Approximation algorithm of maximizing non-submodular functions under non-submodular constraint
Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical appl...
Saved in:
Published in | Discrete Applied Mathematics Vol. 361; pp. 48 - 68 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
30.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0166-218X |
DOI | 10.1016/j.dam.2024.09.022 |
Cover
Loading…
Abstract | Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical applications of the situations, such as Epidemic transmission, and Sensor Placement and Feature Selection problem. In this paper, we study the maximization of the non-submodular objective functions under the non-submodular constraint. Based on the non-submodular constraint, we discuss the maximization of the objective functions with some specific properties, which includes the property of negative, and then, we obtain the corresponding approximate ratios by the greedy algorithm. What is more, these approximate ratios could be improved when the constraint becomes tight. |
---|---|
AbstractList | Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical applications of the situations, such as Epidemic transmission, and Sensor Placement and Feature Selection problem. In this paper, we study the maximization of the non-submodular objective functions under the non-submodular constraint. Based on the non-submodular constraint, we discuss the maximization of the objective functions with some specific properties, which includes the property of negative, and then, we obtain the corresponding approximate ratios by the greedy algorithm. What is more, these approximate ratios could be improved when the constraint becomes tight. |
Author | Shi, Yishuo Lai, Xiaoyan |
Author_xml | – sequence: 1 givenname: Xiaoyan surname: Lai fullname: Lai, Xiaoyan email: 1972906484@qq.com – sequence: 2 givenname: Yishuo orcidid: 0000-0002-5604-688X surname: Shi fullname: Shi, Yishuo email: yishuo@wzu.edu.cn |
BookMark | eNp9UMtOwzAQ9KFItIUP4JYfSFg7cRKLU1XxkipxAYkTluNHcZTYlZ0g4OtxVU4cOK1mZmcfs0IL551G6ApDgQHX132hxFgQIFUBrABCFmiZ-DonuH09R6sYewDACS3R2-ZwCP7TjmKy3mVi2Ptgp_cx8yYbReLtt3X7LG3I49yNXs2DCJmZnTz2x2x2Soe_skzKFIR10wU6M2KI-vK3rtHL3e3z9iHfPd0_bje7XJKKTXlVUoFZ1yoKTKmyFtAoTUCbpmYYMyVKoMbIBAC3tepoRWgnJC0b3FS0Kss1wqe5MvgYgzb8ENJP4Ytj4MdQeM9TKPwYCgfGUyjJc3Py6HTYh9WBR2m1k1rZoOXElbf_uH8A0MVwRQ |
Cites_doi | 10.1287/ijoc.2015.0660 10.1287/moor.2016.0842 10.1007/s10878-020-00558-4 10.1007/s10957-022-02145-5 10.1145/502090.502098 10.1016/j.stamet.2006.11.004 10.1145/1367497.1367524 10.1609/aaai.v32i1.11520 10.1002/jmv.27506 10.21437/Interspeech.2011-312 10.1016/j.tcs.2024.114409 10.1007/s10878-022-00978-4 10.1016/j.tcs.2020.12.002 10.1145/956750.956769 10.1017/CBO9781139177801.004 10.1007/s10107-018-1324-y 10.1016/S0167-6377(03)00062-2 10.1016/S0020-0190(99)00031-9 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.dam.2024.09.022 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EndPage | 68 |
ExternalDocumentID | 10_1016_j_dam_2024_09_022 S0166218X24004128 |
GroupedDBID | -~X ADEZE AFTJW ALMA_UNASSIGNED_HOLDINGS FDB OAUVE AAYXX AI. CITATION FA8 VH1 WUQ |
ID | FETCH-LOGICAL-c249t-435a19b8d509dd36a07de20ef769119da305ffc6910186db5425bac5371745433 |
IEDL.DBID | .~1 |
ISSN | 0166-218X |
IngestDate | Tue Jul 01 01:43:17 EDT 2025 Sat Feb 15 15:52:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-submodular constraint Greedy algorithm Non-submodular Non-monotone |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-435a19b8d509dd36a07de20ef769119da305ffc6910186db5425bac5371745433 |
ORCID | 0000-0002-5604-688X |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1016_j_dam_2024_09_022 elsevier_sciencedirect_doi_10_1016_j_dam_2024_09_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-30 |
PublicationDateYYYYMMDD | 2025-01-30 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Discrete Applied Mathematics |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Xu, Du, Ma (b32) 2021 J. Hartline, V. Mirrokni, M. Sundararajan, Optimal marketing strategies over social networks, in: Proceedings of the 17th International Conference on World Wide Web, 2008, pp. 189–198. Rousson, Goşoniu (b21) 2007; 4 Shi, Lai (b24) 2024; 990 Khuller, Moss, Naor (b13) 1999; 70 Shi, Yang, Wang (b25) 2023; 196 Håstad (b6) 2001; 48 Krause, Guestrin (b15) 2005 A. Kuhnle, J.D. Smith, V. Crawford, M. Thai, Fast maximization of non-submodular, monotonic functions on the integer lattice, in: International Conference on Machine Learning, 2018, pp. 2786–2795. Sviridenko, Vondrák, Ward (b30) 2017; 42 Khanna, Elenberg, Dimakis, Negahban, Ghosh (b12) 2017 D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 137–146. Teng, Shi, Yang, Lee, Philip, Lu, Chen (b31) 2022 C. Harshaw, M. Feldman, J. Ward, A. Karbasi, Submodular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and Applications, in: International Conference on Machine Learning, 2019, pp. 2634–2643. Sviridenko (b29) 2004; 32 Jegelka, Bilmes (b8) 2011 E. Balkanski, Y. Singer, Approximation guarantees for adaptive sampling, in: International Conference on Machine Learning, 2018, pp. 384–393. Summers, Kamgarpour (b28) 2019 Iyer, Bilmes (b7) 2013; 26 Paul, Ruodu (b20) 2015; 3 Santiago, Yoshida (b23) 2020 E. Kazemi, S. Minaee, M. Feldman, A. Karbasi, Regularized submodular maximization at scale, in: International Conference on Machine Learning, 2021, pp. 5356–5366. Krause, Golovin (b14) 2014; 3 Nong, Fang, Gong (b19) 2020; 39 Shioura, Shakhlevich, Strusevich (b26) 2016; 28 Soma, Yoshida (b27) 2018; 172 Krause, Singh, Guestrin (b16) 2008; 9 H. Lin, J. Bilmes, Optimal selection of limited vocabulary speech corpora, in: Twelfth Annual Conference of the International Speech Communication Association, 2011, pp. 1489–1492. Khan, Arshad, Azam, Al-marshadi (b11) 2021; 94 S. Sakaue, M. Nishino, N. Yasuda, Submodular function maximization over graphs via zero-suppressed binary decision diagrams, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018, pp. 1422–1430. Bian, Levy, Krause, Buhmann (b2) 2018; 1 Cui, Du, Xu, Yang (b3) 2023; 45 Paul (10.1016/j.dam.2024.09.022_b20) 2015; 3 Krause (10.1016/j.dam.2024.09.022_b14) 2014; 3 Shi (10.1016/j.dam.2024.09.022_b24) 2024; 990 Sviridenko (10.1016/j.dam.2024.09.022_b30) 2017; 42 Sviridenko (10.1016/j.dam.2024.09.022_b29) 2004; 32 Iyer (10.1016/j.dam.2024.09.022_b7) 2013; 26 Khanna (10.1016/j.dam.2024.09.022_b12) 2017 Håstad (10.1016/j.dam.2024.09.022_b6) 2001; 48 Shioura (10.1016/j.dam.2024.09.022_b26) 2016; 28 10.1016/j.dam.2024.09.022_b10 Shi (10.1016/j.dam.2024.09.022_b25) 2023; 196 Wang (10.1016/j.dam.2024.09.022_b32) 2021 Khan (10.1016/j.dam.2024.09.022_b11) 2021; 94 Krause (10.1016/j.dam.2024.09.022_b16) 2008; 9 10.1016/j.dam.2024.09.022_b18 10.1016/j.dam.2024.09.022_b17 Soma (10.1016/j.dam.2024.09.022_b27) 2018; 172 Krause (10.1016/j.dam.2024.09.022_b15) 2005 Santiago (10.1016/j.dam.2024.09.022_b23) 2020 Summers (10.1016/j.dam.2024.09.022_b28) 2019 10.1016/j.dam.2024.09.022_b9 Teng (10.1016/j.dam.2024.09.022_b31) 2022 Rousson (10.1016/j.dam.2024.09.022_b21) 2007; 4 Khuller (10.1016/j.dam.2024.09.022_b13) 1999; 70 Jegelka (10.1016/j.dam.2024.09.022_b8) 2011 10.1016/j.dam.2024.09.022_b1 Nong (10.1016/j.dam.2024.09.022_b19) 2020; 39 10.1016/j.dam.2024.09.022_b22 Bian (10.1016/j.dam.2024.09.022_b2) 2018; 1 Cui (10.1016/j.dam.2024.09.022_b3) 2023; 45 10.1016/j.dam.2024.09.022_b4 10.1016/j.dam.2024.09.022_b5 |
References_xml | – reference: A. Kuhnle, J.D. Smith, V. Crawford, M. Thai, Fast maximization of non-submodular, monotonic functions on the integer lattice, in: International Conference on Machine Learning, 2018, pp. 2786–2795. – reference: D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 137–146. – reference: J. Hartline, V. Mirrokni, M. Sundararajan, Optimal marketing strategies over social networks, in: Proceedings of the 17th International Conference on World Wide Web, 2008, pp. 189–198. – reference: E. Kazemi, S. Minaee, M. Feldman, A. Karbasi, Regularized submodular maximization at scale, in: International Conference on Machine Learning, 2021, pp. 5356–5366. – reference: E. Balkanski, Y. Singer, Approximation guarantees for adaptive sampling, in: International Conference on Machine Learning, 2018, pp. 384–393. – start-page: 1560 year: 2017 end-page: 1568 ident: b12 article-title: Scalable greedy feature selection via weak submodularity publication-title: Artificial Intelligence and Statistics – start-page: 1897 year: 2011 end-page: 1904 ident: b8 article-title: Submodularity beyond submodular energies: coupling edges in graph cuts publication-title: CVPR 2011 – volume: 1 start-page: 487 year: 2018 end-page: 497 ident: b2 article-title: Non-monotone continuous DR-submodular maximization: Structure and algorithms publication-title: Adv. Neural Inf. Process. Syst. 30 – volume: 39 start-page: 1208 year: 2020 end-page: 1220 ident: b19 article-title: A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice publication-title: J. Comb. Optim. – volume: 3 start-page: 71 year: 2014 end-page: 104 ident: b14 article-title: Submodular function maximization publication-title: Tractability – volume: 28 start-page: 148 year: 2016 end-page: 161 ident: b26 article-title: Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines publication-title: INFORMS J. Comput. – reference: S. Sakaue, M. Nishino, N. Yasuda, Submodular function maximization over graphs via zero-suppressed binary decision diagrams, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018, pp. 1422–1430. – reference: C. Harshaw, M. Feldman, J. Ward, A. Karbasi, Submodular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and Applications, in: International Conference on Machine Learning, 2019, pp. 2634–2643. – volume: 32 start-page: 41 year: 2004 end-page: 43 ident: b29 article-title: A note on maximizing a submodular set function subject to a knapsack constraint publication-title: Oper. Res. Lett. – volume: 45 start-page: 54 year: 2023 ident: b3 article-title: Two approximation algorithms for maximizing nonnegative weakly monotonic set functions publication-title: J. Comb. Optim. – volume: 26 year: 2013 ident: b7 article-title: Submodular optimization with submodular cover and submodular knapsack constraints publication-title: Adv. Neural Inf. Process. Syst. – volume: 70 start-page: 39 year: 1999 end-page: 45 ident: b13 article-title: The budgeted maximum coverage problem publication-title: Inform. Process. Lett. – volume: 3 start-page: 126 year: 2015 end-page: 140 ident: b20 article-title: Seven proofs for the subadditivity of expected shortfall publication-title: Depend. Model. – volume: 4 start-page: 331 year: 2007 end-page: 340 ident: b21 article-title: An R-square coefficient based on final prediction error publication-title: Stat. Methodol. – start-page: 2796 year: 2019 end-page: 2801 ident: b28 article-title: Performance guarantees for greedy maximization of non-submodular controllability metrics publication-title: 2019 18th European Control Conference – volume: 9 year: 2008 ident: b16 article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies publication-title: J. Mach. Learn. Res. – start-page: 2845 year: 2022 end-page: 2858 ident: b31 article-title: Epidemic spread optimization for disease containment with npis and vaccination publication-title: 2022 IEEE 38th International Conference on Data Engineering – volume: 172 start-page: 539 year: 2018 end-page: 563 ident: b27 article-title: Maximizing monotone submodular functions over the integer lattice publication-title: Math. Program. – start-page: 68 year: 2021 end-page: 76 ident: b32 article-title: Bicriteria algorithms to balance coverage and cost in team formation under online model publication-title: Theoret. Comput. Sci. – volume: 42 start-page: 1197 year: 2017 end-page: 1218 ident: b30 article-title: Optimal approximation for submodular and supermodular optimization with bounded curvature publication-title: Math. Oper. Res. – year: 2005 ident: b15 article-title: A note on the budgeted maximization of submodular functions publication-title: Mathematics – year: 2020 ident: b23 article-title: Weakly submodular function maximization using local submodularity ratio publication-title: Comput. Sci. – reference: H. Lin, J. Bilmes, Optimal selection of limited vocabulary speech corpora, in: Twelfth Annual Conference of the International Speech Communication Association, 2011, pp. 1489–1492. – volume: 196 start-page: 516 year: 2023 end-page: 543 ident: b25 article-title: Greedy guarantees for non-submodular function maximization under independent system constraint with applications publication-title: J. Optim. Theory Appl. – volume: 94 start-page: 1592 year: 2021 end-page: 1605 ident: b11 article-title: Modeling and forecasting the total number of cases and deaths due to pandemic publication-title: Med. Virol. – volume: 990 year: 2024 ident: b24 article-title: Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint publication-title: Theoret. Comput. Sci. – volume: 48 start-page: 798 year: 2001 end-page: 859 ident: b6 article-title: Some optimal inapproximability results publication-title: J. ACM – volume: 26 year: 2013 ident: 10.1016/j.dam.2024.09.022_b7 article-title: Submodular optimization with submodular cover and submodular knapsack constraints publication-title: Adv. Neural Inf. Process. Syst. – volume: 28 start-page: 148 year: 2016 ident: 10.1016/j.dam.2024.09.022_b26 article-title: Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2015.0660 – volume: 42 start-page: 1197 issue: 4 year: 2017 ident: 10.1016/j.dam.2024.09.022_b30 article-title: Optimal approximation for submodular and supermodular optimization with bounded curvature publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0842 – volume: 39 start-page: 1208 year: 2020 ident: 10.1016/j.dam.2024.09.022_b19 article-title: A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice publication-title: J. Comb. Optim. doi: 10.1007/s10878-020-00558-4 – start-page: 1560 year: 2017 ident: 10.1016/j.dam.2024.09.022_b12 article-title: Scalable greedy feature selection via weak submodularity – year: 2020 ident: 10.1016/j.dam.2024.09.022_b23 article-title: Weakly submodular function maximization using local submodularity ratio publication-title: Comput. Sci. – volume: 196 start-page: 516 year: 2023 ident: 10.1016/j.dam.2024.09.022_b25 article-title: Greedy guarantees for non-submodular function maximization under independent system constraint with applications publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-022-02145-5 – volume: 9 issue: 2 year: 2008 ident: 10.1016/j.dam.2024.09.022_b16 article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies publication-title: J. Mach. Learn. Res. – start-page: 2845 year: 2022 ident: 10.1016/j.dam.2024.09.022_b31 article-title: Epidemic spread optimization for disease containment with npis and vaccination – volume: 48 start-page: 798 issue: 4 year: 2001 ident: 10.1016/j.dam.2024.09.022_b6 article-title: Some optimal inapproximability results publication-title: J. ACM doi: 10.1145/502090.502098 – volume: 4 start-page: 331 issue: 3 year: 2007 ident: 10.1016/j.dam.2024.09.022_b21 article-title: An R-square coefficient based on final prediction error publication-title: Stat. Methodol. doi: 10.1016/j.stamet.2006.11.004 – start-page: 2796 year: 2019 ident: 10.1016/j.dam.2024.09.022_b28 article-title: Performance guarantees for greedy maximization of non-submodular controllability metrics – ident: 10.1016/j.dam.2024.09.022_b5 doi: 10.1145/1367497.1367524 – ident: 10.1016/j.dam.2024.09.022_b22 doi: 10.1609/aaai.v32i1.11520 – volume: 1 start-page: 487 year: 2018 ident: 10.1016/j.dam.2024.09.022_b2 article-title: Non-monotone continuous DR-submodular maximization: Structure and algorithms publication-title: Adv. Neural Inf. Process. Syst. 30 – volume: 94 start-page: 1592 year: 2021 ident: 10.1016/j.dam.2024.09.022_b11 article-title: Modeling and forecasting the total number of cases and deaths due to pandemic publication-title: Med. Virol. doi: 10.1002/jmv.27506 – ident: 10.1016/j.dam.2024.09.022_b9 – ident: 10.1016/j.dam.2024.09.022_b18 doi: 10.21437/Interspeech.2011-312 – ident: 10.1016/j.dam.2024.09.022_b1 – start-page: 1897 year: 2011 ident: 10.1016/j.dam.2024.09.022_b8 article-title: Submodularity beyond submodular energies: coupling edges in graph cuts – year: 2005 ident: 10.1016/j.dam.2024.09.022_b15 article-title: A note on the budgeted maximization of submodular functions publication-title: Mathematics – volume: 3 start-page: 126 issue: 1 year: 2015 ident: 10.1016/j.dam.2024.09.022_b20 article-title: Seven proofs for the subadditivity of expected shortfall publication-title: Depend. Model. – volume: 990 year: 2024 ident: 10.1016/j.dam.2024.09.022_b24 article-title: Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2024.114409 – volume: 45 start-page: 54 issue: 1 year: 2023 ident: 10.1016/j.dam.2024.09.022_b3 article-title: Two approximation algorithms for maximizing nonnegative weakly monotonic set functions publication-title: J. Comb. Optim. doi: 10.1007/s10878-022-00978-4 – start-page: 68 year: 2021 ident: 10.1016/j.dam.2024.09.022_b32 article-title: Bicriteria algorithms to balance coverage and cost in team formation under online model publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2020.12.002 – ident: 10.1016/j.dam.2024.09.022_b10 doi: 10.1145/956750.956769 – volume: 3 start-page: 71 year: 2014 ident: 10.1016/j.dam.2024.09.022_b14 article-title: Submodular function maximization publication-title: Tractability doi: 10.1017/CBO9781139177801.004 – volume: 172 start-page: 539 year: 2018 ident: 10.1016/j.dam.2024.09.022_b27 article-title: Maximizing monotone submodular functions over the integer lattice publication-title: Math. Program. doi: 10.1007/s10107-018-1324-y – volume: 32 start-page: 41 year: 2004 ident: 10.1016/j.dam.2024.09.022_b29 article-title: A note on maximizing a submodular set function subject to a knapsack constraint publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(03)00062-2 – volume: 70 start-page: 39 year: 1999 ident: 10.1016/j.dam.2024.09.022_b13 article-title: The budgeted maximum coverage problem publication-title: Inform. Process. Lett. doi: 10.1016/S0020-0190(99)00031-9 – ident: 10.1016/j.dam.2024.09.022_b17 – ident: 10.1016/j.dam.2024.09.022_b4 |
SSID | ssj0001218 ssj0000186 ssj0006644 |
Score | 2.4053984 |
Snippet | Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched.... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 48 |
SubjectTerms | Greedy algorithm Non-monotone Non-submodular Non-submodular constraint |
Title | Approximation algorithm of maximizing non-submodular functions under non-submodular constraint |
URI | https://dx.doi.org/10.1016/j.dam.2024.09.022 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcikHxCrKJh84IZlmcbZjVVEVUHuBSj1hOV4giNKqDRLiwLczkwUKggvHOHISvdjzZuyZZ0JOfUdGMYewJFGaMy65z2KlAxb5bqCMmyo3xdrh4SgcjPnVJJg0SK-uhcG0ysr2lza9sNZVS6dCszPPss4NOCshENQEsyA5mFmsYOcR6uefv7srElKoj9aqF12-9hiAa3ml_B0yfE6951lkf2mJZepeKYLqeb-z1goT9TfJRuVC0m75lVukYZ63yfrwU391uUPuuigV_pqVdYlUPt3PFln-MKUzS6cS2rM3oCwKoT9bAiHONCajUuS4YhhSrCxb_Lyt0JXEEyXyXTLuX9z2Bqw6SYEpCK9yBj6RdJM01uAeaO2H0om08RxjoxCMXaIlzHprFVwgXDoNYCanUgU-BHs84L6_R5rwTrNPqE5wq9MkRseWW19JGzmRBbcz9RwNwVObnNVIiXkpmCHqTLJHAbAKhFU4iQBY24TXWIpvf12AQf-728H_uh2Sloen9zq44nZEmvnixRyDS5GnJ8WYOSFr3cvrwegDEOXJMQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKO1AGxFOUpwcmJKtp4rzGqgKl9LHQSp2wHDuGIEqrNkiIX89dk0BBsDDGkZPoi333nX33mZBLx5J-wCEsCZXmjEvusEBpl_lOy1VJK1atGGuHB0MvGvPbiTupkE5ZC4NplYXtz236yloXLc0CzeY8TZt3QFY8cFATzILkYGY3SA3VqWCw19rdXjRcU5FCibR6ue7ytc0A7pYX4t8ew0eV256rBDAtsVLdznVQbft3x7XmjG52yHbBImk7_9BdUkle9sjW4FOCdblP7tuoFv6W5qWJVD4_zBZp9jilM0OnEtrTd_BaFKJ_tgSfONOYj0rRza1GIsXissXP2wrZJB4qkR2Q8c31qBOx4jAFpiDCyhjQItkK40ADQ9Da8aTl68S2EuN7YO9CLWHiG6PgAuHSsQuTOZbKdSDeA1gd55BU4Z3JEaE6xN3OJEx0YLhxlDS-5RtgnrFtaYifGuSqRErMc80MUSaTPQmAVSCswgoFwNogvMRSfPvxAmz6392O_9ftgmxGo0Ff9LvD3gmp23iYr4ULcKekmi1ekzNgGFl8XoygDw63y-I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+algorithm+of+maximizing+non-submodular+functions+under+non-submodular+constraint&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Lai%2C+Xiaoyan&rft.au=Shi%2C+Yishuo&rft.date=2025-01-30&rft.issn=0166-218X&rft.volume=361&rft.spage=48&rft.epage=68&rft_id=info:doi/10.1016%2Fj.dam.2024.09.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dam_2024_09_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |