Influence of sputtered gallium oxide as buffer or high-resistive layer on performance of Cu(In,Ga)Se2-based solar cells

Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se 2 (CIGS) thin-film solar cells. From an industrial point of view, a high-rate and dry deposition method like sputtering would be the most favorable technique. This study presents results with the wide-ba...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research Vol. 37; no. 11; pp. 1825 - 1834
Main Authors Witte, Wolfram, Hempel, Wolfram, Paetel, Stefan, Menner, Richard, Hariskos, Dimitrios
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 14.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se 2 (CIGS) thin-film solar cells. From an industrial point of view, a high-rate and dry deposition method like sputtering would be the most favorable technique. This study presents results with the wide-bandgap material gallium oxide (Ga 2 O 3 ) deposited by magnetron sputtering applied as a substitution for the traditional CdS buffer or the intrinsic ZnO (i-ZnO) HR layer. With state-of-the-art CIGS absorber layers, subject to a RbF post-deposition treatment, an ammonia rinsing of the CIGS surface before sputtering of X-ray amorphous Ga 2 O 3 has mostly a positive impact on device performance reaching efficiencies up to 14%. An efficiency of 20.2% with anti-reflective coating was achieved with Ga 2 O 3 applied as HR layer as substitution for i-ZnO in combination with a solution-grown CdS buffer and ZnO:Al as front contact. This result is comparable to the efficiency of 20.4% for the CIGS/CdS/i-ZnO/ZnO:Al reference cell. Graphical abstract
AbstractList Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se2 (CIGS) thin-film solar cells. From an industrial point of view, a high-rate and dry deposition method like sputtering would be the most favorable technique. This study presents results with the wide-bandgap material gallium oxide (Ga2O3) deposited by magnetron sputtering applied as a substitution for the traditional CdS buffer or the intrinsic ZnO (i-ZnO) HR layer. With state-of-the-art CIGS absorber layers, subject to a RbF post-deposition treatment, an ammonia rinsing of the CIGS surface before sputtering of X-ray amorphous Ga2O3 has mostly a positive impact on device performance reaching efficiencies up to 14%. An efficiency of 20.2% with anti-reflective coating was achieved with Ga2O3 applied as HR layer as substitution for i-ZnO in combination with a solution-grown CdS buffer and ZnO:Al as front contact. This result is comparable to the efficiency of 20.4% for the CIGS/CdS/i-ZnO/ZnO:Al reference cell.
Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se 2 (CIGS) thin-film solar cells. From an industrial point of view, a high-rate and dry deposition method like sputtering would be the most favorable technique. This study presents results with the wide-bandgap material gallium oxide (Ga 2 O 3 ) deposited by magnetron sputtering applied as a substitution for the traditional CdS buffer or the intrinsic ZnO (i-ZnO) HR layer. With state-of-the-art CIGS absorber layers, subject to a RbF post-deposition treatment, an ammonia rinsing of the CIGS surface before sputtering of X-ray amorphous Ga 2 O 3 has mostly a positive impact on device performance reaching efficiencies up to 14%. An efficiency of 20.2% with anti-reflective coating was achieved with Ga 2 O 3 applied as HR layer as substitution for i-ZnO in combination with a solution-grown CdS buffer and ZnO:Al as front contact. This result is comparable to the efficiency of 20.4% for the CIGS/CdS/i-ZnO/ZnO:Al reference cell. Graphical abstract
Author Hempel, Wolfram
Hariskos, Dimitrios
Paetel, Stefan
Witte, Wolfram
Menner, Richard
Author_xml – sequence: 1
  givenname: Wolfram
  orcidid: 0000-0002-9429-506X
  surname: Witte
  fullname: Witte, Wolfram
  email: wolfram.witte@zsw-bw.de
  organization: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)
– sequence: 2
  givenname: Wolfram
  surname: Hempel
  fullname: Hempel, Wolfram
  organization: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)
– sequence: 3
  givenname: Stefan
  orcidid: 0000-0002-7051-5208
  surname: Paetel
  fullname: Paetel, Stefan
  organization: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)
– sequence: 4
  givenname: Richard
  surname: Menner
  fullname: Menner, Richard
  organization: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)
– sequence: 5
  givenname: Dimitrios
  orcidid: 0000-0003-4867-1578
  surname: Hariskos
  fullname: Hariskos, Dimitrios
  organization: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)
BookMark eNp9kE1LxDAQhoMouH78AU8BLwpGkzRt06Msui4IHtRzSNPJGskma9L69evtuoLgwdPA8D7vDM8e2g4xAEJHjJ6zsqwvsijKWhLKOaG0opJ8bqEJp0KQsuDVNppQKQXhDRO7aC_nZ0pZSWsxQW_zYP0AwQCOFufV0PeQoMML7b0blji-uw6wzrgdrIWEY8JPbvFEEmSXe_cK2OuP9T7gFSQb01L_dE2Hk3k4m-nTe-Ck1XkszdHrhA14nw_QjtU-w-HP3EeP11cP0xtyezebTy9vieGi6QkzHNqmMbbupDFNa4y0nRaybHihmZUtMMNqqFgpKNO2NRUVZd0BF3VX8QqKfXS86V2l-DJA7tVzHFIYTypeU8klFQUdU3KTMinmnMAq43rduxj6pJ1XjKq1ZrXRrEbN6luz-hxR_gddJbfU6eN_qNhAeQyHBaTfr_6hvgBOEpQa
CitedBy_id crossref_primary_10_1557_s43578_023_00992_0
crossref_primary_10_1007_s10008_023_05481_2
crossref_primary_10_3390_mi14071335
crossref_primary_10_1021_acsami_3c11165
crossref_primary_10_1063_5_0184698
Cites_doi 10.7567/JJAP.56.08MC03
10.1002/pip.1244
10.1063/1.1825053
10.1016/j.solmat.2018.03.045
10.1016/j.tsf.2004.11.118
10.1016/j.solmat.2013.05.002
10.1063/1.4788717
10.1016/S0040-6090(00)01009-9
10.1007/978-3-030-37153-1
10.1021/acs.jpcc.8b00079
10.1021/acsami.8b14490
10.1002/pip.897
10.1149/2162-8777/abfc21
10.1109/PVSC45281.2020.9300930
10.1002/pssr.202100180
10.1109/JPHOTOV.2015.2396356
10.1002/aenm.201903752
10.1002/pip.955
10.1109/JPHOTOV.2017.2745710
10.1051/epjpv/2020010
10.1016/j.tsf.2013.10.036
10.1002/pip.2879
10.1002/aenm.201900408
10.1002/pssr.201600199
10.1016/j.solmat.2017.09.030
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Materials Research Society 2022
The Author(s), under exclusive licence to The Materials Research Society 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to The Materials Research Society 2022
– notice: The Author(s), under exclusive licence to The Materials Research Society 2022.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1557/s43578-022-00608-z
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2044-5326
EndPage 1834
ExternalDocumentID 10_1557_s43578_022_00608_z
GrantInformation_xml – fundername: Bundesministerium für Wirtschaft und Energie
  grantid: 03EE1059A; 03EE1059A; 03EE1059A; 03EE1059A; 03EE1059A
  funderid: http://dx.doi.org/10.13039/501100006360
GroupedDBID -E.
-~X
.DC
.FH
0E1
0R~
2JN
4.4
406
5GY
5VS
74X
74Y
7WY
7~V
8FE
8FG
8UJ
8WZ
A6W
AAAZR
AACDK
AACJH
AAGFV
AAHNG
AAIKC
AAJBT
AAKTX
AAMNW
AARAB
AASML
AATNV
ABAKF
ABBXD
ABECU
ABEFU
ABGDZ
ABJNI
ABKKG
ABMQK
ABQTM
ABROB
ABTEG
ABTKH
ABTMW
ABZCX
ACAOD
ACBEA
ACBEK
ACBMC
ACDTI
ACGFO
ACGFS
ACHSB
ACIHN
ACIMK
ACIWK
ACPIV
ACUIJ
ACXSD
ACZBM
ACZOJ
ACZUX
ADCGK
ADFEC
AEAQA
AEFQL
AEMSY
AEMTW
AENEX
AESKC
AEYYC
AFBBN
AFFUJ
AFKRA
AFLOS
AFLVW
AFUTZ
AGMZJ
AGQEE
AIGIU
AISIE
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AMTXH
AMXSW
AMYLF
ARABE
ATUCA
BBLKV
BENPR
BEZIV
BGHMG
BGLVJ
BMAJL
BPHCQ
C0O
CS3
CZ9
D1I
DC4
DOHLZ
DPUIP
DU5
EBLON
EBS
F5P
FIGPU
HG-
HST
HZ~
I.6
I.9
IH6
IKXTQ
IS6
IWAJR
I~P
J36
J38
J3A
JHPGK
JKPOH
JZLTJ
K60
K6~
KB.
KC.
L98
LLZTM
M-V
M0C
NIKVX
NPVJJ
NQJWS
O9-
P2P
PQBIZ
PQQKQ
PROAC
PYCCK
RAMDC
RCA
RNS
ROL
RR0
RSV
S0W
S6-
S6U
SJN
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
T9M
TAE
TN5
TWZ
UPT
UT1
WH7
WQ3
WXU
YQT
~02
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SR
8BQ
8FD
ABRTQ
JG9
ID FETCH-LOGICAL-c249t-1c2eb99cf7d8cc9bcc8fda485923a1f8be1c17e615401afbc60457de247d626e3
ISSN 0884-2914
IngestDate Wed Aug 13 04:19:35 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Tue Jul 01 03:46:09 EDT 2025
Fri Feb 21 02:46:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Thin films
Solar cells
Cu(In,Ga)Se
Wide bandgap
Sputtering
Gallium oxide
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-1c2eb99cf7d8cc9bcc8fda485923a1f8be1c17e615401afbc60457de247d626e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9429-506X
0000-0003-4867-1578
0000-0002-7051-5208
PQID 2708280430
PQPubID 626330
PageCount 10
ParticipantIDs proquest_journals_2708280430
crossref_citationtrail_10_1557_s43578_022_00608_z
crossref_primary_10_1557_s43578_022_00608_z
springer_journals_10_1557_s43578_022_00608_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-14
PublicationDateYYYYMMDD 2022-06-14
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-14
  day: 14
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Warrendale
PublicationTitle Journal of materials research
PublicationTitleAbbrev Journal of Materials Research
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References CarronRNishiwakiSFeurerTHertwigRAvanciniELöckingerJYangS-CBuechelerSTiwariANAdvanced alkali treatments for high-efficiency Cu(In, Ga)Se2 solar cells on flexible substratesAdv. Energy Mater.20199190040810.1002/aenm.201900408
HertwigRNishiwakiSOchoaMYangS-CFeurerTGilshteinETiwariANCarronRALD-ZnMgO and absorber surface modifications to substitute CdS buffer layers in co-evaporated CIGSe solar cellsEPJ Photovolt.202011121:CAS:528:DC%2BB3MXntVehtbk%3D10.1051/epjpv/2020010
PowallaMJacksonPWitteWHariskosDPaetelSTschamberCWischmannWHigh-efficiency Cu(In, Ga)Se2 cells and modulesSol. Energy Mater. Sol. Cells201311951581:CAS:528:DC%2BC3sXhtVaitLzF10.1016/j.solmat.2013.05.002
TaiKFKamadaRYagiokaTKatoTSugimotoHFrom 209 to 223% Cu(In, Ga)(S, Se)2 solar cell: reduced recombination rate at the heterojunction and the depletion region due to K-treatmentJpn. J. Appl. Phys.20175608MC0310.7567/JJAP.56.08MC03
LöckingerJNishiwakiSWeissTPBissigBRomanyukYEBuechelerSTiwariANTiO2 as intermediate buffer layer in Cu(In, Ga)Se2 solar cellsSol. Energy Mater. Sol. Cells201817439740410.1016/j.solmat.2017.09.030
IshizukaSTaguchiNNishinagaJKamikawaYTanakaSShibataHGroup III elemental composition dependence of RbF postdeposition treatment effects on Cu(In, Ga)Se2 thin films and solar cellsJ. Phys. Chem. C2018122380938171:CAS:528:DC%2BC1cXitVWhtb0%3D10.1021/acs.jpcc.8b00079
MeyerBKPolityAFarangisBHeYHasselkampDKrämerTWangCStructural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputteringAppl. Phys. Lett.200485492949311:CAS:528:DC%2BD2cXhtValtb3M10.1063/1.1825053
HariskosDSpieringSPowallaMBuffer layers in Cu(In, Ga)Se2 solar cells and modulesThin Solid Films2005480–4819910910.1016/j.tsf.2004.11.118
JacksonPWuerzRHariskosDLotterEWitteWPowallaMEffects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%Phys. Stat. Sol. (RRL)2016105835861:CAS:528:DC%2BC28XhtFChsbzI10.1002/pssr.201600199
WitteWPaetelSMennerRBauerAHariskosDThe application of sputtered gallium oxide as buffer for Cu(In, Ga)Se2 solar cellsPhys. Stat. Sol. (RRL)20211521001801:CAS:528:DC%2BB3MXhsFCnsLzM10.1002/pssr.202100180
LöckingerJNishiwakiSAndresCErniRRossellMDRomanyukYEBuechelerSTiwariANALD-ZnxTiyO as window layer in Cu(In, Ga)Se2 solar cellsACS Appl. Mater. Interfaces201810436034360910.1021/acsami.8b14490
HigashiwakiMFujitaSGallium Oxide2020ChamSpringer International Publisher10.1007/978-3-030-37153-1
ChantanaJKatoTSugimotoHMinemotoTThin-film Cu(In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1-xMgxO window layerProg. Photovolt. Res. Appl.2017254314401:CAS:528:DC%2BC2sXntVSjsbo%3D10.1002/pip.2879
KoidaTKamikawa-ShimizuYYamadaAShibataHNikiSCu(In, Ga)Se2 solar cells with amorphous oxide semiconducting buffer layersIEEE J. Photovolt.2015595696110.1109/JPHOTOV.2015.2396356
Reference Air Mass 1.5 Spectra from the American Society for Testing and Materials (ASTM). NREL website, https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html. Accessed 19 Oct 2021
HeinemannMDvan HestMFAMContrerasMPerkinsJDZakutayevAKaufmannCAUnoldTGinleyDSBerryJJAmorphous oxides as electron transport layers in Cu(In, Ga)Se2 superstrate devicesPhys. Stat. Sol. A20172141600870
LarssonFDonzel-GargandOKellerJEdoffMTörndahlTAtomic layer deposition of Zn(O, S) buffer layers for Cu(In, Ga)Se2 solar cells with KF post-deposition treatmentSol. Energy Mater. Sol. Cells20181838151:CAS:528:DC%2BC1cXnsFWjtrw%3D10.1016/j.solmat.2018.03.045
GarudSGampaNAllenTGKotipalliRFlandreDBatukMHadermannJMeurisMPoortmansJSmetsAVermangBSurface passivation of CIGS solar cells using gallium oxidePhys. Stat. Sol. A20182151700826
WitteWCarronRHariskosDFuFMennerRBuechelerSIZO or IOH window layers combined with Zn(O, S) and CdS buffers for Cu(In, Ga)Se2 solar cellsPhys. Stat. Sol. A20172141700688
NaghaviNAbou-RasDAllsopNBarreauNBüchelerSEnnaouiAFischerC-HGuillenCHariskosDHerreroJKlenkRKushiyaKLincotDMennerRNakadaTPlatzer-BjörkmanCSpieringSTiwariANTörndahlTBuffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics: present status and current developmentsProg. Photovolt. Res. Appl.2010184114331:CAS:528:DC%2BC3cXht1Wjs7%2FF10.1002/pip.955
2000 ASTM Standard Extraterrestrial Spectrum Reference E-490–00 by00 from the American Society for Testing and Materials (ASTM). NREL website, https://www.nrel.gov/grid/solar-resource/spectra-astm-e490.html. Accessed 19 Oct 2021
SiebentrittSAvanciniEBärMBombschJBourgeoisEBuechelerSCarronRCastroCDuguaySFélixRHandickEHariskosDHavuVJacksonPKomsaH-PKunzeTMalitckayaMMenozziRNesladekMNicoaraNPuskaMRaghuwanshiMPareigePSadewasserSSozziGTiwariANUedaSVilalta-ClementeAWeissTPWernerFWilksRGWitteWWolterMHHeavy alkali treatment of Cu(In, Ga)Se2 solar cells: surface versus bulk effectsAdv. Energy Mater.20201019037521:CAS:528:DC%2BB3cXhvVSqs7w%3D10.1002/aenm.201903752
KikuchiKImuraSMiyakawaKKubotaMOhtaEElectrical and optical properties of Ga2O3/CuGaSe2 heterojunction photoconductorsThin Solid Films20145506356371:CAS:528:DC%2BC3sXhs1yqsLzM10.1016/j.tsf.2013.10.036
MinemotoTNegamiTNishiwakiSTakakuraHHamakawaYPreparation of Zn1-xMgxO films by radio frequency magnetron sputteringThin Solid Films20003721731761:CAS:528:DC%2BD3cXlvV2hsro%3D10.1016/S0040-6090(00)01009-9
WitteWAbou-RasDHariskosDChemical bath deposition of Zn(O, S) and CdS buffers: influence of Cu(In, Ga)Se2 grain orientationAppl. Phys. Lett.201310210.1063/1.4788717
HariskosDFuchsBMennerRNaghaviNHubertCLincotDPowallaMThe Zn(S, O, OH)/ZnMgO buffer in thin-film Cu(In, Ga)(Se, S)2-based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In, Ga)Se2 solar cellsProg. Photovolt. Res. Appl.2009174794881:CAS:528:DC%2BD1MXhtlCgtLnJ10.1002/pip.897
KatoTHandaAYagiokaTMatsuuraTYamamotoKHigashiSWuJ-LTaiKFHiroiHYoshiyamaTSakaiTSugimotoHEnhanced efficiency of Cd-free Cu(In, Ga)(Se, S)2 minimodules via (Zn, Mg)O second buffer layer and alkali metal post-treatmentIEEE J. Photovolt.201771773178010.1109/JPHOTOV.2017.2745710
ChirilaAReinhardPPianezziFBloeschPUhlARFellaCKranzLKellerDGretenerCHagendorferHJaegerDErniRNishiwakiSBuechelerSTiwariANPotassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cellsNat. Commun.201312110711111:CAS:528:DC%2BC3sXhslWisLfL
WitteWHempelWPaetelSMennerRHariskosDEffects of sputtered InxSy buffer on CIGS with RbF post-deposition treatmentECS J. Solid State Sci. Technol.2021101:CAS:528:DC%2BB3MXhtlOjs7vL10.1149/2162-8777/abfc21
HariskosDMennerRJacksonPPaetelSWitteWWischmannWPowallaMBürkertLKolbTOertelMDimmlerBFuchsBNew reaction kinetics for a high-rate chemical bath deposition of the Zn(S, O) buffer layer for Cu(In, Ga)Se2-based solar cellsProg. Photovolt. Res. Appl.2012205345421:CAS:528:DC%2BC38XhtFansrfJ10.1002/pip.1244
H.A. Yetkin, T. Kodalle, T. Bertram, A. Vellanueva-Tovar, R. Klenk, B. Szyszka, R. Schlatmann, C.A. Kaufmann, in Proc. 47th IEEE Photovoltaic Specialists Conference (PVSC) 2020, Comparison of the Thermal Stability of Differently Buffered CIGSe Solar Cells. pp. 1192–1197 (2020)
W Witte (608_CR11) 2021; 15
M Higashiwaki (608_CR1) 2020
KF Tai (608_CR30) 2017; 56
W Witte (608_CR14) 2013; 102
P Jackson (608_CR2) 2016; 10
A Chirila (608_CR12) 2013; 12
W Witte (608_CR21) 2017; 214
MD Heinemann (608_CR7) 2017; 214
T Koida (608_CR9) 2015; 5
D Hariskos (608_CR5) 2012; 20
J Löckinger (608_CR16) 2018; 10
W Witte (608_CR22) 2021; 10
F Larsson (608_CR23) 2018; 183
M Powalla (608_CR31) 2013; 119
T Minemoto (608_CR18) 2000; 372
D Hariskos (608_CR27) 2009; 17
608_CR20
D Hariskos (608_CR25) 2005; 480–481
N Naghavi (608_CR26) 2010; 18
BK Meyer (608_CR17) 2004; 85
K Kikuchi (608_CR6) 2014; 550
S Garud (608_CR8) 2018; 215
R Carron (608_CR4) 2019; 9
608_CR19
R Hertwig (608_CR24) 2020; 11
J Löckinger (608_CR15) 2018; 174
S Ishizuka (608_CR3) 2018; 122
608_CR10
T Kato (608_CR28) 2017; 7
S Siebentritt (608_CR13) 2020; 10
J Chantana (608_CR29) 2017; 25
References_xml – reference: TaiKFKamadaRYagiokaTKatoTSugimotoHFrom 209 to 223% Cu(In, Ga)(S, Se)2 solar cell: reduced recombination rate at the heterojunction and the depletion region due to K-treatmentJpn. J. Appl. Phys.20175608MC0310.7567/JJAP.56.08MC03
– reference: H.A. Yetkin, T. Kodalle, T. Bertram, A. Vellanueva-Tovar, R. Klenk, B. Szyszka, R. Schlatmann, C.A. Kaufmann, in Proc. 47th IEEE Photovoltaic Specialists Conference (PVSC) 2020, Comparison of the Thermal Stability of Differently Buffered CIGSe Solar Cells. pp. 1192–1197 (2020)
– reference: ChantanaJKatoTSugimotoHMinemotoTThin-film Cu(In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1-xMgxO window layerProg. Photovolt. Res. Appl.2017254314401:CAS:528:DC%2BC2sXntVSjsbo%3D10.1002/pip.2879
– reference: IshizukaSTaguchiNNishinagaJKamikawaYTanakaSShibataHGroup III elemental composition dependence of RbF postdeposition treatment effects on Cu(In, Ga)Se2 thin films and solar cellsJ. Phys. Chem. C2018122380938171:CAS:528:DC%2BC1cXitVWhtb0%3D10.1021/acs.jpcc.8b00079
– reference: HeinemannMDvan HestMFAMContrerasMPerkinsJDZakutayevAKaufmannCAUnoldTGinleyDSBerryJJAmorphous oxides as electron transport layers in Cu(In, Ga)Se2 superstrate devicesPhys. Stat. Sol. A20172141600870
– reference: KatoTHandaAYagiokaTMatsuuraTYamamotoKHigashiSWuJ-LTaiKFHiroiHYoshiyamaTSakaiTSugimotoHEnhanced efficiency of Cd-free Cu(In, Ga)(Se, S)2 minimodules via (Zn, Mg)O second buffer layer and alkali metal post-treatmentIEEE J. Photovolt.201771773178010.1109/JPHOTOV.2017.2745710
– reference: WitteWPaetelSMennerRBauerAHariskosDThe application of sputtered gallium oxide as buffer for Cu(In, Ga)Se2 solar cellsPhys. Stat. Sol. (RRL)20211521001801:CAS:528:DC%2BB3MXhsFCnsLzM10.1002/pssr.202100180
– reference: Reference Air Mass 1.5 Spectra from the American Society for Testing and Materials (ASTM). NREL website, https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html. Accessed 19 Oct 2021
– reference: HariskosDSpieringSPowallaMBuffer layers in Cu(In, Ga)Se2 solar cells and modulesThin Solid Films2005480–4819910910.1016/j.tsf.2004.11.118
– reference: LarssonFDonzel-GargandOKellerJEdoffMTörndahlTAtomic layer deposition of Zn(O, S) buffer layers for Cu(In, Ga)Se2 solar cells with KF post-deposition treatmentSol. Energy Mater. Sol. Cells20181838151:CAS:528:DC%2BC1cXnsFWjtrw%3D10.1016/j.solmat.2018.03.045
– reference: MeyerBKPolityAFarangisBHeYHasselkampDKrämerTWangCStructural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputteringAppl. Phys. Lett.200485492949311:CAS:528:DC%2BD2cXhtValtb3M10.1063/1.1825053
– reference: HariskosDMennerRJacksonPPaetelSWitteWWischmannWPowallaMBürkertLKolbTOertelMDimmlerBFuchsBNew reaction kinetics for a high-rate chemical bath deposition of the Zn(S, O) buffer layer for Cu(In, Ga)Se2-based solar cellsProg. Photovolt. Res. Appl.2012205345421:CAS:528:DC%2BC38XhtFansrfJ10.1002/pip.1244
– reference: GarudSGampaNAllenTGKotipalliRFlandreDBatukMHadermannJMeurisMPoortmansJSmetsAVermangBSurface passivation of CIGS solar cells using gallium oxidePhys. Stat. Sol. A20182151700826
– reference: WitteWHempelWPaetelSMennerRHariskosDEffects of sputtered InxSy buffer on CIGS with RbF post-deposition treatmentECS J. Solid State Sci. Technol.2021101:CAS:528:DC%2BB3MXhtlOjs7vL10.1149/2162-8777/abfc21
– reference: MinemotoTNegamiTNishiwakiSTakakuraHHamakawaYPreparation of Zn1-xMgxO films by radio frequency magnetron sputteringThin Solid Films20003721731761:CAS:528:DC%2BD3cXlvV2hsro%3D10.1016/S0040-6090(00)01009-9
– reference: LöckingerJNishiwakiSAndresCErniRRossellMDRomanyukYEBuechelerSTiwariANALD-ZnxTiyO as window layer in Cu(In, Ga)Se2 solar cellsACS Appl. Mater. Interfaces201810436034360910.1021/acsami.8b14490
– reference: WitteWCarronRHariskosDFuFMennerRBuechelerSIZO or IOH window layers combined with Zn(O, S) and CdS buffers for Cu(In, Ga)Se2 solar cellsPhys. Stat. Sol. A20172141700688
– reference: ChirilaAReinhardPPianezziFBloeschPUhlARFellaCKranzLKellerDGretenerCHagendorferHJaegerDErniRNishiwakiSBuechelerSTiwariANPotassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cellsNat. Commun.201312110711111:CAS:528:DC%2BC3sXhslWisLfL
– reference: HertwigRNishiwakiSOchoaMYangS-CFeurerTGilshteinETiwariANCarronRALD-ZnMgO and absorber surface modifications to substitute CdS buffer layers in co-evaporated CIGSe solar cellsEPJ Photovolt.202011121:CAS:528:DC%2BB3MXntVehtbk%3D10.1051/epjpv/2020010
– reference: CarronRNishiwakiSFeurerTHertwigRAvanciniELöckingerJYangS-CBuechelerSTiwariANAdvanced alkali treatments for high-efficiency Cu(In, Ga)Se2 solar cells on flexible substratesAdv. Energy Mater.20199190040810.1002/aenm.201900408
– reference: JacksonPWuerzRHariskosDLotterEWitteWPowallaMEffects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%Phys. Stat. Sol. (RRL)2016105835861:CAS:528:DC%2BC28XhtFChsbzI10.1002/pssr.201600199
– reference: LöckingerJNishiwakiSWeissTPBissigBRomanyukYEBuechelerSTiwariANTiO2 as intermediate buffer layer in Cu(In, Ga)Se2 solar cellsSol. Energy Mater. Sol. Cells201817439740410.1016/j.solmat.2017.09.030
– reference: KoidaTKamikawa-ShimizuYYamadaAShibataHNikiSCu(In, Ga)Se2 solar cells with amorphous oxide semiconducting buffer layersIEEE J. Photovolt.2015595696110.1109/JPHOTOV.2015.2396356
– reference: PowallaMJacksonPWitteWHariskosDPaetelSTschamberCWischmannWHigh-efficiency Cu(In, Ga)Se2 cells and modulesSol. Energy Mater. Sol. Cells201311951581:CAS:528:DC%2BC3sXhtVaitLzF10.1016/j.solmat.2013.05.002
– reference: HigashiwakiMFujitaSGallium Oxide2020ChamSpringer International Publisher10.1007/978-3-030-37153-1
– reference: NaghaviNAbou-RasDAllsopNBarreauNBüchelerSEnnaouiAFischerC-HGuillenCHariskosDHerreroJKlenkRKushiyaKLincotDMennerRNakadaTPlatzer-BjörkmanCSpieringSTiwariANTörndahlTBuffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics: present status and current developmentsProg. Photovolt. Res. Appl.2010184114331:CAS:528:DC%2BC3cXht1Wjs7%2FF10.1002/pip.955
– reference: KikuchiKImuraSMiyakawaKKubotaMOhtaEElectrical and optical properties of Ga2O3/CuGaSe2 heterojunction photoconductorsThin Solid Films20145506356371:CAS:528:DC%2BC3sXhs1yqsLzM10.1016/j.tsf.2013.10.036
– reference: WitteWAbou-RasDHariskosDChemical bath deposition of Zn(O, S) and CdS buffers: influence of Cu(In, Ga)Se2 grain orientationAppl. Phys. Lett.201310210.1063/1.4788717
– reference: HariskosDFuchsBMennerRNaghaviNHubertCLincotDPowallaMThe Zn(S, O, OH)/ZnMgO buffer in thin-film Cu(In, Ga)(Se, S)2-based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In, Ga)Se2 solar cellsProg. Photovolt. Res. Appl.2009174794881:CAS:528:DC%2BD1MXhtlCgtLnJ10.1002/pip.897
– reference: 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490–00 by00 from the American Society for Testing and Materials (ASTM). NREL website, https://www.nrel.gov/grid/solar-resource/spectra-astm-e490.html. Accessed 19 Oct 2021
– reference: SiebentrittSAvanciniEBärMBombschJBourgeoisEBuechelerSCarronRCastroCDuguaySFélixRHandickEHariskosDHavuVJacksonPKomsaH-PKunzeTMalitckayaMMenozziRNesladekMNicoaraNPuskaMRaghuwanshiMPareigePSadewasserSSozziGTiwariANUedaSVilalta-ClementeAWeissTPWernerFWilksRGWitteWWolterMHHeavy alkali treatment of Cu(In, Ga)Se2 solar cells: surface versus bulk effectsAdv. Energy Mater.20201019037521:CAS:528:DC%2BB3cXhvVSqs7w%3D10.1002/aenm.201903752
– volume: 12
  start-page: 1107
  year: 2013
  ident: 608_CR12
  publication-title: Nat. Commun.
– volume: 56
  start-page: 08MC03
  year: 2017
  ident: 608_CR30
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.56.08MC03
– ident: 608_CR20
– volume: 214
  start-page: 1700688
  year: 2017
  ident: 608_CR21
  publication-title: Phys. Stat. Sol. A
– volume: 20
  start-page: 534
  year: 2012
  ident: 608_CR5
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.1244
– volume: 85
  start-page: 4929
  year: 2004
  ident: 608_CR17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1825053
– volume: 183
  start-page: 8
  year: 2018
  ident: 608_CR23
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.03.045
– volume: 480–481
  start-page: 99
  year: 2005
  ident: 608_CR25
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.11.118
– volume: 119
  start-page: 51
  year: 2013
  ident: 608_CR31
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.05.002
– volume: 215
  start-page: 1700826
  year: 2018
  ident: 608_CR8
  publication-title: Phys. Stat. Sol. A
– volume: 102
  year: 2013
  ident: 608_CR14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4788717
– volume: 372
  start-page: 173
  year: 2000
  ident: 608_CR18
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(00)01009-9
– volume-title: Gallium Oxide
  year: 2020
  ident: 608_CR1
  doi: 10.1007/978-3-030-37153-1
– volume: 122
  start-page: 3809
  year: 2018
  ident: 608_CR3
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b00079
– volume: 10
  start-page: 43603
  year: 2018
  ident: 608_CR16
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14490
– volume: 17
  start-page: 479
  year: 2009
  ident: 608_CR27
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.897
– volume: 10
  year: 2021
  ident: 608_CR22
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2162-8777/abfc21
– ident: 608_CR10
  doi: 10.1109/PVSC45281.2020.9300930
– volume: 15
  start-page: 2100180
  year: 2021
  ident: 608_CR11
  publication-title: Phys. Stat. Sol. (RRL)
  doi: 10.1002/pssr.202100180
– volume: 5
  start-page: 956
  year: 2015
  ident: 608_CR9
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2015.2396356
– volume: 10
  start-page: 1903752
  year: 2020
  ident: 608_CR13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903752
– volume: 18
  start-page: 411
  year: 2010
  ident: 608_CR26
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.955
– volume: 7
  start-page: 1773
  year: 2017
  ident: 608_CR28
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2017.2745710
– ident: 608_CR19
– volume: 11
  start-page: 12
  year: 2020
  ident: 608_CR24
  publication-title: EPJ Photovolt.
  doi: 10.1051/epjpv/2020010
– volume: 550
  start-page: 635
  year: 2014
  ident: 608_CR6
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.10.036
– volume: 214
  start-page: 1600870
  year: 2017
  ident: 608_CR7
  publication-title: Phys. Stat. Sol. A
– volume: 25
  start-page: 431
  year: 2017
  ident: 608_CR29
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.2879
– volume: 9
  start-page: 1900408
  year: 2019
  ident: 608_CR4
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900408
– volume: 10
  start-page: 583
  year: 2016
  ident: 608_CR2
  publication-title: Phys. Stat. Sol. (RRL)
  doi: 10.1002/pssr.201600199
– volume: 174
  start-page: 397
  year: 2018
  ident: 608_CR15
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.09.030
SSID ssj0015074
Score 2.4051657
Snippet Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se 2 (CIGS) thin-film solar cells. From an industrial point of...
Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se2 (CIGS) thin-film solar cells. From an industrial point of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1825
SubjectTerms Ammonia
Antireflection coatings
Applied and Technical Physics
Biomaterials
Buffers
Cadmium sulfide
Chemistry and Materials Science
Copper indium gallium selenides
Deposition
Gallium oxides
Inorganic Chemistry
Invited Paper
Magnetron sputtering
Materials Engineering
Materials research
Materials Science
Nanotechnology
Photovoltaic cells
Solar cells
Substitutes
Thin films
Zinc oxide
Title Influence of sputtered gallium oxide as buffer or high-resistive layer on performance of Cu(In,Ga)Se2-based solar cells
URI https://link.springer.com/article/10.1557/s43578-022-00608-z
https://www.proquest.com/docview/2708280430
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TkjwgGCAVhiTH3gAdYbcmstjN-gFWDVpm7a3KHZsqVKXTE3Dpf-If8k5znUrm4CXqHJTJ-n3xf7O8fE5hLxRBsxxtm0zMw4MBm9izLhQLrMDVynX92NPJ_U5nrmTc-fz5eCy0_nVilrKV_y9WP9xX8n_oAptgCvukv0HZOtOoQE-A75wBITh-FcYT6sKIyj5smtdcxoEJC6mz_OrfvpjHkssJMNzrIKCoeeYnZiBhY1v9jfZX0Q_sR0DyZv9AxigkaPwxAFpDOIyOJUWw-kOXewYtYre_uwOWQsKuHj0fplHqPY3X8zh_voX6UIto6vGBwu6fXG79SQCLY9L5lI17D2WVZmwVjaAymMBxi6W-tn0WGI4Ni6S1DtqykHPYVZQni51m2U4DhvYxc76atQuUsVU7DRbYzBYTIPWfG6W3tKNuWKgCxxnDub7Yfo2Ddfw2bqZGatogMnwNDz5OAq_Tmdftsi2BRaJ1SXbw9Hh4axesgJh7RQmS_EA5Q4tuMqHzWvcVEGNaXNrNV6LnLMn5HEJIx0WVHtKOjLZIY9aOSt3yAMdMyyyZ-R7TT-aKlrTj5b0o5p-NMpoQT-aLulN-lFNP5omtEU_7OsofztNDsbRu5p4VBOPauI9J-ejT2dHE1bW8WACjPsVM4UleRAI5cW-EAEXwldx5PgDMC4iU_lcmsL0JGhrMPYjxYULdoYXS8vxYrC3pf2CdJM0kbuEmjwy3VgG0JXhREEQ-a4juBLc86UEhvSIWf2voSiT3GOtlUWIxi5gERZYhIBFqLEI1z3Sr39zXaR4uffsvQqusBwKstDyMBMkps_rkYMKwubru3t7eX9vr8jD5gXaI93VMpevQQSv-D7Z8kfj_ZKEvwH3p7Qe
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+sputtered+gallium+oxide+as+buffer+or+high-resistive+layer+on+performance+of+Cu%28In%2CGa%29Se2-based+solar+cells&rft.jtitle=Journal+of+materials+research&rft.au=Witte+Wolfram&rft.au=Hempel+Wolfram&rft.au=Paetel+Stefan&rft.au=Menner%2C+Richard&rft.date=2022-06-14&rft.pub=Springer+Nature+B.V&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=37&rft.issue=11&rft.spage=1825&rft.epage=1834&rft_id=info:doi/10.1557%2Fs43578-022-00608-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon