A partial ordering approach to characterize properties of a pair of orthogonal projectors
It is known that within the set of orthogonal projectors (Hermitian idempotent matrices) certain matrix partial orderings coincide in the sense that when two orthogonal projectors are ordered with respect to one of the orderings, then they are also ordered with respect to the others. This concerns,...
Saved in:
Published in | Indian journal of pure and applied mathematics Vol. 52; no. 2; pp. 323 - 334 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Indian National Science Academy
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is known that within the set of orthogonal projectors (Hermitian idempotent matrices) certain matrix partial orderings coincide in the sense that when two orthogonal projectors are ordered with respect to one of the orderings, then they are also ordered with respect to the others. This concerns, inter alia, the star, minus, diamond, sharp, core, and Löwner orderings. The situation changes, though, when instead of two orthogonal projectors, various functions of the pair (being either no longer Hermitian or no longer idempotent) are compared. The present paper provides an extensive investigation of the matrix partial orderings of functions of two orthogonal projectors. In addition to the six orderings mentioned above, three further binary functions are covered by the analysis, one of which is the space preordering. A particular attention is paid to the requirements that either product, sum, or difference of two orthogonal projectors is itself an orthogonal projector, i.e., inherits both features, Hermitianness and idempotency. Links of the results obtained with the research areas of applied origin (e.g., physics and statistics) are pointed out as well. |
---|---|
AbstractList | It is known that within the set of orthogonal projectors (Hermitian idempotent matrices) certain matrix partial orderings coincide in the sense that when two orthogonal projectors are ordered with respect to one of the orderings, then they are also ordered with respect to the others. This concerns, inter alia, the star, minus, diamond, sharp, core, and Löwner orderings. The situation changes, though, when instead of two orthogonal projectors, various functions of the pair (being either no longer Hermitian or no longer idempotent) are compared. The present paper provides an extensive investigation of the matrix partial orderings of functions of two orthogonal projectors. In addition to the six orderings mentioned above, three further binary functions are covered by the analysis, one of which is the space preordering. A particular attention is paid to the requirements that either product, sum, or difference of two orthogonal projectors is itself an orthogonal projector, i.e., inherits both features, Hermitianness and idempotency. Links of the results obtained with the research areas of applied origin (e.g., physics and statistics) are pointed out as well. |
Author | Baksalary, Oskar Maria Trenkler, Götz |
Author_xml | – sequence: 1 givenname: Oskar Maria surname: Baksalary fullname: Baksalary, Oskar Maria email: OBaksalary@gmail.com organization: Faculty of Physics, Adam Mickiewicz University – sequence: 2 givenname: Götz surname: Trenkler fullname: Trenkler, Götz organization: Faculty of Statistics, Dortmund University of Technology |
BookMark | eNp9kE1PAyEQhompiW31D3gi8YwOsOzCsWn8Sky86METYVlot6nLCvSgv15qTUw89DST4X2GyTNDkyEMDqFLCtcUoLlJlDNWE2CUAFAuCZygKahGkKaqxaT0QBURQsozNEtpA1BzUGqK3hZ4NDH3ZotD7FzshxU24xiDsWucA7ZrE43N5eHL4TIeXQm7hIPHppB93Hch5nVYhaEsKZGNsznEdI5Ovdkmd_Fb5-j17vZl-UCenu8fl4snYlmlMqG8sdIyWld1y3hnu0aytmOeis6p2tbceuVaBl0rTOcMNbZS1hvpRWU6Dy2fo6vD3vL1x86lrDdhF8stSTMhGiloVYzMkTykbAwpRee17bPJfRhyNP1WU9B7kfogUheR-kekhoKyf-gY-3cTP49D_AClce_Uxb-rjlDfGM2Jpg |
CitedBy_id | crossref_primary_10_1016_j_laa_2025_01_029 |
Cites_doi | 10.1080/03081080902778222 10.1016/S0024-3795(02)00337-3 10.1016/0024-3795(86)90148-5 10.1137/1.9780898719512 10.1016/0024-3795(91)90326-R 10.1080/03081087408817070 10.1017/S0013091500003801 10.1007/978-3-642-10473-2 10.1007/b98818 10.1016/0024-3795(86)90149-7 10.1016/0024-3795(79)90158-7 10.1080/03081087.2013.839676 10.1016/0024-3795(87)90248-5 10.1016/j.amc.2009.02.042 10.1007/s41884-018-0003-7 10.1007/978-3-319-45421-4 10.1016/j.laa.2014.01.017 10.1515/zna-1980-0415 10.1090/S0002-9904-1978-14442-5 10.1007/978-1-4471-6407-4 10.1007/BF01170633 10.1063/1.526284 10.1016/0024-3795(90)90341-9 10.1007/978-3-642-12821-9_10 |
ContentType | Journal Article |
Copyright | The Indian National Science Academy 2021 The Indian National Science Academy 2021. |
Copyright_xml | – notice: The Indian National Science Academy 2021 – notice: The Indian National Science Academy 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13226-021-00138-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 0975-7465 |
EndPage | 334 |
ExternalDocumentID | 10_1007_s13226_021_00138_0 |
GroupedDBID | -5D -5G -BR -EM -~C -~X 06D 0R~ 0VY 199 1N0 203 2JN 2KG 2LR 2VQ 30V 4.4 406 408 40D 5GY 67Z 72R 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFFNX AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN BAPOH BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y M~E N9A NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9R PT4 R9I ROL RSV S1Z S27 S3B SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W48 WK8 Z45 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c249t-137c8c21646b23dcd782bd2f15de96c63cf9eb20db5adea1ac49cfa8f54adf0b3 |
IEDL.DBID | U2A |
ISSN | 0019-5588 |
IngestDate | Fri Jul 25 11:13:49 EDT 2025 Tue Jul 01 04:11:00 EDT 2025 Thu Apr 24 22:58:05 EDT 2025 Fri Feb 21 02:47:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Commutativity Partitioned matrix 15A27 15B57 Hermitian idempotent matrix Generalized inverse 15A09 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-137c8c21646b23dcd782bd2f15de96c63cf9eb20db5adea1ac49cfa8f54adf0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2557851401 |
PQPubID | 2044203 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2557851401 crossref_citationtrail_10_1007_s13226_021_00138_0 crossref_primary_10_1007_s13226_021_00138_0 springer_journals_10_1007_s13226_021_00138_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Heidelberg |
PublicationSubtitle | Published by the Indian National Science Academy |
PublicationTitle | Indian journal of pure and applied mathematics |
PublicationTitleAbbrev | Indian J Pure Appl Math |
PublicationYear | 2021 |
Publisher | Indian National Science Academy Springer Nature B.V |
Publisher_xml | – name: Indian National Science Academy – name: Springer Nature B.V |
References | LöwnerKTÜber monotone MatrixfunktionenMath. Z.193438177216154544610.1007/BF01170633 PuntanenSStyanGPHIsotaloJMatrix Tricks for Linear Statistical Models - Our Personal Top Twenty2011BerlinSpringer-Verlag10.1007/978-3-642-10473-2 NambooripadKSSThe natural partial order on a regular semigroupProc. Edinburgh Math. Soc.19802324926062092210.1017/S0013091500003801 PecǎrićJProschanFTongYLConvex Functions, Partial Orderings, and Statistical Applications1992BostonAcademic Press0749.26004 DrazinMPNatural structures on semigroups with involutionBull. Amer. Math. Soc.19788413914148623410.1090/S0002-9904-1978-14442-5 RaoCRMitraSKGeneralized