Approximation algorithm of maximizing non-submodular functions under non-submodular constraint

Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical appl...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 361; pp. 48 - 68
Main Authors Lai, Xiaoyan, Shi, Yishuo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 30.01.2025
Subjects
Online AccessGet full text
ISSN0166-218X
DOI10.1016/j.dam.2024.09.022

Cover

Loading…
Abstract Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical applications of the situations, such as Epidemic transmission, and Sensor Placement and Feature Selection problem. In this paper, we study the maximization of the non-submodular objective functions under the non-submodular constraint. Based on the non-submodular constraint, we discuss the maximization of the objective functions with some specific properties, which includes the property of negative, and then, we obtain the corresponding approximate ratios by the greedy algorithm. What is more, these approximate ratios could be improved when the constraint becomes tight.
AbstractList Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical applications of the situations, such as Epidemic transmission, and Sensor Placement and Feature Selection problem. In this paper, we study the maximization of the non-submodular objective functions under the non-submodular constraint. Based on the non-submodular constraint, we discuss the maximization of the objective functions with some specific properties, which includes the property of negative, and then, we obtain the corresponding approximate ratios by the greedy algorithm. What is more, these approximate ratios could be improved when the constraint becomes tight.
Author Shi, Yishuo
Lai, Xiaoyan
Author_xml – sequence: 1
  givenname: Xiaoyan
  surname: Lai
  fullname: Lai, Xiaoyan
  email: 1972906484@qq.com
– sequence: 2
  givenname: Yishuo
  orcidid: 0000-0002-5604-688X
  surname: Shi
  fullname: Shi, Yishuo
  email: yishuo@wzu.edu.cn
BookMark eNp9UMtOwzAQ9KFItIUP4JYfSFg7cRKLU1XxkipxAYkTluNHcZTYlZ0g4OtxVU4cOK1mZmcfs0IL551G6ApDgQHX132hxFgQIFUBrABCFmiZ-DonuH09R6sYewDACS3R2-ZwCP7TjmKy3mVi2Ptgp_cx8yYbReLtt3X7LG3I49yNXs2DCJmZnTz2x2x2Soe_skzKFIR10wU6M2KI-vK3rtHL3e3z9iHfPd0_bje7XJKKTXlVUoFZ1yoKTKmyFtAoTUCbpmYYMyVKoMbIBAC3tepoRWgnJC0b3FS0Kss1wqe5MvgYgzb8ENJP4Ytj4MdQeM9TKPwYCgfGUyjJc3Py6HTYh9WBR2m1k1rZoOXElbf_uH8A0MVwRQ
Cites_doi 10.1287/ijoc.2015.0660
10.1287/moor.2016.0842
10.1007/s10878-020-00558-4
10.1007/s10957-022-02145-5
10.1145/502090.502098
10.1016/j.stamet.2006.11.004
10.1145/1367497.1367524
10.1609/aaai.v32i1.11520
10.1002/jmv.27506
10.21437/Interspeech.2011-312
10.1016/j.tcs.2024.114409
10.1007/s10878-022-00978-4
10.1016/j.tcs.2020.12.002
10.1145/956750.956769
10.1017/CBO9781139177801.004
10.1007/s10107-018-1324-y
10.1016/S0167-6377(03)00062-2
10.1016/S0020-0190(99)00031-9
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.dam.2024.09.022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 68
ExternalDocumentID 10_1016_j_dam_2024_09_022
S0166218X24004128
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c249t-435a19b8d509dd36a07de20ef769119da305ffc6910186db5425bac5371745433
IEDL.DBID .~1
ISSN 0166-218X
IngestDate Tue Jul 01 01:43:17 EDT 2025
Sat Feb 15 15:52:16 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Non-submodular constraint
Greedy algorithm
Non-submodular
Non-monotone
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-435a19b8d509dd36a07de20ef769119da305ffc6910186db5425bac5371745433
ORCID 0000-0002-5604-688X
PageCount 21
ParticipantIDs crossref_primary_10_1016_j_dam_2024_09_022
elsevier_sciencedirect_doi_10_1016_j_dam_2024_09_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-30
PublicationDateYYYYMMDD 2025-01-30
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-30
  day: 30
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Xu, Du, Ma (b32) 2021
J. Hartline, V. Mirrokni, M. Sundararajan, Optimal marketing strategies over social networks, in: Proceedings of the 17th International Conference on World Wide Web, 2008, pp. 189–198.
Rousson, Goşoniu (b21) 2007; 4
Shi, Lai (b24) 2024; 990
Khuller, Moss, Naor (b13) 1999; 70
Shi, Yang, Wang (b25) 2023; 196
Håstad (b6) 2001; 48
Krause, Guestrin (b15) 2005
A. Kuhnle, J.D. Smith, V. Crawford, M. Thai, Fast maximization of non-submodular, monotonic functions on the integer lattice, in: International Conference on Machine Learning, 2018, pp. 2786–2795.
Sviridenko, Vondrák, Ward (b30) 2017; 42
Khanna, Elenberg, Dimakis, Negahban, Ghosh (b12) 2017
D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 137–146.
Teng, Shi, Yang, Lee, Philip, Lu, Chen (b31) 2022
C. Harshaw, M. Feldman, J. Ward, A. Karbasi, Submodular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and Applications, in: International Conference on Machine Learning, 2019, pp. 2634–2643.
Sviridenko (b29) 2004; 32
Jegelka, Bilmes (b8) 2011
E. Balkanski, Y. Singer, Approximation guarantees for adaptive sampling, in: International Conference on Machine Learning, 2018, pp. 384–393.
Summers, Kamgarpour (b28) 2019
Iyer, Bilmes (b7) 2013; 26
Paul, Ruodu (b20) 2015; 3
Santiago, Yoshida (b23) 2020
E. Kazemi, S. Minaee, M. Feldman, A. Karbasi, Regularized submodular maximization at scale, in: International Conference on Machine Learning, 2021, pp. 5356–5366.
Krause, Golovin (b14) 2014; 3
Nong, Fang, Gong (b19) 2020; 39
Shioura, Shakhlevich, Strusevich (b26) 2016; 28
Soma, Yoshida (b27) 2018; 172
Krause, Singh, Guestrin (b16) 2008; 9
H. Lin, J. Bilmes, Optimal selection of limited vocabulary speech corpora, in: Twelfth Annual Conference of the International Speech Communication Association, 2011, pp. 1489–1492.
Khan, Arshad, Azam, Al-marshadi (b11) 2021; 94
S. Sakaue, M. Nishino, N. Yasuda, Submodular function maximization over graphs via zero-suppressed binary decision diagrams, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018, pp. 1422–1430.
Bian, Levy, Krause, Buhmann (b2) 2018; 1
Cui, Du, Xu, Yang (b3) 2023; 45
Paul (10.1016/j.dam.2024.09.022_b20) 2015; 3
Krause (10.1016/j.dam.2024.09.022_b14) 2014; 3
Shi (10.1016/j.dam.2024.09.022_b24) 2024; 990
Sviridenko (10.1016/j.dam.2024.09.022_b30) 2017; 42
Sviridenko (10.1016/j.dam.2024.09.022_b29) 2004; 32
Iyer (10.1016/j.dam.2024.09.022_b7) 2013; 26
Khanna (10.1016/j.dam.2024.09.022_b12) 2017
Håstad (10.1016/j.dam.2024.09.022_b6) 2001; 48
Shioura (10.1016/j.dam.2024.09.022_b26) 2016; 28
10.1016/j.dam.2024.09.022_b10
Shi (10.1016/j.dam.2024.09.022_b25) 2023; 196
Wang (10.1016/j.dam.2024.09.022_b32) 2021
Khan (10.1016/j.dam.2024.09.022_b11) 2021; 94
Krause (10.1016/j.dam.2024.09.022_b16) 2008; 9
10.1016/j.dam.2024.09.022_b18
10.1016/j.dam.2024.09.022_b17
Soma (10.1016/j.dam.2024.09.022_b27) 2018; 172
Krause (10.1016/j.dam.2024.09.022_b15) 2005
Santiago (10.1016/j.dam.2024.09.022_b23) 2020
Summers (10.1016/j.dam.2024.09.022_b28) 2019
10.1016/j.dam.2024.09.022_b9
Teng (10.1016/j.dam.2024.09.022_b31) 2022
Rousson (10.1016/j.dam.2024.09.022_b21) 2007; 4
Khuller (10.1016/j.dam.2024.09.022_b13) 1999; 70
Jegelka (10.1016/j.dam.2024.09.022_b8) 2011
10.1016/j.dam.2024.09.022_b1
Nong (10.1016/j.dam.2024.09.022_b19) 2020; 39
10.1016/j.dam.2024.09.022_b22
Bian (10.1016/j.dam.2024.09.022_b2) 2018; 1
Cui (10.1016/j.dam.2024.09.022_b3) 2023; 45
10.1016/j.dam.2024.09.022_b4
10.1016/j.dam.2024.09.022_b5
References_xml – reference: A. Kuhnle, J.D. Smith, V. Crawford, M. Thai, Fast maximization of non-submodular, monotonic functions on the integer lattice, in: International Conference on Machine Learning, 2018, pp. 2786–2795.
– reference: D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 137–146.
– reference: J. Hartline, V. Mirrokni, M. Sundararajan, Optimal marketing strategies over social networks, in: Proceedings of the 17th International Conference on World Wide Web, 2008, pp. 189–198.
– reference: E. Kazemi, S. Minaee, M. Feldman, A. Karbasi, Regularized submodular maximization at scale, in: International Conference on Machine Learning, 2021, pp. 5356–5366.
– reference: E. Balkanski, Y. Singer, Approximation guarantees for adaptive sampling, in: International Conference on Machine Learning, 2018, pp. 384–393.
– start-page: 1560
  year: 2017
  end-page: 1568
  ident: b12
  article-title: Scalable greedy feature selection via weak submodularity
  publication-title: Artificial Intelligence and Statistics
– start-page: 1897
  year: 2011
  end-page: 1904
  ident: b8
  article-title: Submodularity beyond submodular energies: coupling edges in graph cuts
  publication-title: CVPR 2011
– volume: 1
  start-page: 487
  year: 2018
  end-page: 497
  ident: b2
  article-title: Non-monotone continuous DR-submodular maximization: Structure and algorithms
  publication-title: Adv. Neural Inf. Process. Syst. 30
– volume: 39
  start-page: 1208
  year: 2020
  end-page: 1220
  ident: b19
  article-title: A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice
  publication-title: J. Comb. Optim.
– volume: 3
  start-page: 71
  year: 2014
  end-page: 104
  ident: b14
  article-title: Submodular function maximization
  publication-title: Tractability
– volume: 28
  start-page: 148
  year: 2016
  end-page: 161
  ident: b26
  article-title: Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines
  publication-title: INFORMS J. Comput.
– reference: S. Sakaue, M. Nishino, N. Yasuda, Submodular function maximization over graphs via zero-suppressed binary decision diagrams, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018, pp. 1422–1430.
– reference: C. Harshaw, M. Feldman, J. Ward, A. Karbasi, Submodular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and Applications, in: International Conference on Machine Learning, 2019, pp. 2634–2643.
– volume: 32
  start-page: 41
  year: 2004
  end-page: 43
  ident: b29
  article-title: A note on maximizing a submodular set function subject to a knapsack constraint
  publication-title: Oper. Res. Lett.
– volume: 45
  start-page: 54
  year: 2023
  ident: b3
  article-title: Two approximation algorithms for maximizing nonnegative weakly monotonic set functions
  publication-title: J. Comb. Optim.
– volume: 26
  year: 2013
  ident: b7
  article-title: Submodular optimization with submodular cover and submodular knapsack constraints
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 70
  start-page: 39
  year: 1999
  end-page: 45
  ident: b13
  article-title: The budgeted maximum coverage problem
  publication-title: Inform. Process. Lett.
– volume: 3
  start-page: 126
  year: 2015
  end-page: 140
  ident: b20
  article-title: Seven proofs for the subadditivity of expected shortfall
  publication-title: Depend. Model.
– volume: 4
  start-page: 331
  year: 2007
  end-page: 340
  ident: b21
  article-title: An R-square coefficient based on final prediction error
  publication-title: Stat. Methodol.
– start-page: 2796
  year: 2019
  end-page: 2801
  ident: b28
  article-title: Performance guarantees for greedy maximization of non-submodular controllability metrics
  publication-title: 2019 18th European Control Conference
– volume: 9
  year: 2008
  ident: b16
  article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
  publication-title: J. Mach. Learn. Res.
– start-page: 2845
  year: 2022
  end-page: 2858
  ident: b31
  article-title: Epidemic spread optimization for disease containment with npis and vaccination
  publication-title: 2022 IEEE 38th International Conference on Data Engineering
– volume: 172
  start-page: 539
  year: 2018
  end-page: 563
  ident: b27
  article-title: Maximizing monotone submodular functions over the integer lattice
  publication-title: Math. Program.
– start-page: 68
  year: 2021
  end-page: 76
  ident: b32
  article-title: Bicriteria algorithms to balance coverage and cost in team formation under online model
  publication-title: Theoret. Comput. Sci.
– volume: 42
  start-page: 1197
  year: 2017
  end-page: 1218
  ident: b30
  article-title: Optimal approximation for submodular and supermodular optimization with bounded curvature
  publication-title: Math. Oper. Res.
– year: 2005
  ident: b15
  article-title: A note on the budgeted maximization of submodular functions
  publication-title: Mathematics
– year: 2020
  ident: b23
  article-title: Weakly submodular function maximization using local submodularity ratio
  publication-title: Comput. Sci.
– reference: H. Lin, J. Bilmes, Optimal selection of limited vocabulary speech corpora, in: Twelfth Annual Conference of the International Speech Communication Association, 2011, pp. 1489–1492.
– volume: 196
  start-page: 516
  year: 2023
  end-page: 543
  ident: b25
  article-title: Greedy guarantees for non-submodular function maximization under independent system constraint with applications
  publication-title: J. Optim. Theory Appl.
– volume: 94
  start-page: 1592
  year: 2021
  end-page: 1605
  ident: b11
  article-title: Modeling and forecasting the total number of cases and deaths due to pandemic
  publication-title: Med. Virol.
– volume: 990
  year: 2024
  ident: b24
  article-title: Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint
  publication-title: Theoret. Comput. Sci.
– volume: 48
  start-page: 798
  year: 2001
  end-page: 859
  ident: b6
  article-title: Some optimal inapproximability results
  publication-title: J. ACM
– volume: 26
  year: 2013
  ident: 10.1016/j.dam.2024.09.022_b7
  article-title: Submodular optimization with submodular cover and submodular knapsack constraints
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  start-page: 148
  year: 2016
  ident: 10.1016/j.dam.2024.09.022_b26
  article-title: Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2015.0660
– volume: 42
  start-page: 1197
  issue: 4
  year: 2017
  ident: 10.1016/j.dam.2024.09.022_b30
  article-title: Optimal approximation for submodular and supermodular optimization with bounded curvature
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0842
– volume: 39
  start-page: 1208
  year: 2020
  ident: 10.1016/j.dam.2024.09.022_b19
  article-title: A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-020-00558-4
– start-page: 1560
  year: 2017
  ident: 10.1016/j.dam.2024.09.022_b12
  article-title: Scalable greedy feature selection via weak submodularity
– year: 2020
  ident: 10.1016/j.dam.2024.09.022_b23
  article-title: Weakly submodular function maximization using local submodularity ratio
  publication-title: Comput. Sci.
– volume: 196
  start-page: 516
  year: 2023
  ident: 10.1016/j.dam.2024.09.022_b25
  article-title: Greedy guarantees for non-submodular function maximization under independent system constraint with applications
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-022-02145-5
– volume: 9
  issue: 2
  year: 2008
  ident: 10.1016/j.dam.2024.09.022_b16
  article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
  publication-title: J. Mach. Learn. Res.
– start-page: 2845
  year: 2022
  ident: 10.1016/j.dam.2024.09.022_b31
  article-title: Epidemic spread optimization for disease containment with npis and vaccination
– volume: 48
  start-page: 798
  issue: 4
  year: 2001
  ident: 10.1016/j.dam.2024.09.022_b6
  article-title: Some optimal inapproximability results
  publication-title: J. ACM
  doi: 10.1145/502090.502098
– volume: 4
  start-page: 331
  issue: 3
  year: 2007
  ident: 10.1016/j.dam.2024.09.022_b21
  article-title: An R-square coefficient based on final prediction error
  publication-title: Stat. Methodol.
  doi: 10.1016/j.stamet.2006.11.004
– start-page: 2796
  year: 2019
  ident: 10.1016/j.dam.2024.09.022_b28
  article-title: Performance guarantees for greedy maximization of non-submodular controllability metrics
– ident: 10.1016/j.dam.2024.09.022_b5
  doi: 10.1145/1367497.1367524
– ident: 10.1016/j.dam.2024.09.022_b22
  doi: 10.1609/aaai.v32i1.11520
– volume: 1
  start-page: 487
  year: 2018
  ident: 10.1016/j.dam.2024.09.022_b2
  article-title: Non-monotone continuous DR-submodular maximization: Structure and algorithms
  publication-title: Adv. Neural Inf. Process. Syst. 30
– volume: 94
  start-page: 1592
  year: 2021
  ident: 10.1016/j.dam.2024.09.022_b11
  article-title: Modeling and forecasting the total number of cases and deaths due to pandemic
  publication-title: Med. Virol.
  doi: 10.1002/jmv.27506
– ident: 10.1016/j.dam.2024.09.022_b9
– ident: 10.1016/j.dam.2024.09.022_b18
  doi: 10.21437/Interspeech.2011-312
– ident: 10.1016/j.dam.2024.09.022_b1
– start-page: 1897
  year: 2011
  ident: 10.1016/j.dam.2024.09.022_b8
  article-title: Submodularity beyond submodular energies: coupling edges in graph cuts
– year: 2005
  ident: 10.1016/j.dam.2024.09.022_b15
  article-title: A note on the budgeted maximization of submodular functions
  publication-title: Mathematics
– volume: 3
  start-page: 126
  issue: 1
  year: 2015
  ident: 10.1016/j.dam.2024.09.022_b20
  article-title: Seven proofs for the subadditivity of expected shortfall
  publication-title: Depend. Model.
– volume: 990
  year: 2024
  ident: 10.1016/j.dam.2024.09.022_b24
  article-title: Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2024.114409
– volume: 45
  start-page: 54
  issue: 1
  year: 2023
  ident: 10.1016/j.dam.2024.09.022_b3
  article-title: Two approximation algorithms for maximizing nonnegative weakly monotonic set functions
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-022-00978-4
– start-page: 68
  year: 2021
  ident: 10.1016/j.dam.2024.09.022_b32
  article-title: Bicriteria algorithms to balance coverage and cost in team formation under online model
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2020.12.002
– ident: 10.1016/j.dam.2024.09.022_b10
  doi: 10.1145/956750.956769
– volume: 3
  start-page: 71
  year: 2014
  ident: 10.1016/j.dam.2024.09.022_b14
  article-title: Submodular function maximization
  publication-title: Tractability
  doi: 10.1017/CBO9781139177801.004
– volume: 172
  start-page: 539
  year: 2018
  ident: 10.1016/j.dam.2024.09.022_b27
  article-title: Maximizing monotone submodular functions over the integer lattice
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1324-y
– volume: 32
  start-page: 41
  year: 2004
  ident: 10.1016/j.dam.2024.09.022_b29
  article-title: A note on maximizing a submodular set function subject to a knapsack constraint
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00062-2
– volume: 70
  start-page: 39
  year: 1999
  ident: 10.1016/j.dam.2024.09.022_b13
  article-title: The budgeted maximum coverage problem
  publication-title: Inform. Process. Lett.
  doi: 10.1016/S0020-0190(99)00031-9
– ident: 10.1016/j.dam.2024.09.022_b17
– ident: 10.1016/j.dam.2024.09.022_b4
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.4053984
Snippet Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 48
SubjectTerms Greedy algorithm
Non-monotone
Non-submodular
Non-submodular constraint
Title Approximation algorithm of maximizing non-submodular functions under non-submodular constraint
URI https://dx.doi.org/10.1016/j.dam.2024.09.022
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcikHxCrKJh84IZlmcbZjVVEVUHuBSj1hOV4giNKqDRLiwLczkwUKggvHOHISvdjzZuyZZ0JOfUdGMYewJFGaMy65z2KlAxb5bqCMmyo3xdrh4SgcjPnVJJg0SK-uhcG0ysr2lza9sNZVS6dCszPPss4NOCshENQEsyA5mFmsYOcR6uefv7srElKoj9aqF12-9hiAa3ml_B0yfE6951lkf2mJZepeKYLqeb-z1goT9TfJRuVC0m75lVukYZ63yfrwU391uUPuuigV_pqVdYlUPt3PFln-MKUzS6cS2rM3oCwKoT9bAiHONCajUuS4YhhSrCxb_Lyt0JXEEyXyXTLuX9z2Bqw6SYEpCK9yBj6RdJM01uAeaO2H0om08RxjoxCMXaIlzHprFVwgXDoNYCanUgU-BHs84L6_R5rwTrNPqE5wq9MkRseWW19JGzmRBbcz9RwNwVObnNVIiXkpmCHqTLJHAbAKhFU4iQBY24TXWIpvf12AQf-728H_uh2Sloen9zq44nZEmvnixRyDS5GnJ8WYOSFr3cvrwegDEOXJMQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKO1AGxFOUpwcmJKtp4rzGqgKl9LHQSp2wHDuGIEqrNkiIX89dk0BBsDDGkZPoi333nX33mZBLx5J-wCEsCZXmjEvusEBpl_lOy1VJK1atGGuHB0MvGvPbiTupkE5ZC4NplYXtz236yloXLc0CzeY8TZt3QFY8cFATzILkYGY3SA3VqWCw19rdXjRcU5FCibR6ue7ytc0A7pYX4t8ew0eV256rBDAtsVLdznVQbft3x7XmjG52yHbBImk7_9BdUkle9sjW4FOCdblP7tuoFv6W5qWJVD4_zBZp9jilM0OnEtrTd_BaFKJ_tgSfONOYj0rRza1GIsXissXP2wrZJB4qkR2Q8c31qBOx4jAFpiDCyhjQItkK40ADQ9Da8aTl68S2EuN7YO9CLWHiG6PgAuHSsQuTOZbKdSDeA1gd55BU4Z3JEaE6xN3OJEx0YLhxlDS-5RtgnrFtaYifGuSqRErMc80MUSaTPQmAVSCswgoFwNogvMRSfPvxAmz6392O_9ftgmxGo0Ff9LvD3gmp23iYr4ULcKekmi1ekzNgGFl8XoygDw63y-I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+algorithm+of+maximizing+non-submodular+functions+under+non-submodular+constraint&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Lai%2C+Xiaoyan&rft.au=Shi%2C+Yishuo&rft.date=2025-01-30&rft.issn=0166-218X&rft.volume=361&rft.spage=48&rft.epage=68&rft_id=info:doi/10.1016%2Fj.dam.2024.09.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dam_2024_09_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon