A partial ordering approach to characterize properties of a pair of orthogonal projectors

It is known that within the set of orthogonal projectors (Hermitian idempotent matrices) certain matrix partial orderings coincide in the sense that when two orthogonal projectors are ordered with respect to one of the orderings, then they are also ordered with respect to the others. This concerns,...

Full description

Saved in:
Bibliographic Details
Published inIndian journal of pure and applied mathematics Vol. 52; no. 2; pp. 323 - 334
Main Authors Baksalary, Oskar Maria, Trenkler, Götz
Format Journal Article
LanguageEnglish
Published New Delhi Indian National Science Academy 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is known that within the set of orthogonal projectors (Hermitian idempotent matrices) certain matrix partial orderings coincide in the sense that when two orthogonal projectors are ordered with respect to one of the orderings, then they are also ordered with respect to the others. This concerns, inter alia, the star, minus, diamond, sharp, core, and Löwner orderings. The situation changes, though, when instead of two orthogonal projectors, various functions of the pair (being either no longer Hermitian or no longer idempotent) are compared. The present paper provides an extensive investigation of the matrix partial orderings of functions of two orthogonal projectors. In addition to the six orderings mentioned above, three further binary functions are covered by the analysis, one of which is the space preordering. A particular attention is paid to the requirements that either product, sum, or difference of two orthogonal projectors is itself an orthogonal projector, i.e., inherits both features, Hermitianness and idempotency. Links of the results obtained with the research areas of applied origin (e.g., physics and statistics) are pointed out as well.
AbstractList It is known that within the set of orthogonal projectors (Hermitian idempotent matrices) certain matrix partial orderings coincide in the sense that when two orthogonal projectors are ordered with respect to one of the orderings, then they are also ordered with respect to the others. This concerns, inter alia, the star, minus, diamond, sharp, core, and Löwner orderings. The situation changes, though, when instead of two orthogonal projectors, various functions of the pair (being either no longer Hermitian or no longer idempotent) are compared. The present paper provides an extensive investigation of the matrix partial orderings of functions of two orthogonal projectors. In addition to the six orderings mentioned above, three further binary functions are covered by the analysis, one of which is the space preordering. A particular attention is paid to the requirements that either product, sum, or difference of two orthogonal projectors is itself an orthogonal projector, i.e., inherits both features, Hermitianness and idempotency. Links of the results obtained with the research areas of applied origin (e.g., physics and statistics) are pointed out as well.
Author Baksalary, Oskar Maria
Trenkler, Götz
Author_xml – sequence: 1
  givenname: Oskar Maria
  surname: Baksalary
  fullname: Baksalary, Oskar Maria
  email: OBaksalary@gmail.com
  organization: Faculty of Physics, Adam Mickiewicz University
– sequence: 2
  givenname: Götz
  surname: Trenkler
  fullname: Trenkler, Götz
  organization: Faculty of Statistics, Dortmund University of Technology
BookMark eNp9kE1PAyEQhompiW31D3gi8YwOsOzCsWn8Sky86METYVlot6nLCvSgv15qTUw89DST4X2GyTNDkyEMDqFLCtcUoLlJlDNWE2CUAFAuCZygKahGkKaqxaT0QBURQsozNEtpA1BzUGqK3hZ4NDH3ZotD7FzshxU24xiDsWucA7ZrE43N5eHL4TIeXQm7hIPHppB93Hch5nVYhaEsKZGNsznEdI5Ovdkmd_Fb5-j17vZl-UCenu8fl4snYlmlMqG8sdIyWld1y3hnu0aytmOeis6p2tbceuVaBl0rTOcMNbZS1hvpRWU6Dy2fo6vD3vL1x86lrDdhF8stSTMhGiloVYzMkTykbAwpRee17bPJfRhyNP1WU9B7kfogUheR-kekhoKyf-gY-3cTP49D_AClce_Uxb-rjlDfGM2Jpg
CitedBy_id crossref_primary_10_1016_j_laa_2025_01_029
Cites_doi 10.1080/03081080902778222
10.1016/S0024-3795(02)00337-3
10.1016/0024-3795(86)90148-5
10.1137/1.9780898719512
10.1016/0024-3795(91)90326-R
10.1080/03081087408817070
10.1017/S0013091500003801
10.1007/978-3-642-10473-2
10.1007/b98818
10.1016/0024-3795(86)90149-7
10.1016/0024-3795(79)90158-7
10.1080/03081087.2013.839676
10.1016/0024-3795(87)90248-5
10.1016/j.amc.2009.02.042
10.1007/s41884-018-0003-7
10.1007/978-3-319-45421-4
10.1016/j.laa.2014.01.017
10.1515/zna-1980-0415
10.1090/S0002-9904-1978-14442-5
10.1007/978-1-4471-6407-4
10.1007/BF01170633
10.1063/1.526284
10.1016/0024-3795(90)90341-9
10.1007/978-3-642-12821-9_10
ContentType Journal Article
Copyright The Indian National Science Academy 2021
The Indian National Science Academy 2021.
Copyright_xml – notice: The Indian National Science Academy 2021
– notice: The Indian National Science Academy 2021.
DBID AAYXX
CITATION
DOI 10.1007/s13226-021-00138-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 0975-7465
EndPage 334
ExternalDocumentID 10_1007_s13226_021_00138_0
GroupedDBID -5D
-5G
-BR
-EM
-~C
-~X
06D
0R~
0VY
199
1N0
203
2JN
2KG
2LR
2VQ
30V
4.4
406
408
40D
5GY
67Z
72R
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
M~E
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PT4
R9I
ROL
RSV
S1Z
S27
S3B
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c249t-137c8c21646b23dcd782bd2f15de96c63cf9eb20db5adea1ac49cfa8f54adf0b3
IEDL.DBID U2A
ISSN 0019-5588
IngestDate Fri Jul 25 11:13:49 EDT 2025
Tue Jul 01 04:11:00 EDT 2025
Thu Apr 24 22:58:05 EDT 2025
Fri Feb 21 02:47:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Commutativity
Partitioned matrix
15A27
15B57
Hermitian idempotent matrix
Generalized inverse
15A09
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-137c8c21646b23dcd782bd2f15de96c63cf9eb20db5adea1ac49cfa8f54adf0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2557851401
PQPubID 2044203
PageCount 12
ParticipantIDs proquest_journals_2557851401
crossref_citationtrail_10_1007_s13226_021_00138_0
crossref_primary_10_1007_s13226_021_00138_0
springer_journals_10_1007_s13226_021_00138_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Heidelberg
PublicationSubtitle Published by the Indian National Science Academy
PublicationTitle Indian journal of pure and applied mathematics
PublicationTitleAbbrev Indian J Pure Appl Math
PublicationYear 2021
Publisher Indian National Science Academy
Springer Nature B.V
Publisher_xml – name: Indian National Science Academy
– name: Springer Nature B.V
References LöwnerKTÜber monotone MatrixfunktionenMath. Z.193438177216154544610.1007/BF01170633
PuntanenSStyanGPHIsotaloJMatrix Tricks for Linear Statistical Models - Our Personal Top Twenty2011BerlinSpringer-Verlag10.1007/978-3-642-10473-2
NambooripadKSSThe natural partial order on a regular semigroupProc. Edinburgh Math. Soc.19802324926062092210.1017/S0013091500003801
PecǎrićJProschanFTongYLConvex Functions, Partial Orderings, and Statistical Applications1992BostonAcademic Press0749.26004
DrazinMPNatural structures on semigroups with involutionBull. Amer. Math. Soc.19788413914148623410.1090/S0002-9904-1978-14442-5
RaoCRMitraSKGeneralized Inverse of Matrices and Its Applications1971New YorkWiley0236.15004
J.K. Baksalary, Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila, S. Puntanen, eds.), University of Tampere, Tampere, Finland, 1987, 113-142.
M. Fattore and R. Bruggemann, ed., Partial Order Concepts in Applied Sciences, Springer, Cham, 2017.
R. Hartwig and G.P.H. Styan, Partially ordered idempotent matrices, Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila, S. Puntanen, ed.), University of Tampere, Tampere, Finland, 1987, 361-383.
BaksalaryJKA relationship between the star and minus orderingsLinear Algebra Appl.19868216316785896910.1016/0024-3795(86)90149-7
B. Coecke and K. Martin, A partial order on classical and quantum states, New Structures for Physics (B. Coecke, ed.), Springer-Verlag, Berlin, 2011, 593-683.
MarsagliaGStyanGPHEqualities and inequalities for ranks of matricesLinear Multilinear Algebra1974226929238484010.1080/03081087408817070
MitraSKBhimasankaramPMalikSBMatrix Partial Orders2010World Scientific, SingaporeShorted Operators and Applications1203.15023
MeyerCDMatrix Analysis and Applied Linear Algebra2000PhiladelphiaSIAM10.1137/1.9780898719512
HartwigREStyanGPHOn some characterizations of the “star” partial ordering for matrices and rank subtractivityLinear Algebra Appl.19868214516185896810.1016/0024-3795(86)90148-5
BaksalaryOMTrenklerGOn subspace distances determined by the Frobenius normLinear Algebra Appl.2014448245263318298310.1016/j.laa.2014.01.017
BaksalaryOMTrenklerGColumn space equalities for orthogonal projectorsAppl. Math. Comput.200921251952925319781169.15007
BaksalaryOMTrenklerGCore inverse of matricesLinear Multilinear Algebra201058681697272275210.1080/03081080902778222
HartwigREHow to partially order regular elementsMath. Japon.1980251135712550442.06006
BaksalaryJKMitraSKLeft-star and right-star partial orderingsLinear Algebra Appl.19911497389109287010.1016/0024-3795(91)90326-R
HarvilleDAMatrix Algebra From a Statistician’s Perspective1997New YorkSpringer10.1007/b98818
W. Rehder, When do projections commute?, Z. Naturforsch, 35a (1980), 437-441.
MalikSBRuedaLThomeNFurther properties on the core partial order and other matrix partial ordersLinear Multilinear Algebra20146216291648326562610.1080/03081087.2013.839676
BrittinWESakakuraAYProjection operator techniques in physicsJ. Math. Phys.1984251274129574573810.1063/1.526284
MostajeranCSepulchreROrdering positive definite matricesInfo. Geo.20181287313397467210.1007/s41884-018-0003-7
SimoviciDADjerabaCMathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics20142LondonSpringer-Verlag10.1007/978-1-4471-6407-4
BaksalaryJKHaukeJA further algebraic version of Cochran’s theorem and matrix partial orderingsLinear Algebra Appl.1999127157169104880010.1016/0024-3795(90)90341-9
GuoDChoYJZhuJPartial Ordering Methods in Nonlinear Problems2004HauppaugeNova Science1116.45007
R.E. Cline and R.E. Funderlic, The rank of a difference of two matrices and associated generalized inverses, Linear Algebra Appl., 24 (1979), 185-215.
BaksalaryJKBaksalaryOMSzulcTA property of orthogonal projectorsLinear Algebra Appl.20023543539192764510.1016/S0024-3795(02)00337-3
MitraSKOn group inverses and the sharp orderLinear Algebra Appl.198792173789463510.1016/0024-3795(87)90248-5
RE Hartwig (138_CR16) 1986; 82
RE Hartwig (138_CR15) 1980; 25
JK Baksalary (138_CR2) 1986; 82
JK Baksalary (138_CR5) 1991; 149
G Marsaglia (138_CR21) 1974; 2
MP Drazin (138_CR12) 1978; 84
OM Baksalary (138_CR7) 2010; 58
D Guo (138_CR14) 2004
SK Mitra (138_CR23) 1987; 92
CD Meyer (138_CR22) 2000
JK Baksalary (138_CR3) 2002; 354
DA Harville (138_CR18) 1997
CR Rao (138_CR29) 1971
DA Simovici (138_CR31) 2014
C Mostajeran (138_CR25) 2018; 1
J Pecǎrić (138_CR27) 1992
WE Brittin (138_CR9) 1984; 25
138_CR1
JK Baksalary (138_CR4) 1999; 127
OM Baksalary (138_CR8) 2014; 448
KSS Nambooripad (138_CR26) 1980; 23
S Puntanen (138_CR28) 2011
138_CR30
OM Baksalary (138_CR6) 2009; 212
138_CR10
138_CR11
SK Mitra (138_CR24) 2010
138_CR13
138_CR17
KT Löwner (138_CR19) 1934; 38
SB Malik (138_CR20) 2014; 62
References_xml – reference: BaksalaryJKBaksalaryOMSzulcTA property of orthogonal projectorsLinear Algebra Appl.20023543539192764510.1016/S0024-3795(02)00337-3
– reference: HartwigREHow to partially order regular elementsMath. Japon.1980251135712550442.06006
– reference: SimoviciDADjerabaCMathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics20142LondonSpringer-Verlag10.1007/978-1-4471-6407-4
– reference: MitraSKOn group inverses and the sharp orderLinear Algebra Appl.198792173789463510.1016/0024-3795(87)90248-5
– reference: R. Hartwig and G.P.H. Styan, Partially ordered idempotent matrices, Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila, S. Puntanen, ed.), University of Tampere, Tampere, Finland, 1987, 361-383.
– reference: MeyerCDMatrix Analysis and Applied Linear Algebra2000PhiladelphiaSIAM10.1137/1.9780898719512
– reference: PecǎrićJProschanFTongYLConvex Functions, Partial Orderings, and Statistical Applications1992BostonAcademic Press0749.26004
– reference: MalikSBRuedaLThomeNFurther properties on the core partial order and other matrix partial ordersLinear Multilinear Algebra20146216291648326562610.1080/03081087.2013.839676
– reference: HartwigREStyanGPHOn some characterizations of the “star” partial ordering for matrices and rank subtractivityLinear Algebra Appl.19868214516185896810.1016/0024-3795(86)90148-5
– reference: GuoDChoYJZhuJPartial Ordering Methods in Nonlinear Problems2004HauppaugeNova Science1116.45007
– reference: W. Rehder, When do projections commute?, Z. Naturforsch, 35a (1980), 437-441.
– reference: B. Coecke and K. Martin, A partial order on classical and quantum states, New Structures for Physics (B. Coecke, ed.), Springer-Verlag, Berlin, 2011, 593-683.
– reference: BaksalaryJKA relationship between the star and minus orderingsLinear Algebra Appl.19868216316785896910.1016/0024-3795(86)90149-7
– reference: DrazinMPNatural structures on semigroups with involutionBull. Amer. Math. Soc.19788413914148623410.1090/S0002-9904-1978-14442-5
– reference: MarsagliaGStyanGPHEqualities and inequalities for ranks of matricesLinear Multilinear Algebra1974226929238484010.1080/03081087408817070
– reference: MostajeranCSepulchreROrdering positive definite matricesInfo. Geo.20181287313397467210.1007/s41884-018-0003-7
– reference: HarvilleDAMatrix Algebra From a Statistician’s Perspective1997New YorkSpringer10.1007/b98818
– reference: BaksalaryOMTrenklerGOn subspace distances determined by the Frobenius normLinear Algebra Appl.2014448245263318298310.1016/j.laa.2014.01.017
– reference: BaksalaryOMTrenklerGColumn space equalities for orthogonal projectorsAppl. Math. Comput.200921251952925319781169.15007
– reference: PuntanenSStyanGPHIsotaloJMatrix Tricks for Linear Statistical Models - Our Personal Top Twenty2011BerlinSpringer-Verlag10.1007/978-3-642-10473-2
– reference: BaksalaryOMTrenklerGCore inverse of matricesLinear Multilinear Algebra201058681697272275210.1080/03081080902778222
– reference: BaksalaryJKMitraSKLeft-star and right-star partial orderingsLinear Algebra Appl.19911497389109287010.1016/0024-3795(91)90326-R
– reference: MitraSKBhimasankaramPMalikSBMatrix Partial Orders2010World Scientific, SingaporeShorted Operators and Applications1203.15023
– reference: M. Fattore and R. Bruggemann, ed., Partial Order Concepts in Applied Sciences, Springer, Cham, 2017.
– reference: BaksalaryJKHaukeJA further algebraic version of Cochran’s theorem and matrix partial orderingsLinear Algebra Appl.1999127157169104880010.1016/0024-3795(90)90341-9
– reference: BrittinWESakakuraAYProjection operator techniques in physicsJ. Math. Phys.1984251274129574573810.1063/1.526284
– reference: NambooripadKSSThe natural partial order on a regular semigroupProc. Edinburgh Math. Soc.19802324926062092210.1017/S0013091500003801
– reference: R.E. Cline and R.E. Funderlic, The rank of a difference of two matrices and associated generalized inverses, Linear Algebra Appl., 24 (1979), 185-215.
– reference: LöwnerKTÜber monotone MatrixfunktionenMath. Z.193438177216154544610.1007/BF01170633
– reference: RaoCRMitraSKGeneralized Inverse of Matrices and Its Applications1971New YorkWiley0236.15004
– reference: J.K. Baksalary, Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila, S. Puntanen, eds.), University of Tampere, Tampere, Finland, 1987, 113-142.
– volume: 58
  start-page: 681
  year: 2010
  ident: 138_CR7
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081080902778222
– volume: 354
  start-page: 35
  year: 2002
  ident: 138_CR3
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(02)00337-3
– volume: 82
  start-page: 145
  year: 1986
  ident: 138_CR16
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(86)90148-5
– volume-title: Matrix Analysis and Applied Linear Algebra
  year: 2000
  ident: 138_CR22
  doi: 10.1137/1.9780898719512
– volume: 149
  start-page: 73
  year: 1991
  ident: 138_CR5
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(91)90326-R
– volume-title: Matrix Partial Orders
  year: 2010
  ident: 138_CR24
– volume: 2
  start-page: 269
  year: 1974
  ident: 138_CR21
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087408817070
– volume-title: Convex Functions, Partial Orderings, and Statistical Applications
  year: 1992
  ident: 138_CR27
– volume: 23
  start-page: 249
  year: 1980
  ident: 138_CR26
  publication-title: Proc. Edinburgh Math. Soc.
  doi: 10.1017/S0013091500003801
– volume-title: Matrix Tricks for Linear Statistical Models - Our Personal Top Twenty
  year: 2011
  ident: 138_CR28
  doi: 10.1007/978-3-642-10473-2
– volume-title: Matrix Algebra From a Statistician’s Perspective
  year: 1997
  ident: 138_CR18
  doi: 10.1007/b98818
– volume: 82
  start-page: 163
  year: 1986
  ident: 138_CR2
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(86)90149-7
– ident: 138_CR10
  doi: 10.1016/0024-3795(79)90158-7
– volume: 62
  start-page: 1629
  year: 2014
  ident: 138_CR20
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2013.839676
– volume: 92
  start-page: 17
  year: 1987
  ident: 138_CR23
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(87)90248-5
– ident: 138_CR1
– volume: 212
  start-page: 519
  year: 2009
  ident: 138_CR6
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.02.042
– volume: 1
  start-page: 287
  year: 2018
  ident: 138_CR25
  publication-title: Info. Geo.
  doi: 10.1007/s41884-018-0003-7
– ident: 138_CR13
  doi: 10.1007/978-3-319-45421-4
– volume: 448
  start-page: 245
  year: 2014
  ident: 138_CR8
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2014.01.017
– ident: 138_CR30
  doi: 10.1515/zna-1980-0415
– volume: 84
  start-page: 139
  year: 1978
  ident: 138_CR12
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1978-14442-5
– volume-title: Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics
  year: 2014
  ident: 138_CR31
  doi: 10.1007/978-1-4471-6407-4
– volume: 38
  start-page: 177
  year: 1934
  ident: 138_CR19
  publication-title: Math. Z.
  doi: 10.1007/BF01170633
– volume: 25
  start-page: 1274
  year: 1984
  ident: 138_CR9
  publication-title: J. Math. Phys.
  doi: 10.1063/1.526284
– volume-title: Partial Ordering Methods in Nonlinear Problems
  year: 2004
  ident: 138_CR14
– volume-title: Generalized Inverse of Matrices and Its Applications
  year: 1971
  ident: 138_CR29
– volume: 127
  start-page: 157
  year: 1999
  ident: 138_CR4
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(90)90341-9
– ident: 138_CR11
  doi: 10.1007/978-3-642-12821-9_10
– ident: 138_CR17
– volume: 25
  start-page: 1
  year: 1980
  ident: 138_CR15
  publication-title: Math. Japon.
SSID ssj0063099
Score 2.2411993
Snippet It is known that within the set of orthogonal projectors (Hermitian idempotent matrices) certain matrix partial orderings coincide in the sense that when two...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 323
SubjectTerms Applications of Mathematics
Diamonds
Mathematics
Mathematics and Statistics
Numerical Analysis
Original Research
Projectors
Title A partial ordering approach to characterize properties of a pair of orthogonal projectors
URI https://link.springer.com/article/10.1007/s13226-021-00138-0
https://www.proquest.com/docview/2557851401
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF7EXvQgPrFayx68aSDJ7uZxDNJalHqy0J7CPkWQpiT14q93Jk0aFBW8BfZBmJnd-WZn51tCrnnMXQArwRNMKY-riHlKcu1JXxtwEZaJFAucp0_RZMYf5mLeFIVV7W33NiVZ79RdsRvYHl6YhfAX02seBOo9gbE7WPEszNr9N2J-ugG9-AciSZpSmZ_n-OqOOoz5LS1ae5vxITloYCLNNno9Ijt2eUz2p1uO1eqELDK6Qr1Dt5o_E-ahLUM4XRdUb6mYPyxd4Zl7ieSptHBUwsjXEr8wa1O8IBqnzZlMUVanZDYePd9NvOahBE9D9ITPycc60SFShamQGW3A7SsTukAYm0Y6YtqlEEH7RglprAyk5ql2MnGCS-N8xc7I7rJY2nNCE6nC1FehNJHkiZCSOyFiA6ABEzaM90nQyivXDYs4Pmbxlnf8xyjjHGSc1zLO_T652Y5ZbTg0_uw9aNWQN-upyiHwiQEbQjDYJ7etarrm32e7-F_3S7IX1taBxywDsrsu3-0VoI61GpJedr94HA1rY_sEroTPJA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHtSD-MRq1T1400CS3c3jWESp2vbUQj0t-8iKIE1J6sVf70yaNCgqeAvsgzCzu_PNzsy3hFzxmLsAdoInmNYe1xHztOLGU76xYCIyJlIscB6No8GUP87ErC4KK5ts9yYkWZ3UbbEbrD1MmAX3F8NrHjjqmwAGEkzkmob95vyNmJ-uQC_-gUiSulTm5zm-mqMWY34Li1bW5n6P7NYwkfZXet0nG9n8gOyM1hyr5SF57tMF6h26VfyZMA9tGMLpMqdmTcX8kdEF3rkXSJ5Kc0cVjHwt8AujNvkLonFa38nkRXlEpvd3k9uBVz-U4BnwnvA5-dgkJkSqMB0yayyYfW1DFwibpZGJmHEpeNC-1ULZTAXK8NQ4lTjBlXW-ZsekM8_n2QmhidJh6utQ2UjxRCjFnRCxBdCAARvGuyRo5CVNzSKOj1m8yZb_GGUsQcaykrH0u-R6PWax4tD4s3evUYOs91MpwfGJARuCM9glN41q2ubfZzv9X_dLsjWYjIZy-DB-OiPbYbVS8MqlRzrL4j07BwSy1BfVgvsEFa3Qgw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfQgPrFaNQdvunQfyT6ORS310eLBQj0teWxEkN1lu1789c7so1VRwdtCJmGZTDLfZDJfCDljATMOrASLe1JaTPqeJQVTlrCVBheReDzCAufxxB9N2e2Mzz5V8Ve33duUZF3TgCxNadnPtekvC9_ADvHyLITCmGqzIGhfhe3YQbueuoN2L_Y9O6oBMP4ND8OmbObnMb66piXe_JYirTzPcItsNpCRDuo53iYrSbpDNsYLvtX5Lnka0BxtAMQqLk0Yh7Zs4bTMqFrQMr8nNMfz9wKJVGlmqICeLwV-YQYne0ZkTpvzmayY75Hp8PrxcmQ1jyZYCiIpfFo-UKFykTZMup5WGiCA1K5xuE4iX_meMhFE07aWXOhEOEKxSBkRGs6ENrb09kknzdLkgNBQSDeypSu0L1jIhWCG80ADgMDkjce6xGn1FauGURwftniNl1zIqOMYdBxXOo7tLjlf9MlrPo0_pXvtNMTN2prHEAQFgBMhMOySi3Zqls2_j3b4P_FTsvZwNYzvbyZ3R2TdrQwFT196pFMWb8kxgJFSnlT29gFYGdS_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+partial+ordering+approach+to+characterize+properties+of+a+pair+of+orthogonal+projectors&rft.jtitle=Indian+journal+of+pure+and+applied+mathematics&rft.au=Baksalary%2C+Oskar+Maria&rft.au=Trenkler%2C+G%C3%B6tz&rft.date=2021-06-01&rft.pub=Indian+National+Science+Academy&rft.issn=0019-5588&rft.eissn=0975-7465&rft.volume=52&rft.issue=2&rft.spage=323&rft.epage=334&rft_id=info:doi/10.1007%2Fs13226-021-00138-0&rft.externalDocID=10_1007_s13226_021_00138_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-5588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-5588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-5588&client=summon