Inverse of Matrices and Its Applications1971New YorkWiley0236.15004 J.K. Baksalary, Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila, S. Puntanen, eds.), University of Tampere, Tampere, Finland, 1987, 113-142. M. Fattore and R. Bruggemann, ed., Partial Order Concepts in Applied Sciences, Springer, Cham, 2017. R. Hartwig and G.P.H. Styan, Partially ordered idempotent matrices, Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila, S. Puntanen, ed.), University of Tampere, Tampere, Finland, 1987, 361-383. BaksalaryJKA relationship between the star and minus orderingsLinear Algebra Appl.19868216316785896910.1016/0024-3795(86)90149-7 B. Coecke and K. Martin, A partial order on classical and quantum states, New Structures for Physics (B. Coecke, ed.), Springer-Verlag, Berlin, 2011, 593-683. MarsagliaGStyanGPHEqualities and inequalities for ranks of matricesLinear Multilinear Algebra1974226929238484010.1080/03081087408817070 MitraSKBhimasankaramPMalikSBMatrix Partial Orders2010World Scientific, SingaporeShorted Operators and Applications1203.15023 MeyerCDMatrix Analysis and Applied Linear Algebra2000PhiladelphiaSIAM10.1137/1.9780898719512 HartwigREStyanGPHOn some characterizations of the “star” partial ordering for matrices and rank subtractivityLinear Algebra Appl.19868214516185896810.1016/0024-3795(86)90148-5 BaksalaryOMTrenklerGOn subspace distances determined by the Frobenius normLinear Algebra Appl.2014448245263318298310.1016/j.laa.2014.01.017 BaksalaryOMTrenklerGColumn space equalities for orthogonal projectorsAppl. Math. Comput.200921251952925319781169.15007 BaksalaryOMTrenklerGCore inverse of matricesLinear Multilinear Algebra201058681697272275210.1080/03081080902778222 HartwigREHow to partially order regular elementsMath. Japon.1980251135712550442.06006 BaksalaryJKMitraSKLeft-star and right-star partial orderingsLinear Algebra Appl.19911497389109287010.1016/0024-3795(91)90326-R HarvilleDAMatrix Algebra From a Statistician’s Perspective1997New YorkSpringer10.1007/b98818 W. Rehder, When do projections commute?, Z. Naturforsch, 35a (1980), 437-441. MalikSBRuedaLThomeNFurther properties on the core partial order and other matrix partial ordersLinear Multilinear Algebra20146216291648326562610.1080/03081087.2013.839676 BrittinWESakakuraAYProjection operator techniques in physicsJ. Math. Phys.1984251274129574573810.1063/1.526284 MostajeranCSepulchreROrdering positive definite matricesInfo. Geo.20181287313397467210.1007/s41884-018-0003-7 SimoviciDADjerabaCMathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics20142LondonSpringer-Verlag10.1007/978-1-4471-6407-4 BaksalaryJKHaukeJA further algebraic version of Cochran’s theorem and matrix partial orderingsLinear Algebra Appl.1999127157169104880010.1016/0024-3795(90)90341-9 GuoDChoYJZhuJPartial Ordering Methods in Nonlinear Problems2004HauppaugeNova Science1116.45007 R.E. Cline and R.E. Funderlic, The rank of a difference of two matrices and associated generalized inverses, Linear Algebra Appl., 24 (1979), 185-215. BaksalaryJKBaksalaryOMSzulcTA property of orthogonal projectorsLinear Algebra Appl.20023543539192764510.1016/S0024-3795(02)00337-3 MitraSKOn group inverses and the sharp orderLinear Algebra Appl.198792173789463510.1016/0024-3795(87)90248-5 RE Hartwig (138_CR16) 1986; 82 RE Hartwig (138_CR15) 1980; 25 JK Baksalary (138_CR2) 1986; 82 JK Baksalary (138_CR5) 1991; 149 G Marsaglia (138_CR21) 1974; 2 MP Drazin (138_CR12) 1978; 84 OM Baksalary (138_CR7) 2010; 58 D Guo (138_CR14) 2004 SK Mitra (138_CR23) 1987; 92 CD Meyer (138_CR22) 2000 JK Baksalary (138_CR3) 2002; 354 DA Harville (138_CR18) 1997 CR Rao (138_CR29) 1971 DA Simovici (138_CR31) 2014 C Mostajeran (138_CR25) 2018; 1 J Pecǎrić (138_CR27) 1992 WE Brittin (138_CR9) 1984; 25 138_CR1 JK Baksalary (138_CR4) 1999; 127 OM Baksalary (138_CR8) 2014; 448 KSS Nambooripad (138_CR26) 1980; 23 S Puntanen (138_CR28) 2011 138_CR30 OM Baksalary (138_CR6) 2009; 212 138_CR10 138_CR11 SK Mitra (138_CR24) 2010 138_CR13 138_CR17 KT Löwner (138_CR19) 1934; 38 SB Malik (138_CR20) 2014; 62 |
References_xml | – reference: BaksalaryJKBaksalaryOMSzulcTA property of orthogonal projectorsLinear Algebra Appl.20023543539192764510.1016/S0024-3795(02)00337-3 – reference: HartwigREHow to partially order regular elementsMath. Japon.1980251135712550442.06006 – reference: SimoviciDADjerabaCMathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics20142LondonSpringer-Verlag10.1007/978-1-4471-6407-4 – reference: MitraSKOn group inverses and the sharp orderLinear Algebra Appl.198792173789463510.1016/0024-3795(87)90248-5 – reference: R. Hartwig and G.P.H. Styan, Partially ordered idempotent matrices, Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila, S. Puntanen, ed.), University of Tampere, Tampere, Finland, 1987, 361-383. – reference: MeyerCDMatrix Analysis and Applied Linear Algebra2000PhiladelphiaSIAM10.1137/1.9780898719512 – reference: PecǎrićJProschanFTongYLConvex Functions, Partial Orderings, and Statistical Applications1992BostonAcademic Press0749.26004 – reference: MalikSBRuedaLThomeNFurther properties on the core partial order and other matrix partial ordersLinear Multilinear Algebra20146216291648326562610.1080/03081087.2013.839676 – reference: HartwigREStyanGPHOn some characterizations of the “star” partial ordering for matrices and rank subtractivityLinear Algebra Appl.19868214516185896810.1016/0024-3795(86)90148-5 – reference: GuoDChoYJZhuJPartial Ordering Methods in Nonlinear Problems2004HauppaugeNova Science1116.45007 – reference: W. Rehder, When do projections commute?, Z. Naturforsch, 35a (1980), 437-441. – reference: B. Coecke and K. Martin, A partial order on classical and quantum states, New Structures for Physics (B. Coecke, ed.), Springer-Verlag, Berlin, 2011, 593-683. – reference: BaksalaryJKA relationship between the star and minus orderingsLinear Algebra Appl.19868216316785896910.1016/0024-3795(86)90149-7 – reference: DrazinMPNatural structures on semigroups with involutionBull. Amer. Math. Soc.19788413914148623410.1090/S0002-9904-1978-14442-5 – reference: MarsagliaGStyanGPHEqualities and inequalities for ranks of matricesLinear Multilinear Algebra1974226929238484010.1080/03081087408817070 – reference: MostajeranCSepulchreROrdering positive definite matricesInfo. Geo.20181287313397467210.1007/s41884-018-0003-7 – reference: HarvilleDAMatrix Algebra From a Statistician’s Perspective1997New YorkSpringer10.1007/b98818 – reference: BaksalaryOMTrenklerGOn subspace distances determined by the Frobenius normLinear Algebra Appl.2014448245263318298310.1016/j.laa.2014.01.017 – reference: BaksalaryOMTrenklerGColumn space equalities for orthogonal projectorsAppl. Math. Comput.200921251952925319781169.15007 – reference: PuntanenSStyanGPHIsotaloJMatrix Tricks for Linear Statistical Models - Our Personal Top Twenty2011BerlinSpringer-Verlag10.1007/978-3-642-10473-2 – reference: BaksalaryOMTrenklerGCore inverse of matricesLinear Multilinear Algebra201058681697272275210.1080/03081080902778222 – reference: BaksalaryJKMitraSKLeft-star and right-star partial orderingsLinear Algebra Appl.19911497389109287010.1016/0024-3795(91)90326-R – reference: MitraSKBhimasankaramPMalikSBMatrix Partial Orders2010World Scientific, SingaporeShorted Operators and Applications1203.15023 – reference: M. Fattore and