Influence of sputtered gallium oxide as buffer or high-resistive layer on performance of Cu(In,Ga)Se2-based solar cells
Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se 2 (CIGS) thin-film solar cells. From an industrial point of view, a high-rate and dry deposition method like sputtering would be the most favorable technique. This study presents results with the wide-ba...
Saved in:
Published in | Journal of materials research Vol. 37; no. 11; pp. 1825 - 1834 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
14.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se
2
(CIGS) thin-film solar cells. From an industrial point of view, a high-rate and dry deposition method like sputtering would be the most favorable technique. This study presents results with the wide-bandgap material gallium oxide (Ga
2
O
3
) deposited by magnetron sputtering applied as a substitution for the traditional CdS buffer or the intrinsic ZnO (i-ZnO) HR layer. With state-of-the-art CIGS absorber layers, subject to a RbF post-deposition treatment, an ammonia rinsing of the CIGS surface before sputtering of X-ray amorphous Ga
2
O
3
has mostly a positive impact on device performance reaching efficiencies up to 14%. An efficiency of 20.2% with anti-reflective coating was achieved with Ga
2
O
3
applied as HR layer as substitution for i-ZnO in combination with a solution-grown CdS buffer and ZnO:Al as front contact. This result is comparable to the efficiency of 20.4% for the CIGS/CdS/i-ZnO/ZnO:Al reference cell.
Graphical abstract |
---|---|
AbstractList | Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se2 (CIGS) thin-film solar cells. From an industrial point of view, a high-rate and dry deposition method like sputtering would be the most favorable technique. This study presents results with the wide-bandgap material gallium oxide (Ga2O3) deposited by magnetron sputtering applied as a substitution for the traditional CdS buffer or the intrinsic ZnO (i-ZnO) HR layer. With state-of-the-art CIGS absorber layers, subject to a RbF post-deposition treatment, an ammonia rinsing of the CIGS surface before sputtering of X-ray amorphous Ga2O3 has mostly a positive impact on device performance reaching efficiencies up to 14%. An efficiency of 20.2% with anti-reflective coating was achieved with Ga2O3 applied as HR layer as substitution for i-ZnO in combination with a solution-grown CdS buffer and ZnO:Al as front contact. This result is comparable to the efficiency of 20.4% for the CIGS/CdS/i-ZnO/ZnO:Al reference cell. Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se 2 (CIGS) thin-film solar cells. From an industrial point of view, a high-rate and dry deposition method like sputtering would be the most favorable technique. This study presents results with the wide-bandgap material gallium oxide (Ga 2 O 3 ) deposited by magnetron sputtering applied as a substitution for the traditional CdS buffer or the intrinsic ZnO (i-ZnO) HR layer. With state-of-the-art CIGS absorber layers, subject to a RbF post-deposition treatment, an ammonia rinsing of the CIGS surface before sputtering of X-ray amorphous Ga 2 O 3 has mostly a positive impact on device performance reaching efficiencies up to 14%. An efficiency of 20.2% with anti-reflective coating was achieved with Ga 2 O 3 applied as HR layer as substitution for i-ZnO in combination with a solution-grown CdS buffer and ZnO:Al as front contact. This result is comparable to the efficiency of 20.4% for the CIGS/CdS/i-ZnO/ZnO:Al reference cell. Graphical abstract |
Author | Hempel, Wolfram Hariskos, Dimitrios Paetel, Stefan Witte, Wolfram Menner, Richard |
Author_xml | – sequence: 1 givenname: Wolfram orcidid: 0000-0002-9429-506X surname: Witte fullname: Witte, Wolfram email: wolfram.witte@zsw-bw.de organization: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) – sequence: 2 givenname: Wolfram surname: Hempel fullname: Hempel, Wolfram organization: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) – sequence: 3 givenname: Stefan orcidid: 0000-0002-7051-5208 surname: Paetel fullname: Paetel, Stefan organization: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) – sequence: 4 givenname: Richard surname: Menner fullname: Menner, Richard organization: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) – sequence: 5 givenname: Dimitrios orcidid: 0000-0003-4867-1578 surname: Hariskos fullname: Hariskos, Dimitrios organization: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) |
BookMark | eNp9kE1LxDAQhoMouH78AU8BLwpGkzRt06Msui4IHtRzSNPJGskma9L69evtuoLgwdPA8D7vDM8e2g4xAEJHjJ6zsqwvsijKWhLKOaG0opJ8bqEJp0KQsuDVNppQKQXhDRO7aC_nZ0pZSWsxQW_zYP0AwQCOFufV0PeQoMML7b0blji-uw6wzrgdrIWEY8JPbvFEEmSXe_cK2OuP9T7gFSQb01L_dE2Hk3k4m-nTe-Ck1XkszdHrhA14nw_QjtU-w-HP3EeP11cP0xtyezebTy9vieGi6QkzHNqmMbbupDFNa4y0nRaybHihmZUtMMNqqFgpKNO2NRUVZd0BF3VX8QqKfXS86V2l-DJA7tVzHFIYTypeU8klFQUdU3KTMinmnMAq43rduxj6pJ1XjKq1ZrXRrEbN6luz-hxR_gddJbfU6eN_qNhAeQyHBaTfr_6hvgBOEpQa |
CitedBy_id | crossref_primary_10_1557_s43578_023_00992_0 crossref_primary_10_1007_s10008_023_05481_2 crossref_primary_10_3390_mi14071335 crossref_primary_10_1021_acsami_3c11165 crossref_primary_10_1063_5_0184698 |
Cites_doi | 10.7567/JJAP.56.08MC03 10.1002/pip.1244 10.1063/1.1825053 10.1016/j.solmat.2018.03.045 10.1016/j.tsf.2004.11.118 10.1016/j.solmat.2013.05.002 10.1063/1.4788717 10.1016/S0040-6090(00)01009-9 10.1007/978-3-030-37153-1 10.1021/acs.jpcc.8b00079 10.1021/acsami.8b14490 10.1002/pip.897 10.1149/2162-8777/abfc21 10.1109/PVSC45281.2020.9300930 10.1002/pssr.202100180 10.1109/JPHOTOV.2015.2396356 10.1002/aenm.201903752 10.1002/pip.955 10.1109/JPHOTOV.2017.2745710 10.1051/epjpv/2020010 10.1016/j.tsf.2013.10.036 10.1002/pip.2879 10.1002/aenm.201900408 10.1002/pssr.201600199 10.1016/j.solmat.2017.09.030 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to The Materials Research Society 2022 The Author(s), under exclusive licence to The Materials Research Society 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to The Materials Research Society 2022 – notice: The Author(s), under exclusive licence to The Materials Research Society 2022. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1557/s43578-022-00608-z |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2044-5326 |
EndPage | 1834 |
ExternalDocumentID | 10_1557_s43578_022_00608_z |
GrantInformation_xml | – fundername: Bundesministerium für Wirtschaft und Energie grantid: 03EE1059A; 03EE1059A; 03EE1059A; 03EE1059A; 03EE1059A funderid: http://dx.doi.org/10.13039/501100006360 |
GroupedDBID | -E. -~X .DC .FH 0E1 0R~ 2JN 4.4 406 5GY 5VS 74X 74Y 7WY 7~V 8FE 8FG 8UJ 8WZ A6W AAAZR AACDK AACJH AAGFV AAHNG AAIKC AAJBT AAKTX AAMNW AARAB AASML AATNV ABAKF ABBXD ABECU ABEFU ABGDZ ABJNI ABKKG ABMQK ABQTM ABROB ABTEG ABTKH ABTMW ABZCX ACAOD ACBEA ACBEK ACBMC ACDTI ACGFO ACGFS ACHSB ACIHN ACIMK ACIWK ACPIV ACUIJ ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC AEAQA AEFQL AEMSY AEMTW AENEX AESKC AEYYC AFBBN AFFUJ AFKRA AFLOS AFLVW AFUTZ AGMZJ AGQEE AIGIU AISIE AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALWZO AMTXH AMXSW AMYLF ARABE ATUCA BBLKV BENPR BEZIV BGHMG BGLVJ BMAJL BPHCQ C0O CS3 CZ9 D1I DC4 DOHLZ DPUIP DU5 EBLON EBS F5P FIGPU HG- HST HZ~ I.6 I.9 IH6 IKXTQ IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JZLTJ K60 K6~ KB. KC. L98 LLZTM M-V M0C NIKVX NPVJJ NQJWS O9- P2P PQBIZ PQQKQ PROAC PYCCK RAMDC RCA RNS ROL RR0 RSV S0W S6- S6U SJN SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TAE TN5 TWZ UPT UT1 WH7 WQ3 WXU YQT ~02 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SR 8BQ 8FD ABRTQ JG9 |
ID | FETCH-LOGICAL-c249t-1c2eb99cf7d8cc9bcc8fda485923a1f8be1c17e615401afbc60457de247d626e3 |
ISSN | 0884-2914 |
IngestDate | Wed Aug 13 04:19:35 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Tue Jul 01 03:46:09 EDT 2025 Fri Feb 21 02:46:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Thin films Solar cells Cu(In,Ga)Se Wide bandgap Sputtering Gallium oxide |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c249t-1c2eb99cf7d8cc9bcc8fda485923a1f8be1c17e615401afbc60457de247d626e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9429-506X 0000-0003-4867-1578 0000-0002-7051-5208 |
PQID | 2708280430 |
PQPubID | 626330 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2708280430 crossref_citationtrail_10_1557_s43578_022_00608_z crossref_primary_10_1557_s43578_022_00608_z springer_journals_10_1557_s43578_022_00608_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-14 |
PublicationDateYYYYMMDD | 2022-06-14 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Warrendale |
PublicationTitle | Journal of materials research |
PublicationTitleAbbrev | Journal of Materials Research |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | CarronRNishiwakiSFeurerTHertwigRAvanciniELöckingerJYangS-CBuechelerSTiwariANAdvanced alkali treatments for high-efficiency Cu(In, Ga)Se2 solar cells on flexible substratesAdv. Energy Mater.20199190040810.1002/aenm.201900408 HertwigRNishiwakiSOchoaMYangS-CFeurerTGilshteinETiwariANCarronRALD-ZnMgO and absorber surface modifications to substitute CdS buffer layers in co-evaporated CIGSe solar cellsEPJ Photovolt.202011121:CAS:528:DC%2BB3MXntVehtbk%3D10.1051/epjpv/2020010 PowallaMJacksonPWitteWHariskosDPaetelSTschamberCWischmannWHigh-efficiency Cu(In, Ga)Se2 cells and modulesSol. Energy Mater. Sol. Cells201311951581:CAS:528:DC%2BC3sXhtVaitLzF10.1016/j.solmat.2013.05.002 TaiKFKamadaRYagiokaTKatoTSugimotoHFrom 209 to 223% Cu(In, Ga)(S, Se)2 solar cell: reduced recombination rate at the heterojunction and the depletion region due to K-treatmentJpn. J. Appl. Phys.20175608MC0310.7567/JJAP.56.08MC03 LöckingerJNishiwakiSWeissTPBissigBRomanyukYEBuechelerSTiwariANTiO2 as intermediate buffer layer in Cu(In, Ga)Se2 solar cellsSol. Energy Mater. Sol. Cells201817439740410.1016/j.solmat.2017.09.030 IshizukaSTaguchiNNishinagaJKamikawaYTanakaSShibataHGroup III elemental composition dependence of RbF postdeposition treatment effects on Cu(In, Ga)Se2 thin films and solar cellsJ. Phys. Chem. C2018122380938171:CAS:528:DC%2BC1cXitVWhtb0%3D10.1021/acs.jpcc.8b00079 MeyerBKPolityAFarangisBHeYHasselkampDKrämerTWangCStructural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputteringAppl. Phys. Lett.200485492949311:CAS:528:DC%2BD2cXhtValtb3M10.1063/1.1825053 HariskosDSpieringSPowallaMBuffer layers in Cu(In, Ga)Se2 solar cells and modulesThin Solid Films2005480–4819910910.1016/j.tsf.2004.11.118 JacksonPWuerzRHariskosDLotterEWitteWPowallaMEffects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%Phys. Stat. Sol. (RRL)2016105835861:CAS:528:DC%2BC28XhtFChsbzI10.1002/pssr.201600199 WitteWPaetelSMennerRBauerAHariskosDThe application of sputtered gallium oxide as buffer for Cu(In, Ga)Se2 solar cellsPhys. Stat. Sol. (RRL)20211521001801:CAS:528:DC%2BB3MXhsFCnsLzM10.1002/pssr.202100180 LöckingerJNishiwakiSAndresCErniRRossellMDRomanyukYEBuechelerSTiwariANALD-ZnxTiyO as window layer in Cu(In, Ga)Se2 solar cellsACS Appl. Mater. Interfaces201810436034360910.1021/acsami.8b14490 HigashiwakiMFujitaSGallium Oxide2020ChamSpringer International Publisher10.1007/978-3-030-37153-1 ChantanaJKatoTSugimotoHMinemotoTThin-film Cu(In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1-xMgxO window layerProg. Photovolt. Res. Appl.2017254314401:CAS:528:DC%2BC2sXntVSjsbo%3D10.1002/pip.2879 KoidaTKamikawa-ShimizuYYamadaAShibataHNikiSCu(In, Ga)Se2 solar cells with amorphous oxide semiconducting buffer layersIEEE J. Photovolt.2015595696110.1109/JPHOTOV.2015.2396356 Reference Air Mass 1.5 Spectra from the American Society for Testing and Materials (ASTM). NREL website, https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html. Accessed 19 Oct 2021 HeinemannMDvan HestMFAMContrerasMPerkinsJDZakutayevAKaufmannCAUnoldTGinleyDSBerryJJAmorphous oxides as electron transport layers in Cu(In, Ga)Se2 superstrate devicesPhys. Stat. Sol. A20172141600870 LarssonFDonzel-GargandOKellerJEdoffMTörndahlTAtomic layer deposition of Zn(O, S) buffer layers for Cu(In, Ga)Se2 solar cells with KF post-deposition treatmentSol. Energy Mater. Sol. Cells20181838151:CAS:528:DC%2BC1cXnsFWjtrw%3D10.1016/j.solmat.2018.03.045 GarudSGampaNAllenTGKotipalliRFlandreDBatukMHadermannJMeurisMPoortmansJSmetsAVermangBSurface passivation of CIGS solar cells using gallium oxidePhys. Stat. Sol. A20182151700826 WitteWCarronRHariskosDFuFMennerRBuechelerSIZO or IOH window layers combined with Zn(O, S) and CdS buffers for Cu(In, Ga)Se2 solar cellsPhys. Stat. Sol. A20172141700688 NaghaviNAbou-RasDAllsopNBarreauNBüchelerSEnnaouiAFischerC-HGuillenCHariskosDHerreroJKlenkRKushiyaKLincotDMennerRNakadaTPlatzer-BjörkmanCSpieringSTiwariANTörndahlTBuffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics: present status and current developmentsProg. Photovolt. Res. Appl.2010184114331:CAS:528:DC%2BC3cXht1Wjs7%2FF10.1002/pip.955 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490–00 by00 from the American Society for Testing and Materials (ASTM). NREL website, https://www.nrel.gov/grid/solar-resource/spectra-astm-e490.html. Accessed 19 Oct 2021 SiebentrittSAvanciniEBärMBombschJBourgeoisEBuechelerSCarronRCastroCDuguaySFélixRHandickEHariskosDHavuVJacksonPKomsaH-PKunzeTMalitckayaMMenozziRNesladekMNicoaraNPuskaMRaghuwanshiMPareigePSadewasserSSozziGTiwariANUedaSVilalta-ClementeAWeissTPWernerFWilksRGWitteWWolterMHHeavy alkali treatment of Cu(In, Ga)Se2 solar cells: surface versus bulk effectsAdv. Energy Mater.20201019037521:CAS:528:DC%2BB3cXhvVSqs7w%3D10.1002/aenm.201903752 KikuchiKImuraSMiyakawaKKubotaMOhtaEElectrical and optical properties of Ga2O3/CuGaSe2 heterojunction photoconductorsThin Solid Films20145506356371:CAS:528:DC%2BC3sXhs1yqsLzM10.1016/j.tsf.2013.10.036 MinemotoTNegamiTNishiwakiSTakakuraHHamakawaYPreparation of Zn1-xMgxO films by radio frequency magnetron sputteringThin Solid Films20003721731761:CAS:528:DC%2BD3cXlvV2hsro%3D10.1016/S0040-6090(00)01009-9 WitteWAbou-RasDHariskosDChemical bath deposition of Zn(O, S) and CdS buffers: influence of Cu(In, Ga)Se2 grain orientationAppl. Phys. Lett.201310210.1063/1.4788717 HariskosDFuchsBMennerRNaghaviNHubertCLincotDPowallaMThe Zn(S, O, OH)/ZnMgO buffer in thin-film Cu(In, Ga)(Se, S)2-based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In, Ga)Se2 solar cellsProg. Photovolt. Res. Appl.2009174794881:CAS:528:DC%2BD1MXhtlCgtLnJ10.1002/pip.897 KatoTHandaAYagiokaTMatsuuraTYamamotoKHigashiSWuJ-LTaiKFHiroiHYoshiyamaTSakaiTSugimotoHEnhanced efficiency of Cd-free Cu(In, Ga)(Se, S)2 minimodules via (Zn, Mg)O second buffer layer and alkali metal post-treatmentIEEE J. Photovolt.201771773178010.1109/JPHOTOV.2017.2745710 ChirilaAReinhardPPianezziFBloeschPUhlARFellaCKranzLKellerDGretenerCHagendorferHJaegerDErniRNishiwakiSBuechelerSTiwariANPotassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cellsNat. Commun.201312110711111:CAS:528:DC%2BC3sXhslWisLfL WitteWHempelWPaetelSMennerRHariskosDEffects of sputtered InxSy buffer on CIGS with RbF post-deposition treatmentECS J. Solid State Sci. Technol.2021101:CAS:528:DC%2BB3MXhtlOjs7vL10.1149/2162-8777/abfc21 HariskosDMennerRJacksonPPaetelSWitteWWischmannWPowallaMBürkertLKolbTOertelMDimmlerBFuchsBNew reaction kinetics for a high-rate chemical bath deposition of the Zn(S, O) buffer layer for Cu(In, Ga)Se2-based solar cellsProg. Photovolt. Res. Appl.2012205345421:CAS:528:DC%2BC38XhtFansrfJ10.1002/pip.1244 H.A. Yetkin, T. Kodalle, T. Bertram, A. Vellanueva-Tovar, R. Klenk, B. Szyszka, R. Schlatmann, C.A. Kaufmann, in Proc. 47th IEEE Photovoltaic Specialists Conference (PVSC) 2020, Comparison of the Thermal Stability of Differently Buffered CIGSe Solar Cells. pp. 1192–1197 (2020) W Witte (608_CR11) 2021; 15 M Higashiwaki (608_CR1) 2020 KF Tai (608_CR30) 2017; 56 W Witte (608_CR14) 2013; 102 P Jackson (608_CR2) 2016; 10 A Chirila (608_CR12) 2013; 12 W Witte (608_CR21) 2017; 214 MD Heinemann (608_CR7) 2017; 214 T Koida (608_CR9) 2015; 5 D Hariskos (608_CR5) 2012; 20 J Löckinger (608_CR16) 2018; 10 W Witte (608_CR22) 2021; 10 F Larsson (608_CR23) 2018; 183 M Powalla (608_CR31) 2013; 119 T Minemoto (608_CR18) 2000; 372 D Hariskos (608_CR27) 2009; 17 608_CR20 D Hariskos (608_CR25) 2005; 480–481 N Naghavi (608_CR26) 2010; 18 BK Meyer (608_CR17) 2004; 85 K Kikuchi (608_CR6) 2014; 550 S Garud (608_CR8) 2018; 215 R Carron (608_CR4) 2019; 9 608_CR19 R Hertwig (608_CR24) 2020; 11 J Löckinger (608_CR15) 2018; 174 S Ishizuka (608_CR3) 2018; 122 608_CR10 T Kato (608_CR28) 2017; 7 S Siebentritt (608_CR13) 2020; 10 J Chantana (608_CR29) 2017; 25 |
References_xml | – reference: TaiKFKamadaRYagiokaTKatoTSugimotoHFrom 209 to 223% Cu(In, Ga)(S, Se)2 solar cell: reduced recombination rate at the heterojunction and the depletion region due to K-treatmentJpn. J. Appl. Phys.20175608MC0310.7567/JJAP.56.08MC03 – reference: H.A. Yetkin, T. Kodalle, T. Bertram, A. Vellanueva-Tovar, R. Klenk, B. Szyszka, R. Schlatmann, C.A. Kaufmann, in Proc. 47th IEEE Photovoltaic Specialists Conference (PVSC) 2020, Comparison of the Thermal Stability of Differently Buffered CIGSe Solar Cells. pp. 1192–1197 (2020) – reference: ChantanaJKatoTSugimotoHMinemotoTThin-film Cu(In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1-xMgxO window layerProg. Photovolt. Res. Appl.2017254314401:CAS:528:DC%2BC2sXntVSjsbo%3D10.1002/pip.2879 – reference: IshizukaSTaguchiNNishinagaJKamikawaYTanakaSShibataHGroup III elemental composition dependence of RbF postdeposition treatment effects on Cu(In, Ga)Se2 thin films and solar cellsJ. Phys. Chem. C2018122380938171:CAS:528:DC%2BC1cXitVWhtb0%3D10.1021/acs.jpcc.8b00079 – reference: HeinemannMDvan HestMFAMContrerasMPerkinsJDZakutayevAKaufmannCAUnoldTGinleyDSBerryJJAmorphous oxides as electron transport layers in Cu(In, Ga)Se2 superstrate devicesPhys. Stat. Sol. A20172141600870 – reference: KatoTHandaAYagiokaTMatsuuraTYamamotoKHigashiSWuJ-LTaiKFHiroiHYoshiyamaTSakaiTSugimotoHEnhanced efficiency of Cd-free Cu(In, Ga)(Se, S)2 minimodules via (Zn, Mg)O second buffer layer and alkali metal post-treatmentIEEE J. Photovolt.201771773178010.1109/JPHOTOV.2017.2745710 – reference: WitteWPaetelSMennerRBauerAHariskosDThe application of sputtered gallium oxide as buffer for Cu(In, Ga)Se2 solar cellsPhys. Stat. Sol. (RRL)20211521001801:CAS:528:DC%2BB3MXhsFCnsLzM10.1002/pssr.202100180 – reference: Reference Air Mass 1.5 Spectra from the American Society for Testing and Materials (ASTM). NREL website, https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html. Accessed 19 Oct 2021 – reference: HariskosDSpieringSPowallaMBuffer layers in Cu(In, Ga)Se2 solar cells and modulesThin Solid Films2005480–4819910910.1016/j.tsf.2004.11.118 – reference: LarssonFDonzel-GargandOKellerJEdoffMTörndahlTAtomic layer deposition of Zn(O, S) buffer layers for Cu(In, Ga)Se2 solar cells with KF post-deposition treatmentSol. Energy Mater. Sol. Cells20181838151:CAS:528:DC%2BC1cXnsFWjtrw%3D10.1016/j.solmat.2018.03.045 – reference: MeyerBKPolityAFarangisBHeYHasselkampDKrämerTWangCStructural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputteringAppl. Phys. Lett.200485492949311:CAS:528:DC%2BD2cXhtValtb3M10.1063/1.1825053 – reference: HariskosDMennerRJacksonPPaetelSWitteWWischmannWPowallaMBürkertLKolbTOertelMDimmlerBFuchsBNew reaction kinetics for a high-rate chemical bath deposition of the Zn(S, O) buffer layer for Cu(In, Ga)Se2-based solar cellsProg. Photovolt. Res. Appl.2012205345421:CAS:528:DC%2BC38XhtFansrfJ10.1002/pip.1244 – reference: GarudSGampaNAllenTGKotipalliRFlandreDBatukMHadermannJMeurisMPoortmansJSmetsAVermangBSurface passivation of CIGS solar cells using gallium oxidePhys. Stat. Sol. A20182151700826 – reference: WitteWHempelWPaetelSMennerRHariskosDEffects of sputtered InxSy buffer on CIGS with RbF post-deposition treatmentECS J. Solid State Sci. Technol.2021101:CAS:528:DC%2BB3MXhtlOjs7vL10.1149/2162-8777/abfc21 – reference: MinemotoTNegamiTNishiwakiSTakakuraHHamakawaYPreparation of Zn1-xMgxO films by radio frequency magnetron sputteringThin Solid Films20003721731761:CAS:528:DC%2BD3cXlvV2hsro%3D10.1016/S0040-6090(00)01009-9 – reference: LöckingerJNishiwakiSAndresCErniRRossellMDRomanyukYEBuechelerSTiwariANALD-ZnxTiyO as window layer in Cu(In, Ga)Se2 solar cellsACS Appl. Mater. Interfaces201810436034360910.1021/acsami.8b14490 – reference: WitteWCarronRHariskosDFuFMennerRBuechelerSIZO or IOH window layers combined with Zn(O, S) and CdS buffers for Cu(In, Ga)Se2 solar cellsPhys. Stat. Sol. A20172141700688 – reference: ChirilaAReinhardPPianezziFBloeschPUhlARFellaCKranzLKellerDGretenerCHagendorferHJaegerDErniRNishiwakiSBuechelerSTiwariANPotassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cellsNat. Commun.201312110711111:CAS:528:DC%2BC3sXhslWisLfL – reference: HertwigRNishiwakiSOchoaMYangS-CFeurerTGilshteinETiwariANCarronRALD-ZnMgO and absorber surface modifications to substitute CdS buffer layers in co-evaporated CIGSe solar cellsEPJ Photovolt.202011121:CAS:528:DC%2BB3MXntVehtbk%3D10.1051/epjpv/2020010 – reference: CarronRNishiwakiSFeurerTHertwigRAvanciniELöckingerJYangS-CBuechelerSTiwariANAdvanced alkali treatments for high-efficiency Cu(In, Ga)Se2 solar cells on flexible substratesAdv. Energy Mater.20199190040810.1002/aenm.201900408 – reference: JacksonPWuerzRHariskosDLotterEWitteWPowallaMEffects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%Phys. Stat. Sol. (RRL)2016105835861:CAS:528:DC%2BC28XhtFChsbzI10.1002/pssr.201600199 – reference: LöckingerJNishiwakiSWeissTPBissigBRomanyukYEBuechelerSTiwariANTiO2 as intermediate buffer layer in Cu(In, Ga)Se2 solar cellsSol. Energy Mater. Sol. Cells201817439740410.1016/j.solmat.2017.09.030 – reference: KoidaTKamikawa-ShimizuYYamadaAShibataHNikiSCu(In, Ga)Se2 solar cells with amorphous oxide semiconducting buffer layersIEEE J. Photovolt.2015595696110.1109/JPHOTOV.2015.2396356 – reference: PowallaMJacksonPWitteWHariskosDPaetelSTschamberCWischmannWHigh-efficiency Cu(In, Ga)Se2 cells and modulesSol. Energy Mater. Sol. Cells201311951581:CAS:528:DC%2BC3sXhtVaitLzF10.1016/j.solmat.2013.05.002 – reference: HigashiwakiMFujitaSGallium Oxide2020ChamSpringer International Publisher10.1007/978-3-030-37153-1 – reference: NaghaviNAbou-RasDAllsopNBarreauNBüchelerSEnnaouiAFischerC-HGuillenCHariskosDHerreroJKlenkRKushiyaKLincotDMennerRNakadaTPlatzer-BjörkmanCSpieringSTiwariANTörndahlTBuffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics: present status and current developmentsProg. Photovolt. Res. Appl.2010184114331:CAS:528:DC%2BC3cXht1Wjs7%2FF10.1002/pip.955 – reference: KikuchiKImuraSMiyakawaKKubotaMOhtaEElectrical and optical properties of Ga2O3/CuGaSe2 heterojunction photoconductorsThin Solid Films20145506356371:CAS:528:DC%2BC3sXhs1yqsLzM10.1016/j.tsf.2013.10.036 – reference: WitteWAbou-RasDHariskosDChemical bath deposition of Zn(O, S) and CdS buffers: influence of Cu(In, Ga)Se2 grain orientationAppl. Phys. Lett.201310210.1063/1.4788717 – reference: HariskosDFuchsBMennerRNaghaviNHubertCLincotDPowallaMThe Zn(S, O, OH)/ZnMgO buffer in thin-film Cu(In, Ga)(Se, S)2-based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In, Ga)Se2 solar cellsProg. Photovolt. Res. Appl.2009174794881:CAS:528:DC%2BD1MXhtlCgtLnJ10.1002/pip.897 – reference: 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490–00 by00 from the American Society for Testing and Materials (ASTM). NREL website, https://www.nrel.gov/grid/solar-resource/spectra-astm-e490.html. Accessed 19 Oct 2021 – reference: SiebentrittSAvanciniEBärMBombschJBourgeoisEBuechelerSCarronRCastroCDuguaySFélixRHandickEHariskosDHavuVJacksonPKomsaH-PKunzeTMalitckayaMMenozziRNesladekMNicoaraNPuskaMRaghuwanshiMPareigePSadewasserSSozziGTiwariANUedaSVilalta-ClementeAWeissTPWernerFWilksRGWitteWWolterMHHeavy alkali treatment of Cu(In, Ga)Se2 solar cells: surface versus bulk effectsAdv. Energy Mater.20201019037521:CAS:528:DC%2BB3cXhvVSqs7w%3D10.1002/aenm.201903752 – volume: 12 start-page: 1107 year: 2013 ident: 608_CR12 publication-title: Nat. Commun. – volume: 56 start-page: 08MC03 year: 2017 ident: 608_CR30 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.56.08MC03 – ident: 608_CR20 – volume: 214 start-page: 1700688 year: 2017 ident: 608_CR21 publication-title: Phys. Stat. Sol. A – volume: 20 start-page: 534 year: 2012 ident: 608_CR5 publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.1244 – volume: 85 start-page: 4929 year: 2004 ident: 608_CR17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1825053 – volume: 183 start-page: 8 year: 2018 ident: 608_CR23 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.03.045 – volume: 480–481 start-page: 99 year: 2005 ident: 608_CR25 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.11.118 – volume: 119 start-page: 51 year: 2013 ident: 608_CR31 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.05.002 – volume: 215 start-page: 1700826 year: 2018 ident: 608_CR8 publication-title: Phys. Stat. Sol. A – volume: 102 year: 2013 ident: 608_CR14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4788717 – volume: 372 start-page: 173 year: 2000 ident: 608_CR18 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(00)01009-9 – volume-title: Gallium Oxide year: 2020 ident: 608_CR1 doi: 10.1007/978-3-030-37153-1 – volume: 122 start-page: 3809 year: 2018 ident: 608_CR3 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b00079 – volume: 10 start-page: 43603 year: 2018 ident: 608_CR16 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14490 – volume: 17 start-page: 479 year: 2009 ident: 608_CR27 publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.897 – volume: 10 year: 2021 ident: 608_CR22 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2162-8777/abfc21 – ident: 608_CR10 doi: 10.1109/PVSC45281.2020.9300930 – volume: 15 start-page: 2100180 year: 2021 ident: 608_CR11 publication-title: Phys. Stat. Sol. (RRL) doi: 10.1002/pssr.202100180 – volume: 5 start-page: 956 year: 2015 ident: 608_CR9 publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2015.2396356 – volume: 10 start-page: 1903752 year: 2020 ident: 608_CR13 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903752 – volume: 18 start-page: 411 year: 2010 ident: 608_CR26 publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.955 – volume: 7 start-page: 1773 year: 2017 ident: 608_CR28 publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2017.2745710 – ident: 608_CR19 – volume: 11 start-page: 12 year: 2020 ident: 608_CR24 publication-title: EPJ Photovolt. doi: 10.1051/epjpv/2020010 – volume: 550 start-page: 635 year: 2014 ident: 608_CR6 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.10.036 – volume: 214 start-page: 1600870 year: 2017 ident: 608_CR7 publication-title: Phys. Stat. Sol. A – volume: 25 start-page: 431 year: 2017 ident: 608_CR29 publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.2879 – volume: 9 start-page: 1900408 year: 2019 ident: 608_CR4 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900408 – volume: 10 start-page: 583 year: 2016 ident: 608_CR2 publication-title: Phys. Stat. Sol. (RRL) doi: 10.1002/pssr.201600199 – volume: 174 start-page: 397 year: 2018 ident: 608_CR15 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.09.030 |
SSID | ssj0015074 |
Score | 2.4051657 |
Snippet | Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se
2
(CIGS) thin-film solar cells. From an industrial point of... Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se2 (CIGS) thin-film solar cells. From an industrial point of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1825 |
SubjectTerms | Ammonia Antireflection coatings Applied and Technical Physics Biomaterials Buffers Cadmium sulfide Chemistry and Materials Science Copper indium gallium selenides Deposition Gallium oxides Inorganic Chemistry Invited Paper Magnetron sputtering Materials Engineering Materials research Materials Science Nanotechnology Photovoltaic cells Solar cells Substitutes Thin films Zinc oxide |
Title | Influence of sputtered gallium oxide as buffer or high-resistive layer on performance of Cu(In,Ga)Se2-based solar cells |
URI | https://link.springer.com/article/10.1557/s43578-022-00608-z https://www.proquest.com/docview/2708280430 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TkjwgGCAVhiTH3gAdYbcmstjN-gFWDVpm7a3KHZsqVKXTE3Dpf-If8k5znUrm4CXqHJTJ-n3xf7O8fE5hLxRBsxxtm0zMw4MBm9izLhQLrMDVynX92NPJ_U5nrmTc-fz5eCy0_nVilrKV_y9WP9xX8n_oAptgCvukv0HZOtOoQE-A75wBITh-FcYT6sKIyj5smtdcxoEJC6mz_OrfvpjHkssJMNzrIKCoeeYnZiBhY1v9jfZX0Q_sR0DyZv9AxigkaPwxAFpDOIyOJUWw-kOXewYtYre_uwOWQsKuHj0fplHqPY3X8zh_voX6UIto6vGBwu6fXG79SQCLY9L5lI17D2WVZmwVjaAymMBxi6W-tn0WGI4Ni6S1DtqykHPYVZQni51m2U4DhvYxc76atQuUsVU7DRbYzBYTIPWfG6W3tKNuWKgCxxnDub7Yfo2Ddfw2bqZGatogMnwNDz5OAq_Tmdftsi2BRaJ1SXbw9Hh4axesgJh7RQmS_EA5Q4tuMqHzWvcVEGNaXNrNV6LnLMn5HEJIx0WVHtKOjLZIY9aOSt3yAMdMyyyZ-R7TT-aKlrTj5b0o5p-NMpoQT-aLulN-lFNP5omtEU_7OsofztNDsbRu5p4VBOPauI9J-ejT2dHE1bW8WACjPsVM4UleRAI5cW-EAEXwldx5PgDMC4iU_lcmsL0JGhrMPYjxYULdoYXS8vxYrC3pf2CdJM0kbuEmjwy3VgG0JXhREEQ-a4juBLc86UEhvSIWf2voSiT3GOtlUWIxi5gERZYhIBFqLEI1z3Sr39zXaR4uffsvQqusBwKstDyMBMkps_rkYMKwubru3t7eX9vr8jD5gXaI93VMpevQQSv-D7Z8kfj_ZKEvwH3p7Qe |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+sputtered+gallium+oxide+as+buffer+or+high-resistive+layer+on+performance+of+Cu%28In%2CGa%29Se2-based+solar+cells&rft.jtitle=Journal+of+materials+research&rft.au=Witte+Wolfram&rft.au=Hempel+Wolfram&rft.au=Paetel+Stefan&rft.au=Menner%2C+Richard&rft.date=2022-06-14&rft.pub=Springer+Nature+B.V&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=37&rft.issue=11&rft.spage=1825&rft.epage=1834&rft_id=info:doi/10.1557%2Fs43578-022-00608-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon |