkuWebvrfzpkLYo88rBaONvJndh2n9pSzP5fPBlHQ7i5RURx-v-yj240wFQPGwt5j7coPoB3P5NlvAh_NgQ85DhIbaJlLiY4bJV8EbRs-rEmHFRo0hOLGc-Ep4Lva-VpJUyXyc8J8ktFlPAC9n4X4qCqzTG5kXzn9--h-WiviQkeadw6fErzRMlDJ_mnuMBFNK7MMsIVx-J1qtHMJ0cv391orprHFTk2G6tTBqbOGMck4o86ESloSJ5DpPyjIMzbxnBpDB2VJIvi3FM1gUvKm-BGEqEwmWPYVAvatoF5AWEbaogn_nc6GQ5eHTam-hiKkqifAjjfiyr2Gmcy1Ub82qjztx0fcVdXzVdX9khvNg8c9EqfPy39l5vIlU321eVZpQ0srKNNISX_Yhvi__d2pPrVX8Kt3RjNLIJtAcDHk56xphoHfZ5CkyOjk73u6nwC23RBx0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gAcoDwqlr584Aaudh3HcY4Vart9nrpSOUV-zArUbbba3apST_wHzvw5fkln8tiFCpB6jRMnsceeb-xvPgN8SHwM7OilG6ogNaKWLstyaVTXOnJnRlvOdz49M_2BPrpIL5qksGnLdm-3JKuZep7sRpEAy9gq5v8QrJfmCaxoukR2vbJ78OV4byG2221TTxKplLVNsszfa_nTIS1Q5oON0crf7L-EQfulNc3kcudm5nfC3QMRx8f-yiq8aACo2K0t5hUsYfkanv8mS_gGfs6JeYLgoagTKcV4KCa1grdgPatGjFmMS8GSE5OhCyiumN5XS9JymSujuELOLWZTENe88D9hBVeujMwLR7--__CTcXmHAvmdzKUXtziKGIX_NnIUDwgmvTOzDMX0K-Js-hYG-3vnn_uyOcZBBortZlLHng5DwjExS72KmGvMoqMwKU0oOHOGEEz0PYs5ujzrhWisd6zy5pGghM9ssgbL5bjEdyBoAiGbytAlLtUqGgoerXI62BCzHDHtQK_tyyI0Gud81MaomKszV01fUNMXVdMXpgMf589c1wof_717ozWRohnt00IRSuoaXkbqwKe2xxfF_67t_eNu34an_fPTk-Lk8Ox4HZ6pyoB4QWgDlqlrcZPw0cxvNcPhHq80CJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CqYTogjfqQAEv2IHbGcdxnGUFHQqFigWVyiry40YgppnRTBBSV_wDa36OL-HePGZKBUiIdRwnsW_sc-1zjgEeJz4GnuilK1WQGlFLl2W5NGpkHU1nRlvWO785MgfH-tVJenJOxd-w3fstyVbTwC5NVb07j-XuSvhGWQFb2irmAhHEl-YybGj2thvAxt6L94f7a-PdUS9DSaRS1nbCmd_X8uvktEacFzZJm7lnch1c_9Yt5eTTzufa74SzC4aO__NZN-BaB0zFXhtJN-ESVrdg85xd4W34viLsCYKNohVYilkpFq2zt2Cfq86kWcwqwVYUi9IFFKdM-2utavmaq6I4RdYcc4iIOW8ILNjZlSujsMPpj6_f_GJWnaFAfiZz7MUXnEaMwn-cOsoTBJPhmXGGYvkBsV7egePJ_rtnB7I73kEGyvlqqeNYh5LwTcxSryLmGrPoKH1KE0ranCFkE_3YYo4uz8YhGusdu795JIjhM5vchUE1q3ALBA0sFGsZusSlWkVDSaVVTgcbYpYjpkMY9_1ahM77nI_gmBYr1-am6Qtq-qJp-sIM4cnqnnnr_PHX0tt9uBTdKLAsFKGnkeHlpSE87Xt_ffnPtd37t-KP4Mrb55Pi9cujw_twVTXxw-tE2zCgnsUHBJtq_7D7M34CuWARdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+impact+of+rolling+temperature+on+interface+microstructure+and+mechanical+properties+of+steel%E2%80%93bronze+explosive+welded+bilayer+composite+sheets&rft.jtitle=Welding+in+the+world&rft.au=Khalaj%2C+Gholamreza&rft.au=Moradi%2C+Moein&rft.au=Asadian%2C+Ebrahim&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0043-2288&rft.eissn=1878-6669&rft.volume=67&rft.issue=6&rft.spage=1411&rft.epage=1425&rft_id=info:doi/10.1007%2Fs40194-023-01495-6&rft.externalDocID=10_1007_s40194_023_01495_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-2288&client=summon