R. Bruggemann, ed., Partial Order Concepts in Applied Sciences, Springer, Cham, 2017. – reference: BaksalaryJKHaukeJA further algebraic version of Cochran’s theorem and matrix partial orderingsLinear Algebra Appl.1999127157169104880010.1016/0024-3795(90)90341-9 – reference: BrittinWESakakuraAYProjection operator techniques in physicsJ. Math. Phys.1984251274129574573810.1063/1.526284 – reference: NambooripadKSSThe natural partial order on a regular semigroupProc. Edinburgh Math. Soc.19802324926062092210.1017/S0013091500003801 – reference: R.E. Cline and R.E. Funderlic, The rank of a difference of two matrices and associated generalized inverses, Linear Algebra Appl., 24 (1979), 185-215. – reference: LöwnerKTÜber monotone MatrixfunktionenMath. Z.193438177216154544610.1007/BF01170633 – reference: RaoCRMitraSKGeneralized Inverse of Matrices and Its Applications1971New YorkWiley0236.15004 – reference: J.K. Baksalary, Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila, S. Puntanen, eds.), University of Tampere, Tampere, Finland, 1987, 113-142. – volume: 58 start-page: 681 year: 2010 ident: 138_CR7 publication-title: Linear Multilinear Algebra doi: 10.1080/03081080902778222 – volume: 354 start-page: 35 year: 2002 ident: 138_CR3 publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(02)00337-3 – volume: 82 start-page: 145 year: 1986 ident: 138_CR16 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(86)90148-5 – volume-title: Matrix Analysis and Applied Linear Algebra year: 2000 ident: 138_CR22 doi: 10.1137/1.9780898719512 – volume: 149 start-page: 73 year: 1991 ident: 138_CR5 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(91)90326-R – volume-title: Matrix Partial Orders year: 2010 ident: 138_CR24 – volume: 2 start-page: 269 year: 1974 ident: 138_CR21 publication-title: Linear Multilinear Algebra doi: 10.1080/03081087408817070 – volume-title: Convex Functions, Partial Orderings, and Statistical Applications year: 1992 ident: 138_CR27 – volume: 23 start-page: 249 year: 1980 ident: 138_CR26 publication-title: Proc. Edinburgh Math. Soc. doi: 10.1017/S0013091500003801 – volume-title: Matrix Tricks for Linear Statistical Models - Our Personal Top Twenty year: 2011 ident: 138_CR28 doi: 10.1007/978-3-642-10473-2 – volume-title: Matrix Algebra From a Statistician’s Perspective year: 1997 ident: 138_CR18 doi: 10.1007/b98818 – volume: 82 start-page: 163 year: 1986 ident: 138_CR2 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(86)90149-7 – ident: 138_CR10 doi: 10.1016/0024-3795(79)90158-7 – volume: 62 start-page: 1629 year: 2014 ident: 138_CR20 publication-title: Linear Multilinear Algebra doi: 10.1080/03081087.2013.839676 – volume: 92 start-page: 17 year: 1987 ident: 138_CR23 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(87)90248-5 – ident: 138_CR1 – volume: 212 start-page: 519 year: 2009 ident: 138_CR6 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.02.042 – volume: 1 start-page: 287 year: 2018 ident: 138_CR25 publication-title: Info. Geo. doi: 10.1007/s41884-018-0003-7 – ident: 138_CR13 doi: 10.1007/978-3-319-45421-4 – volume: 448 start-page: 245 year: 2014 ident: 138_CR8 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2014.01.017 – ident: 138_CR30 doi: 10.1515/zna-1980-0415 – volume: 84 start-page: 139 year: 1978 ident: 138_CR12 publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0002-9904-1978-14442-5 – volume-title: Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics year: 2014 ident: 138_CR31 doi: 10.1007/978-1-4471-6407-4 – volume: 38 start-page: 177 year: 1934 ident: 138_CR19 publication-title: Math. Z. doi: 10.1007/BF01170633 – volume: 25 start-page: 1274 year: 1984 ident: 138_CR9 publication-title: J. Math. Phys. doi: 10.1063/1.526284 – volume-title: Partial Ordering Methods in Nonlinear Problems year: 2004 ident: 138_CR14 – volume-title: Generalized Inverse of Matrices and Its Applications year: 1971 ident: 138_CR29 – volume: 127 start-page: 157 year: 1999 ident: 138_CR4 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(90)90341-9 – ident: 138_CR11 doi: 10.1007/978-3-642-12821-9_10 – ident: 138_CR17 – volume: 25 start-page: 1 year: 1980 ident: 138_CR15 publication-title: Math. Japon. |
SSID | ssj0063099 |
Score | 2.2411993 |
Snippet | It is known that within the set of orthogonal projectors (Hermitian idempotent matrices) certain matrix partial orderings coincide in the sense that when two... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 323 |
SubjectTerms | Applications of Mathematics Diamonds Mathematics Mathematics and Statistics Numerical Analysis Original Research Projectors |
Title | A partial ordering approach to characterize properties of a pair of orthogonal projectors |
URI | https://link.springer.com/article/10.1007/s13226-021-00138-0 https://www.proquest.com/docview/2557851401 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF7EXvQgPrFayx68aSDJ7uZxDNJalHqy0J7CPkWQpiT14q93Jk0aFBW8BfZBmJnd-WZn51tCrnnMXQArwRNMKY-riHlKcu1JXxtwEZaJFAucp0_RZMYf5mLeFIVV7W33NiVZ79RdsRvYHl6YhfAX02seBOo9gbE7WPEszNr9N2J-ugG9-AciSZpSmZ_n-OqOOoz5LS1ae5vxITloYCLNNno9Ijt2eUz2p1uO1eqELDK6Qr1Dt5o_E-ahLUM4XRdUb6mYPyxd4Zl7ieSptHBUwsjXEr8wa1O8IBqnzZlMUVanZDYePd9NvOahBE9D9ITPycc60SFShamQGW3A7SsTukAYm0Y6YtqlEEH7RglprAyk5ql2MnGCS-N8xc7I7rJY2nNCE6nC1FehNJHkiZCSOyFiA6ABEzaM90nQyivXDYs4Pmbxlnf8xyjjHGSc1zLO_T652Y5ZbTg0_uw9aNWQN-upyiHwiQEbQjDYJ7etarrm32e7-F_3S7IX1taBxywDsrsu3-0VoI61GpJedr94HA1rY_sEroTPJA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHtSD-MRq1T1400CS3c3jWESp2vbUQj0t-8iKIE1J6sVf70yaNCgqeAvsgzCzu_PNzsy3hFzxmLsAdoInmNYe1xHztOLGU76xYCIyJlIscB6No8GUP87ErC4KK5ts9yYkWZ3UbbEbrD1MmAX3F8NrHjjqmwAGEkzkmob95vyNmJ-uQC_-gUiSulTm5zm-mqMWY34Li1bW5n6P7NYwkfZXet0nG9n8gOyM1hyr5SF57tMF6h26VfyZMA9tGMLpMqdmTcX8kdEF3rkXSJ5Kc0cVjHwt8AujNvkLonFa38nkRXlEpvd3k9uBVz-U4BnwnvA5-dgkJkSqMB0yayyYfW1DFwibpZGJmHEpeNC-1ULZTAXK8NQ4lTjBlXW-ZsekM8_n2QmhidJh6utQ2UjxRCjFnRCxBdCAARvGuyRo5CVNzSKOj1m8yZb_GGUsQcaykrH0u-R6PWax4tD4s3evUYOs91MpwfGJARuCM9glN41q2ubfZzv9X_dLsjWYjIZy-DB-OiPbYbVS8MqlRzrL4j07BwSy1BfVgvsEFa3Qgw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfQgPrFaNQdvunQfyT6ORS310eLBQj0teWxEkN1lu1789c7so1VRwdtCJmGZTDLfZDJfCDljATMOrASLe1JaTPqeJQVTlrCVBheReDzCAufxxB9N2e2Mzz5V8Ve33duUZF3TgCxNadnPtekvC9_ADvHyLITCmGqzIGhfhe3YQbueuoN2L_Y9O6oBMP4ND8OmbObnMb66piXe_JYirTzPcItsNpCRDuo53iYrSbpDNsYLvtX5Lnka0BxtAMQqLk0Yh7Zs4bTMqFrQMr8nNMfz9wKJVGlmqICeLwV-YQYne0ZkTpvzmayY75Hp8PrxcmQ1jyZYCiIpfFo-UKFykTZMup5WGiCA1K5xuE4iX_meMhFE07aWXOhEOEKxSBkRGs6ENrb09kknzdLkgNBQSDeypSu0L1jIhWCG80ADgMDkjce6xGn1FauGURwftniNl1zIqOMYdBxXOo7tLjlf9MlrPo0_pXvtNMTN2prHEAQFgBMhMOySi3Zqls2_j3b4P_FTsvZwNYzvbyZ3R2TdrQwFT196pFMWb8kxgJFSnlT29gFYGdS_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+partial+ordering+approach+to+characterize+properties+of+a+pair+of+orthogonal+projectors&rft.jtitle=Indian+journal+of+pure+and+applied+mathematics&rft.au=Baksalary%2C+Oskar+Maria&rft.au=Trenkler%2C+G%C3%B6tz&rft.date=2021-06-01&rft.pub=Indian+National+Science+Academy&rft.issn=0019-5588&rft.eissn=0975-7465&rft.volume=52&rft.issue=2&rft.spage=323&rft.epage=334&rft_id=info:doi/10.1007%2Fs13226-021-00138-0&rft.externalDocID=10_1007_s13226_021_00138_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-5588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-5588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-5588&client=summon |