3D stochastic microstructure reconstruction via slice images and attention-mechanism-based GAN
•2D slices of a 3D image are used as training images to lower GPU burdens.•The convolutional triplet attention is used to prioritize the learned features.•Only a 3D image is required for whole training. Stochastic media are used to characterize materials with irregular structure and spatial randomne...
Saved in:
Published in | Computer aided design Vol. 176; p. 103760 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-4485 1879-2685 |
DOI | 10.1016/j.cad.2024.103760 |
Cover
Abstract | •2D slices of a 3D image are used as training images to lower GPU burdens.•The convolutional triplet attention is used to prioritize the learned features.•Only a 3D image is required for whole training.
Stochastic media are used to characterize materials with irregular structure and spatial randomness, and the remarkable macroscopic features of stochastic media are often determined by their internal microstructure. Hardware loads and computational burdens have always been a challenge for the reconstruction of large-volume materials. To tackle the aforementioned concerns, this paper proposes a learning model based on generative adversarial network that uses multiple 2D slice images to reconstruct 3D stochastic microstructures. The whole model training process requires only a 3D image of stochastic media as the training image. In addition, the attention mechanism captures cross-dimensional interactions to prioritize the learned features and improves the effectiveness of training. The model is tested on stochastic porous media with two-phase internal structure and complex morphology. The experimental findings demonstrate that utilizing multiple 2D images helps the model learn better and reduces the occurrence of overfitting, while greatly reducing the hardware loads of the model. |
---|---|
AbstractList | •2D slices of a 3D image are used as training images to lower GPU burdens.•The convolutional triplet attention is used to prioritize the learned features.•Only a 3D image is required for whole training.
Stochastic media are used to characterize materials with irregular structure and spatial randomness, and the remarkable macroscopic features of stochastic media are often determined by their internal microstructure. Hardware loads and computational burdens have always been a challenge for the reconstruction of large-volume materials. To tackle the aforementioned concerns, this paper proposes a learning model based on generative adversarial network that uses multiple 2D slice images to reconstruct 3D stochastic microstructures. The whole model training process requires only a 3D image of stochastic media as the training image. In addition, the attention mechanism captures cross-dimensional interactions to prioritize the learned features and improves the effectiveness of training. The model is tested on stochastic porous media with two-phase internal structure and complex morphology. The experimental findings demonstrate that utilizing multiple 2D images helps the model learn better and reduces the occurrence of overfitting, while greatly reducing the hardware loads of the model. |
ArticleNumber | 103760 |
Author | Li, Xue Bian, Ningjie Zhang, Ting |
Author_xml | – sequence: 1 givenname: Ting surname: Zhang fullname: Zhang, Ting organization: College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, PR China – sequence: 2 givenname: Ningjie surname: Bian fullname: Bian, Ningjie organization: College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, PR China – sequence: 3 givenname: Xue surname: Li fullname: Li, Xue email: lixue@dicp.ac.cn organization: National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China |
BookMark | eNp9kM1KAzEUhYMo2FYfwF1eYOrN3_zgqlStQtFN14Y0uaMpnYxM0oJvb4Zx7epyuJzDOd-cXIY-ICF3DJYMWHl_WFrjlhy4zFpUJVyQGaurpuBlrS7JDIBBIWWtrsk8xgMAcCaaGfkQjzSm3n6ZmLylnbdDH9Nwsuk0IB3Q9mGSvg_07A2NR2-R-s58YqQmOGpSwjC-iw5zTPCxK_YmoqOb1dsNuWrNMeLt312Q3fPTbv1SbN83r-vVtrBcNqmQQoGAChuwCMqYqm2VYA1KZdDmMRVyVZaSN8q0e3CucWUr9rWUUFUIXCwIm2LH9nHAVn8PueLwoxnokY8-6MxHj3z0xCd7HiYP5l5nj4OO1mOw6HyenbTr_T_uX9AYcDc |
Cites_doi | 10.1007/s11242-023-02016-1 10.1145/3422622 10.1023/A:1014009426274 10.1103/PhysRevE.80.036307 10.1002/2013WR015069 10.1007/s11242-017-0917-x 10.1016/j.petrol.2019.106794 10.1016/j.commatsci.2014.12.017 10.1007/s10596-021-10059-w 10.1038/35058500 10.1023/B:MATG.0000011585.73414.35 10.1093/bioinformatics/btw413 10.1146/annurev.matsci.32.110101.155324 10.2136/sssaj2004.3460 10.1103/PhysRevE.96.043309 10.1016/j.procs.2020.06.115 10.1016/0021-9797(92)90268-Q 10.1016/j.actamat.2018.08.026 10.1007/s10596-023-10208-3 10.1016/j.jappgeo.2023.105042 10.1016/j.petrol.2004.08.002 10.1007/BF02768903 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cad.2024.103760 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
ExternalDocumentID | 10_1016_j_cad_2024_103760 S0010448524000873 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c249t-4350307e90ce05aa7ff5319e45aec7607e25664295afb0dd9d6f3b844077e023 |
IEDL.DBID | AIKHN |
ISSN | 0010-4485 |
IngestDate | Tue Jul 01 03:34:37 EDT 2025 Sat Aug 10 15:31:56 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Attention mechanism Stochastic media Cross-dimensional interaction Microstructure Generative adversarial network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-4350307e90ce05aa7ff5319e45aec7607e25664295afb0dd9d6f3b844077e023 |
ParticipantIDs | crossref_primary_10_1016_j_cad_2024_103760 elsevier_sciencedirect_doi_10_1016_j_cad_2024_103760 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computer aided design |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Heusel, Ramsauer, Unterthiner (bib0029) 2017; 30 Hou, Zhang, Sun (bib0004) 2007 Zhang, Zhu, Lu (bib0016) 2023; 27 Fredrich, Lindquist (bib0003) 1997; 34 Cao, Feng, Zhang (bib0022) 2020; 174 Legland, Arganda-Carreras, Andrey (bib0033) 2016; 32 Strebelle (bib0025) 2002; 34 Song, Mukerji, Hou (bib0034) 2021; 25 Krishnan, Journel (bib0027) 2003; 35 Wu, Nunan, Crawford (bib0006) 2004; 68 Kononov, Tashkinov, Silberschmidt (bib0013) 2023; 158 Misra, Nalamada, Arasanipalai (bib0021) 2021 Feng, Teng, He (bib0008) 2018; 159 Zhang, Ni, Guan (bib0015) 2023; 213 (bib0032) 2015 Okabe, Blunt (bib0007) 2005; 46 Dong, Blunt (bib0031) 2009; 80 Song, Mukerji, Hou (bib0035) 2021; 60 Mahmud, Mariethoz, Caers (bib0026) 2014; 50 Lymberopoulos, Payatakes (bib0002) 1992; 150 Itti, Koch (bib0018) 2001; 2 Liu, Shapiro (bib0028) 2015; 99 Volkhonskiy D., Muravleva E., Sudakov O., et al. Reconstruction of 3d porous media from 2d slices. 2019; arXiv preprint arXiv:1901.10233. Shams, Masihi, Boozarjomehry (bib0012) 2020; 186 Gulrajani, Ahmed, Arjovsky (bib0023) 2017 Goodfellow, Pouget-Abadie, Mirza (bib0009) 2020; 63 Shaham, Dekel, Michaeli (bib0019) 2019 Xu, Ba, Kiros (bib0017) 2015 Hinz, Fisher, Wang (bib0020) 2021 Szegedy, Vanhoucke, Ioffe (bib0030) 2016 Hazlett (bib0005) 1997; 29 Mosser, Dubrule, Blunt (bib0010) 2017; 96 Zhang, Hu, Yang (bib0014) 2023; 150 Torquato (bib0024) 2002; 32 Lin, Li, Yang (bib0001) 2017; 120 Feng (10.1016/j.cad.2024.103760_bib0008) 2018; 159 Shams (10.1016/j.cad.2024.103760_bib0012) 2020; 186 Hinz (10.1016/j.cad.2024.103760_bib0020) 2021 Wu (10.1016/j.cad.2024.103760_bib0006) 2004; 68 Lin (10.1016/j.cad.2024.103760_bib0001) 2017; 120 Hou (10.1016/j.cad.2024.103760_bib0004) 2007 Xu (10.1016/j.cad.2024.103760_bib0017) 2015 Okabe (10.1016/j.cad.2024.103760_bib0007) 2005; 46 Song (10.1016/j.cad.2024.103760_bib0034) 2021; 25 Zhang (10.1016/j.cad.2024.103760_bib0014) 2023; 150 Mosser (10.1016/j.cad.2024.103760_bib0010) 2017; 96 Misra (10.1016/j.cad.2024.103760_bib0021) 2021 Fredrich (10.1016/j.cad.2024.103760_bib0003) 1997; 34 Dong (10.1016/j.cad.2024.103760_bib0031) 2009; 80 Itti (10.1016/j.cad.2024.103760_bib0018) 2001; 2 Legland (10.1016/j.cad.2024.103760_bib0033) 2016; 32 Zhang (10.1016/j.cad.2024.103760_bib0016) 2023; 27 Gulrajani (10.1016/j.cad.2024.103760_bib0023) 2017 Torquato (10.1016/j.cad.2024.103760_bib0024) 2002; 32 Song (10.1016/j.cad.2024.103760_bib0035) 2021; 60 Lymberopoulos (10.1016/j.cad.2024.103760_bib0002) 1992; 150 Hazlett (10.1016/j.cad.2024.103760_bib0005) 1997; 29 Mahmud (10.1016/j.cad.2024.103760_bib0026) 2014; 50 Zhang (10.1016/j.cad.2024.103760_bib0015) 2023; 213 Krishnan (10.1016/j.cad.2024.103760_bib0027) 2003; 35 Liu (10.1016/j.cad.2024.103760_bib0028) 2015; 99 (10.1016/j.cad.2024.103760_bib0032) 2015 Goodfellow (10.1016/j.cad.2024.103760_bib0009) 2020; 63 Cao (10.1016/j.cad.2024.103760_bib0022) 2020; 174 Strebelle (10.1016/j.cad.2024.103760_bib0025) 2002; 34 Heusel (10.1016/j.cad.2024.103760_bib0029) 2017; 30 Shaham (10.1016/j.cad.2024.103760_bib0019) 2019 Szegedy (10.1016/j.cad.2024.103760_bib0030) 2016 10.1016/j.cad.2024.103760_bib0011 Kononov (10.1016/j.cad.2024.103760_bib0013) 2023; 158 |
References_xml | – volume: 25 start-page: 1251 year: 2021 end-page: 1273 ident: bib0034 article-title: Geological facies modeling based on progressive growing of generative adversarial networks (GANs) publication-title: Comput Geosci – start-page: 3139 year: 2021 end-page: 3148 ident: bib0021 publication-title: Rotate to attend: Convolutional triplet attention module Proceedings of the IEEE/CVF winter conference on applications of computer vision – volume: 174 start-page: 463 year: 2020 end-page: 477 ident: bib0022 article-title: Facial expression recognition via a CBAM embedded network publication-title: Procedia Comput Sci – year: 2007 ident: bib0004 article-title: Reconstruction of 3D network model through ct scanning spe europe featured at eage conference and exhibition – volume: 150 start-page: 383 year: 2023 end-page: 426 ident: bib0014 article-title: A super-resolution reconstruction method for shale based on generative adversarial network publication-title: Transp Porous Media – volume: 96 year: 2017 ident: bib0010 article-title: Reconstruction of three-dimensional porous media using generative adversarial neural networks, Berea Data publication-title: Phys Rev E – volume: 32 start-page: 77 year: 2002 end-page: 111 ident: bib0024 article-title: Statistical description of microstructures publication-title: Annu Rev Mater Res – volume: 34 start-page: 3 year: 1997 end-page: 4 ident: bib0003 article-title: Statistical characterization of the three-dimensional microgeometry of porous media and correlation with macroscopic transport properties publication-title: Int J Rock Mech Mining Sci – volume: 186 year: 2020 ident: bib0012 article-title: Coupled generative adversarial and auto-encoder neural networks to reconstruct three-dimensional multi-scale porous media publication-title: J Petrol Sci Eng – start-page: 2818 year: 2016 end-page: 2826 ident: bib0030 publication-title: Rethinking the inception architecture for computer vision Proceedings of the IEEE conference on computer vision and pattern recognition – reference: Volkhonskiy D., Muravleva E., Sudakov O., et al. Reconstruction of 3d porous media from 2d slices. 2019; arXiv preprint arXiv:1901.10233. – volume: 34 start-page: 1 year: 2002 end-page: 21 ident: bib0025 article-title: Conditional simulation of complex geological structures using multiple-point statistics publication-title: Math Geol – volume: 32 start-page: 3532 year: 2016 end-page: 3534 ident: bib0033 article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ publication-title: Bioinformatics – volume: 63 start-page: 139 year: 2020 end-page: 144 ident: bib0009 article-title: Generative adversarial networks publication-title: Commun ACM – start-page: 2048 year: 2015 end-page: 2057 ident: bib0017 article-title: Show, attend and tell: neural image caption generation with visual attention international conference on machine learning publication-title: PMLR – volume: 2 start-page: 194 year: 2001 end-page: 203 ident: bib0018 article-title: Computational modelling of visual attention publication-title: Nat Rev Neurosci – volume: 50 start-page: 3088 year: 2014 end-page: 3107 ident: bib0026 article-title: Simulation of Earth textures by conditional image quilting publication-title: Water Resour Res – volume: 46 start-page: 121 year: 2005 end-page: 137 ident: bib0007 article-title: Pore space reconstruction using multiple-point statistics publication-title: J Petrol Sci Eng – volume: 68 start-page: 346 year: 2004 end-page: 351 ident: bib0006 article-title: An efficient Markov chain model for the simulation of heterogeneous soil structure publication-title: Soil Sci Soc Am J – volume: 29 start-page: 801 year: 1997 end-page: 822 ident: bib0005 article-title: Statistical characterization and stochastic modeling of pore networks in relation to fluid flow publication-title: Math Geol – volume: 159 start-page: 296 year: 2018 end-page: 308 ident: bib0008 article-title: Accelerating multi-point statistics reconstruction method for porous media via deep learning publication-title: Acta Mater – volume: 99 start-page: 177 year: 2015 end-page: 189 ident: bib0028 article-title: Random heterogeneous materials via texture synthesis publication-title: Comput Mater Sci – volume: 158 year: 2023 ident: bib0013 article-title: Reconstruction of 3D Random Media from 2D Images publication-title: Gener Advers Learn Appr. Comput-Aided Des – volume: 150 start-page: 61 year: 1992 end-page: 80 ident: bib0002 article-title: Derivation of topological, geometrical, and correlational properties of porous media from pore-chart analysis of serial section data publication-title: J Colloid Interf Sci – volume: 80 year: 2009 ident: bib0031 article-title: Pore-network extraction from micro-computerized-tomography images publication-title: Physical Rev E – volume: 35 start-page: 915 year: 2003 end-page: 925 ident: bib0027 article-title: Spatial connectivity: from variograms to multiple-point measures publication-title: Math Geol – volume: 213 year: 2023 ident: bib0015 article-title: Reconstruction of three-dimensional porous media using multi-scale generative adversarial networks publication-title: J Appl Geophy – volume: 60 start-page: 1 year: 2021 end-page: 11 ident: bib0035 article-title: Bridging the gap between geophysics and geology with generative adversarial networks publication-title: IEEE Trans Geosci Remote Sens – year: 2015 ident: bib0032 article-title: Avizo user's guide – start-page: 4570 year: 2019 end-page: 4580 ident: bib0019 publication-title: Singan: Learning a generative model from a single natural image Proceedings of the IEEE/CVF international conference on computer vision – year: 2017 ident: bib0023 article-title: Improved training of wasserstein gans publication-title: Adv Neural Inf Process Syst – volume: 27 start-page: 515 year: 2023 end-page: 536 ident: bib0016 article-title: Stochastic reconstruction of porous media based on attention mechanisms and multi-stage generative adversarial network publication-title: Comput Geosci – volume: 30 year: 2017 ident: bib0029 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium publication-title: Adv Neur Inf Process Syst – volume: 120 start-page: 227 year: 2017 end-page: 238 ident: bib0001 article-title: Construction of dual pore 3-D digital cores with a hybrid method combined with physical experiment method and numerical reconstruction method publication-title: Transp Porous Media – start-page: 1300 year: 2021 end-page: 1309 ident: bib0020 publication-title: Improved techniques for training single-image gans Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – ident: 10.1016/j.cad.2024.103760_bib0011 – start-page: 2818 year: 2016 ident: 10.1016/j.cad.2024.103760_bib0030 – volume: 150 start-page: 383 issue: 2 year: 2023 ident: 10.1016/j.cad.2024.103760_bib0014 article-title: A super-resolution reconstruction method for shale based on generative adversarial network publication-title: Transp Porous Media doi: 10.1007/s11242-023-02016-1 – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 10.1016/j.cad.2024.103760_bib0009 article-title: Generative adversarial networks publication-title: Commun ACM doi: 10.1145/3422622 – volume: 34 start-page: 1 year: 2002 ident: 10.1016/j.cad.2024.103760_bib0025 article-title: Conditional simulation of complex geological structures using multiple-point statistics publication-title: Math Geol doi: 10.1023/A:1014009426274 – volume: 80 issue: 3 year: 2009 ident: 10.1016/j.cad.2024.103760_bib0031 article-title: Pore-network extraction from micro-computerized-tomography images publication-title: Physical Rev E doi: 10.1103/PhysRevE.80.036307 – start-page: 2048 year: 2015 ident: 10.1016/j.cad.2024.103760_bib0017 article-title: Show, attend and tell: neural image caption generation with visual attention international conference on machine learning publication-title: PMLR – volume: 50 start-page: 3088 issue: 4 year: 2014 ident: 10.1016/j.cad.2024.103760_bib0026 article-title: Simulation of Earth textures by conditional image quilting publication-title: Water Resour Res doi: 10.1002/2013WR015069 – volume: 120 start-page: 227 year: 2017 ident: 10.1016/j.cad.2024.103760_bib0001 article-title: Construction of dual pore 3-D digital cores with a hybrid method combined with physical experiment method and numerical reconstruction method publication-title: Transp Porous Media doi: 10.1007/s11242-017-0917-x – year: 2007 ident: 10.1016/j.cad.2024.103760_bib0004 – volume: 186 year: 2020 ident: 10.1016/j.cad.2024.103760_bib0012 article-title: Coupled generative adversarial and auto-encoder neural networks to reconstruct three-dimensional multi-scale porous media publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2019.106794 – volume: 99 start-page: 177 year: 2015 ident: 10.1016/j.cad.2024.103760_bib0028 article-title: Random heterogeneous materials via texture synthesis publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2014.12.017 – volume: 25 start-page: 1251 year: 2021 ident: 10.1016/j.cad.2024.103760_bib0034 article-title: Geological facies modeling based on progressive growing of generative adversarial networks (GANs) publication-title: Comput Geosci doi: 10.1007/s10596-021-10059-w – start-page: 4570 year: 2019 ident: 10.1016/j.cad.2024.103760_bib0019 – volume: 60 start-page: 1 year: 2021 ident: 10.1016/j.cad.2024.103760_bib0035 article-title: Bridging the gap between geophysics and geology with generative adversarial networks publication-title: IEEE Trans Geosci Remote Sens – year: 2017 ident: 10.1016/j.cad.2024.103760_bib0023 article-title: Improved training of wasserstein gans publication-title: Adv Neural Inf Process Syst – volume: 2 start-page: 194 issue: 3 year: 2001 ident: 10.1016/j.cad.2024.103760_bib0018 article-title: Computational modelling of visual attention publication-title: Nat Rev Neurosci doi: 10.1038/35058500 – volume: 35 start-page: 915 issue: 8 year: 2003 ident: 10.1016/j.cad.2024.103760_bib0027 article-title: Spatial connectivity: from variograms to multiple-point measures publication-title: Math Geol doi: 10.1023/B:MATG.0000011585.73414.35 – volume: 32 start-page: 3532 issue: 22 year: 2016 ident: 10.1016/j.cad.2024.103760_bib0033 article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw413 – volume: 158 year: 2023 ident: 10.1016/j.cad.2024.103760_bib0013 article-title: Reconstruction of 3D Random Media from 2D Images publication-title: Gener Advers Learn Appr. Comput-Aided Des – volume: 32 start-page: 77 issue: 1 year: 2002 ident: 10.1016/j.cad.2024.103760_bib0024 article-title: Statistical description of microstructures publication-title: Annu Rev Mater Res doi: 10.1146/annurev.matsci.32.110101.155324 – year: 2015 ident: 10.1016/j.cad.2024.103760_bib0032 – volume: 68 start-page: 346 issue: 2 year: 2004 ident: 10.1016/j.cad.2024.103760_bib0006 article-title: An efficient Markov chain model for the simulation of heterogeneous soil structure publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2004.3460 – volume: 34 start-page: 3 year: 1997 ident: 10.1016/j.cad.2024.103760_bib0003 article-title: Statistical characterization of the three-dimensional microgeometry of porous media and correlation with macroscopic transport properties publication-title: Int J Rock Mech Mining Sci – volume: 96 issue: 4 year: 2017 ident: 10.1016/j.cad.2024.103760_bib0010 article-title: Reconstruction of three-dimensional porous media using generative adversarial neural networks, Berea Data publication-title: Phys Rev E doi: 10.1103/PhysRevE.96.043309 – start-page: 1300 year: 2021 ident: 10.1016/j.cad.2024.103760_bib0020 – volume: 174 start-page: 463 year: 2020 ident: 10.1016/j.cad.2024.103760_bib0022 article-title: Facial expression recognition via a CBAM embedded network publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.06.115 – volume: 150 start-page: 61 issue: 1 year: 1992 ident: 10.1016/j.cad.2024.103760_bib0002 article-title: Derivation of topological, geometrical, and correlational properties of porous media from pore-chart analysis of serial section data publication-title: J Colloid Interf Sci doi: 10.1016/0021-9797(92)90268-Q – volume: 159 start-page: 296 year: 2018 ident: 10.1016/j.cad.2024.103760_bib0008 article-title: Accelerating multi-point statistics reconstruction method for porous media via deep learning publication-title: Acta Mater doi: 10.1016/j.actamat.2018.08.026 – volume: 27 start-page: 515 year: 2023 ident: 10.1016/j.cad.2024.103760_bib0016 article-title: Stochastic reconstruction of porous media based on attention mechanisms and multi-stage generative adversarial network publication-title: Comput Geosci doi: 10.1007/s10596-023-10208-3 – volume: 30 year: 2017 ident: 10.1016/j.cad.2024.103760_bib0029 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium publication-title: Adv Neur Inf Process Syst – volume: 213 year: 2023 ident: 10.1016/j.cad.2024.103760_bib0015 article-title: Reconstruction of three-dimensional porous media using multi-scale generative adversarial networks publication-title: J Appl Geophy doi: 10.1016/j.jappgeo.2023.105042 – volume: 46 start-page: 121 issue: 1–2 year: 2005 ident: 10.1016/j.cad.2024.103760_bib0007 article-title: Pore space reconstruction using multiple-point statistics publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2004.08.002 – volume: 29 start-page: 801 year: 1997 ident: 10.1016/j.cad.2024.103760_bib0005 article-title: Statistical characterization and stochastic modeling of pore networks in relation to fluid flow publication-title: Math Geol doi: 10.1007/BF02768903 – start-page: 3139 year: 2021 ident: 10.1016/j.cad.2024.103760_bib0021 |
SSID | ssj0002139 |
Score | 2.4225562 |
Snippet | •2D slices of a 3D image are used as training images to lower GPU burdens.•The convolutional triplet attention is used to prioritize the learned features.•Only... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103760 |
SubjectTerms | Attention mechanism Cross-dimensional interaction Generative adversarial network Microstructure Stochastic media |
Title | 3D stochastic microstructure reconstruction via slice images and attention-mechanism-based GAN |
URI | https://dx.doi.org/10.1016/j.cad.2024.103760 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOhBfGJ9lD14EtamyW6yOZZqrYo9VejJsNkHRmgstnr0tzubR6mgF48JGUi-ZL_5hsx8C3DBvVCHSlnK_FRQZoKAut0dqLDS6jjlUSTdNPLjJBw_sfsZnzVgWM_CuLbKivtLTi_YujrTq9DsLbLMzfhiKcEEd12QnoiCJrT9IA55C9qDu4fxZE3Ifj8oVTBSjguof24WbV5KOr9QnxXT54VR5S_paSPljHZhp9KKZFDezh40TL4P2xsOggfwHFwTlG_qRTq_ZTJ37XWlJezHuyFFtbt2iCWfmSQoK5Uh2RxpZElkronz1yw6HuncuCngbDmnLrVpcjuYHMJ0dDMdjmm1ZQJVWEetKIoft2pN7CnjcSkja90iM4xLo_DxIoMSB0uOmEubelrHOrRBKhiWdZHB9H0ErfwtN8dA8EIpsDzUUsfMWiN5rKRUUgjLIhv7HbisgUoWpTFGUneMvSaIauJQTUpUO8BqKJMfbzdB4v477OR_Yaew5Y7KicEzaCHM5hylwyrtQvPqq9-tPpBvgl3DNw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEJyRASO07GqlAKtJ2K1InI8UMEKaWihZHfzl0eUCRYWBNbSj7Hd98p330m5FR4oQm1doz7acS4DQKGpzuwyCln4lRIqbAbeTAMew_8bizGDdKpe2FQVlnF_jKmF9G6unJRoXkxzTLs8YVSgkcCVZBeJIMlssxFIFHXd_7xrfPwL4OSA0PAweH1r81C5KUVuoX6vOg9L2wqf0lOCwmnu0HWK6ZI2-XDbJKGnWyRtQX_wG3yGFxRIG_6SaHbMs1RXFcawr69WlrUul_-sPQ9UxRIpbY0yyGIzKiaGIrumoXekeUWe4CzWc4wsRl60x7ukFH3etTpserABKahipozoD64Z23saesJpaRzuMUsF8pqeD1pgeBAwREL5VLPmNiELkgjDkWdtJC8d0lz8jKxe4TCQBVBcWiUiblzVolYK6VVFDkuXey3yFkNVDItbTGSWi_2nACqCaKalKi2CK-hTH6sbQJh--9p-_-bdkJWeqNBP-nfDu8PyCreKXsHD0kTILdHQCLm6XHxkXwCIpXEAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+stochastic+microstructure+reconstruction+via+slice+images+and+attention-mechanism-based+GAN&rft.jtitle=Computer+aided+design&rft.au=Zhang%2C+Ting&rft.au=Bian%2C+Ningjie&rft.au=Li%2C+Xue&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=176&rft_id=info:doi/10.1016%2Fj.cad.2024.103760&rft.externalDocID=S0010448524000873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |