Electrically detected electron nuclear double resonance in amorphous hydrogenated boron thin films
We report on electrically detected electron nuclear double resonance (EDENDOR) observations via spin dependent trap assisted tunneling (SDTAT) in amorphous boron thin films at 250 K. We observe EDENDOR from both 10B and 11B nuclei, likely interacting with carbon impurities. In SDTAT, electron parama...
Saved in:
Published in | Solid state communications Vol. 353; p. 114846 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0038-1098 1879-2766 |
DOI | 10.1016/j.ssc.2022.114846 |
Cover
Loading…
Abstract | We report on electrically detected electron nuclear double resonance (EDENDOR) observations via spin dependent trap assisted tunneling (SDTAT) in amorphous boron thin films at 250 K. We observe EDENDOR from both 10B and 11B nuclei, likely interacting with carbon impurities. In SDTAT, electron paramagnetic resonance (EPR) is detected through a change in the trap assisted tunneling current through the thin film. As in conventional electron nuclear double resonance (ENDOR) the ENDOR response is detected through a modest change in the EPR response. Since SDTAT detection sensitivity is about seven orders of magnitude greater than that of conventional EPR, it, in principle, can provide an enormous boost in ENDOR sensitivity. This enormous potential sensitivity improvement can be compromised by a coupling of the RF electromagnetic field driving the nuclear spin response and the electrical leads which are utilized to monitor the resonance induced changes in device current. We overcome this difficulty with the introduction of proportional-integral-derivative (PID) control of the RF circuitry which greatly suppresses fluctuations in the amplitude of the RF magnetic field at the thin film structure under investigation.
•Electrical detection of 10B and 11B nuclei via electron nuclear double resonance.•Electrically detected electron nuclear double resonance in a complex spin system.•Proportional-integral-derivative controller for nuclear frequency power smoothing. |
---|---|
AbstractList | We report on electrically detected electron nuclear double resonance (EDENDOR) observations via spin dependent trap assisted tunneling (SDTAT) in amorphous boron thin films at 250 K. We observe EDENDOR from both 10B and 11B nuclei, likely interacting with carbon impurities. In SDTAT, electron paramagnetic resonance (EPR) is detected through a change in the trap assisted tunneling current through the thin film. As in conventional electron nuclear double resonance (ENDOR) the ENDOR response is detected through a modest change in the EPR response. Since SDTAT detection sensitivity is about seven orders of magnitude greater than that of conventional EPR, it, in principle, can provide an enormous boost in ENDOR sensitivity. This enormous potential sensitivity improvement can be compromised by a coupling of the RF electromagnetic field driving the nuclear spin response and the electrical leads which are utilized to monitor the resonance induced changes in device current. We overcome this difficulty with the introduction of proportional-integral-derivative (PID) control of the RF circuitry which greatly suppresses fluctuations in the amplitude of the RF magnetic field at the thin film structure under investigation.
•Electrical detection of 10B and 11B nuclei via electron nuclear double resonance.•Electrically detected electron nuclear double resonance in a complex spin system.•Proportional-integral-derivative controller for nuclear frequency power smoothing. |
ArticleNumber | 114846 |
Author | Myers, Kenneth J. Manning, Brian Lenahan, Patrick M. |
Author_xml | – sequence: 1 givenname: Kenneth J. orcidid: 0000-0002-2015-0925 surname: Myers fullname: Myers, Kenneth J. email: k.j.myers5579@gmail.com organization: Intercollege Graduate Degree Program in Materials Science and Engineering, The Pennsylvania State University, 101 Earth and Engineering Sciences Building, University Park, PA, 16802, USA – sequence: 2 givenname: Brian surname: Manning fullname: Manning, Brian organization: High Frequency Technology Center, Keysight Technologies, 1400 Fountaingrove Pkwy, Santa Rosa, CA, 95403, USA – sequence: 3 givenname: Patrick M. surname: Lenahan fullname: Lenahan, Patrick M. organization: Department of Engineering Science and Mechanics, The Pennsylvania State University, 101 Earth and Engineering Sciences Building, University Park, PA, 16802, USA |
BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A7sm2zTJ4klK_YCCFz2HfMzalG1Skl2h_96s9expmGGe4Z1ngWYhBkDonpKaEsofDnXOtm5I09SUMsn4FZpTKdqqEZzP0JyQlawoaeUNWuR8IIQIKegcmW0Pdkje6r4_YwdD6cBh-J3GgMNoe9AJuziaHnCCHIMOFrAPWB9jOu3jmPH-7FL8gqAn1sQJHPZlo_P9Md-i6073Ge7-6hJ9Pm8_Nq_V7v3lbfO0q2zD2qGEM0yD1tCuqG2JoNJIwrjV3AJQCYwzx4gD04lONsIYQWG9pqJpNXDNxGqJ6OWuTTHnBJ06JX_U6awoUZMkdVBFkpokqYukwjxeGCjBvj0kla2H8p_zqRhQLvp_6B-yKnPu |
Cites_doi | 10.1063/1.115726 10.1103/PhysRevB.11.2370 10.4028/www.scientific.net/MSF.1004.306 10.4028/www.scientific.net/MSF.143-147.63 10.1063/1.5123619 10.1063/1.5108961 10.1016/S0022-3093(99)00871-6 10.1063/1.5123600 10.1103/PhysRevLett.106.187601 10.1103/PhysRevB.6.436 10.1143/JJAP.40.2840 10.1016/S0022-3093(99)00578-5 10.1103/PhysRevB.98.155203 10.1063/5.0041059 10.1016/0022-5088(79)90086-9 10.1063/1.3482071 10.1063/1.115900 10.1109/TNS.2019.2958351 10.1051/jphyslet:0197800390405100 10.1016/0022-5088(79)90099-7 10.1063/1.4942675 10.1103/PhysRevB.81.161203 10.1149/2.007206jss 10.1103/PhysRevB.54.7957 10.1016/S0022-3093(98)00073-8 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ssc.2022.114846 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1879-2766 |
ExternalDocumentID | 10_1016_j_ssc_2022_114846 S0038109822001788 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K TN5 XPP XSW ZMT ~02 ~G- ~S- 3O- 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ H~9 NDZJH R2- RIG SEW SSH UQL WUQ ZY4 |
ID | FETCH-LOGICAL-c249t-10b4aeaae931c90718b8046ca6cee18e464d40debf7f827bb71e551729ae6a473 |
IEDL.DBID | AIKHN |
ISSN | 0038-1098 |
IngestDate | Tue Jul 01 01:49:18 EDT 2025 Fri Feb 23 02:40:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | E. EDMR D. Variable range hopping E. ENDOR D. Magnetic resonance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-10b4aeaae931c90718b8046ca6cee18e464d40debf7f827bb71e551729ae6a473 |
ORCID | 0000-0002-2015-0925 |
ParticipantIDs | crossref_primary_10_1016_j_ssc_2022_114846 elsevier_sciencedirect_doi_10_1016_j_ssc_2022_114846 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-15 |
PublicationDateYYYYMMDD | 2022-09-15 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Solid state communications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lepine (bib7) 1972; 6 Manning, Waskiewicz, McCrory, Lenahan (bib27) 2019; 90 Gordy (bib1) 1980 Hoffman, Martinsen, Venters (bib4) 1984; 59 King, French, Jaehnig, Kuhn, Xu (bib28) 2012; 1 Kevan, Kispert (bib2) 1976 Stathis (bib22) 1996; 68 Miura, Fujieda (bib24) 2001; 40 Katzir, Suss, Zunger, Halperin (bib29) 1975; 11 Kaplan, Solomon, Mott (bib6) 1978; 39 Siems (bib19) 1979; 67 Mutch, Lenahan, King (bib20) 2016; 119 Waskiewicz, Manning, McCrory, Lenahan (bib10) 2019; 126 Manning, Ashton, Lenahan (bib11) 2021; 118 Waskiewicz, Manning, McCrory, Lenahan (bib13) 2020; 1004 Kawachi, Graeff, Brandt, Stutzmann (bib8) 1996; 54 Gercke, Stems (bib18) 1979; 67 Reinke, Müller, Feege, Greulich-Weber, Spaeth (bib14) 1993; 143–147 Manning, Cochrane, Lenahan (bib30) 2020; 91 Moxim, Ashton, Lenahan, Flatte, Harmon, King (bib21) 2020; 67 Jeschke, Kroschel, Jansen (bib15) 1999; 260 Slichter (bib26) 1990 Stich, Greulich‐Weber, Spaeth (bib5) 1996; 68 Hoehne, Dreher, Huebl, Stutzmann, Brandt (bib12) 2011; 106 Toledo, de Jesus, Kianinia, Leal, Fantini, Cury, Sáfar, Aharonovich, Krambrock (bib16) 2018; 98 Tezuka, Stegner, Tyryshkin, Shankar, Thewalt, Lyon, Itoh, Brandt (bib17) 2010; 81 Stutzmann, Brandt, Bayerl (bib9) 2000; 266–269 Eaton, Eaton, Barr, Weber (bib3) 2010 Ryan, Lenahan, Krishnan, Krishnan (bib23) 2010; 108 Brandt, Bayerl, Stutzmann, Graeff (bib25) 1998; 227–230 Stathis (10.1016/j.ssc.2022.114846_bib22) 1996; 68 Slichter (10.1016/j.ssc.2022.114846_bib26) 1990 Moxim (10.1016/j.ssc.2022.114846_bib21) 2020; 67 Eaton (10.1016/j.ssc.2022.114846_bib3) 2010 Manning (10.1016/j.ssc.2022.114846_bib11) 2021; 118 Hoehne (10.1016/j.ssc.2022.114846_bib12) 2011; 106 Gercke (10.1016/j.ssc.2022.114846_bib18) 1979; 67 Reinke (10.1016/j.ssc.2022.114846_bib14) 1993; 143–147 King (10.1016/j.ssc.2022.114846_bib28) 2012; 1 Mutch (10.1016/j.ssc.2022.114846_bib20) 2016; 119 Waskiewicz (10.1016/j.ssc.2022.114846_bib10) 2019; 126 Waskiewicz (10.1016/j.ssc.2022.114846_bib13) 2020; 1004 Gordy (10.1016/j.ssc.2022.114846_bib1) 1980 Hoffman (10.1016/j.ssc.2022.114846_bib4) 1984; 59 Siems (10.1016/j.ssc.2022.114846_bib19) 1979; 67 Stutzmann (10.1016/j.ssc.2022.114846_bib9) 2000; 266–269 Brandt (10.1016/j.ssc.2022.114846_bib25) 1998; 227–230 Manning (10.1016/j.ssc.2022.114846_bib27) 2019; 90 Lepine (10.1016/j.ssc.2022.114846_bib7) 1972; 6 Miura (10.1016/j.ssc.2022.114846_bib24) 2001; 40 Tezuka (10.1016/j.ssc.2022.114846_bib17) 2010; 81 Ryan (10.1016/j.ssc.2022.114846_bib23) 2010; 108 Kevan (10.1016/j.ssc.2022.114846_bib2) 1976 Kaplan (10.1016/j.ssc.2022.114846_bib6) 1978; 39 Manning (10.1016/j.ssc.2022.114846_bib30) 2020; 91 Kawachi (10.1016/j.ssc.2022.114846_bib8) 1996; 54 Toledo (10.1016/j.ssc.2022.114846_bib16) 2018; 98 Katzir (10.1016/j.ssc.2022.114846_bib29) 1975; 11 Stich (10.1016/j.ssc.2022.114846_bib5) 1996; 68 Jeschke (10.1016/j.ssc.2022.114846_bib15) 1999; 260 |
References_xml | – volume: 143–147 start-page: 63 year: 1993 end-page: 68 ident: bib14 article-title: Endor and ODEPR investigation of the microscopic structure of the boron acceptor in 6H-SiC publication-title: Mater. Sci. Forum – volume: 67 start-page: 245 year: 1979 end-page: 248 ident: bib18 article-title: Electron paramagnetic resonance investigations of carbon-doped β rhombohedral boron publication-title: J. Less Common Met. – year: 1976 ident: bib2 article-title: Electron Spin Double Resonance Spectroscopy – volume: 91 year: 2020 ident: bib30 article-title: An improved adaptive signal averaging technique for noise reduction and tracking enhancements in continuous wave magnetic resonance publication-title: Rev. Sci. Instrum. – volume: 227–230 start-page: 343 year: 1998 end-page: 347 ident: bib25 article-title: Electrically detected magnetic resonance of a-Si:H at low magnetic fields: the influence of hydrogen on the dangling bond resonance publication-title: J. Non-Cryst. Solids – volume: 260 start-page: 216 year: 1999 end-page: 227 ident: bib15 article-title: A magnetic resonance study on the structure of amorphous networks in the Si–B–N(–C) system publication-title: J. Non-Cryst. Solids – volume: 67 start-page: 155 year: 1979 end-page: 160 ident: bib19 article-title: The quantitative evaluation of the electron paramagnetic resonance anisotropy of β rhombohedral boron publication-title: J. Less Common Met. – volume: 40 start-page: 2840 year: 2001 end-page: 2843 ident: bib24 article-title: Spin-dependent trap-assisted tunneling current in ultra-thin gate dielectrics publication-title: Jpn. J. Appl. Phys. – year: 2010 ident: bib3 article-title: Quantitative EPR – volume: 118 year: 2021 ident: bib11 article-title: Observation of electrically detected electron nuclear double resonance in amorphous hydrogenated silicon films publication-title: Appl. Phys. Lett. – volume: 68 start-page: 1669 year: 1996 end-page: 1671 ident: bib22 article-title: Electrically detected magnetic resonance study of stress‐induced leakage current in thin SiO publication-title: Appl. Phys. Lett. – volume: 1 start-page: P250 year: 2012 end-page: P253 ident: bib28 article-title: Valence band offset at a-B:H and a-BP:H/Si interfaces publication-title: ECS J. Solid State Sci. Technol. – volume: 68 start-page: 1102 year: 1996 end-page: 1104 ident: bib5 article-title: Electrical detection of electron nuclear double resonance in silicon publication-title: Appl. Phys. Lett. – volume: 119 year: 2016 ident: bib20 article-title: Defect chemistry and electronic transport in low-κ dielectrics studied with electrically detected magnetic resonance publication-title: J. Appl. Phys. – volume: 67 start-page: 228 year: 2020 end-page: 233 ident: bib21 article-title: Observation of radiation-induced leakage current defects in MOS oxides with multifrequency electrically detected magnetic resonance and near-zero-field magnetoresistance publication-title: IEEE Trans. Nucl. Sci. – volume: 1004 start-page: 306 year: 2020 end-page: 313 ident: bib13 article-title: A new technique for analyzing defects in silicon carbide devices: electrically detected electron nuclear double resonance publication-title: Mater. Sci. Forum – volume: 81 year: 2010 ident: bib17 article-title: Electron paramagnetic resonance of boron acceptors in isotopically purified silicon publication-title: Phys. Rev. B – volume: 106 year: 2011 ident: bib12 article-title: Electrical detection of coherent nuclear spin oscillations in phosphorus-doped silicon using pulsed ENDOR publication-title: Phys. Rev. Lett. – volume: 54 start-page: 7957 year: 1996 end-page: 7964 ident: bib8 article-title: Carrier transport in amorphous silicon-based thin-film transistors studied by spin-dependent transport publication-title: Phys. Rev. B – volume: 98 year: 2018 ident: bib16 article-title: Electron paramagnetic resonance signature of point defects in neutron-irradiated hexagonal boron nitride publication-title: Phys. Rev. B – volume: 39 start-page: 51 year: 1978 end-page: 54 ident: bib6 article-title: Explanation of the large spin-dependent recombination effect in semiconductors publication-title: J. Phys., Lett. – year: 1980 ident: bib1 article-title: Theory and Applications of Electron Spin Resonance – volume: 90 year: 2019 ident: bib27 article-title: Apparatus for electrically detected electron nuclear double resonance in solid state electronic devices publication-title: Rev. Sci. Instrum. – volume: 126 year: 2019 ident: bib10 article-title: Electrically detected electron nuclear double resonance in 4H-SiC bipolar junction transistors publication-title: J. Appl. Phys. – volume: 266–269 start-page: 1 year: 2000 end-page: 22 ident: bib9 article-title: Spin-dependent processes in amorphous and microcrystalline silicon: a survey publication-title: J. Non-Cryst. Solids – volume: 6 start-page: 436 year: 1972 end-page: 441 ident: bib7 article-title: Spin-dependent recombination on silicon surface publication-title: Phys. Rev. B – volume: 11 start-page: 2370 year: 1975 end-page: 2377 ident: bib29 article-title: Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements publication-title: Phys. Rev. B – volume: 108 year: 2010 ident: bib23 article-title: Spin dependent tunneling spectroscopy in 1.2 nm dielectrics publication-title: J. Appl. Phys. – year: 1990 ident: bib26 article-title: Principles of Magnetic Resonance – volume: 59 start-page: 110 year: 1984 end-page: 123 ident: bib4 article-title: General theory of polycrystalline ENDOR patterns. g and hyperfine tensors of arbitrary symmetry and relative orientation publication-title: J. Magn. Reson. – volume: 59 start-page: 110 year: 1984 ident: 10.1016/j.ssc.2022.114846_bib4 article-title: General theory of polycrystalline ENDOR patterns. g and hyperfine tensors of arbitrary symmetry and relative orientation publication-title: J. Magn. Reson. – volume: 68 start-page: 1102 year: 1996 ident: 10.1016/j.ssc.2022.114846_bib5 article-title: Electrical detection of electron nuclear double resonance in silicon publication-title: Appl. Phys. Lett. doi: 10.1063/1.115726 – year: 1980 ident: 10.1016/j.ssc.2022.114846_bib1 – volume: 11 start-page: 2370 year: 1975 ident: 10.1016/j.ssc.2022.114846_bib29 article-title: Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.11.2370 – volume: 1004 start-page: 306 year: 2020 ident: 10.1016/j.ssc.2022.114846_bib13 article-title: A new technique for analyzing defects in silicon carbide devices: electrically detected electron nuclear double resonance publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.1004.306 – volume: 143–147 start-page: 63 year: 1993 ident: 10.1016/j.ssc.2022.114846_bib14 article-title: Endor and ODEPR investigation of the microscopic structure of the boron acceptor in 6H-SiC publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.143-147.63 – volume: 90 year: 2019 ident: 10.1016/j.ssc.2022.114846_bib27 article-title: Apparatus for electrically detected electron nuclear double resonance in solid state electronic devices publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5123619 – volume: 126 year: 2019 ident: 10.1016/j.ssc.2022.114846_bib10 article-title: Electrically detected electron nuclear double resonance in 4H-SiC bipolar junction transistors publication-title: J. Appl. Phys. doi: 10.1063/1.5108961 – volume: 266–269 start-page: 1 year: 2000 ident: 10.1016/j.ssc.2022.114846_bib9 article-title: Spin-dependent processes in amorphous and microcrystalline silicon: a survey publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(99)00871-6 – volume: 91 year: 2020 ident: 10.1016/j.ssc.2022.114846_bib30 article-title: An improved adaptive signal averaging technique for noise reduction and tracking enhancements in continuous wave magnetic resonance publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5123600 – volume: 106 year: 2011 ident: 10.1016/j.ssc.2022.114846_bib12 article-title: Electrical detection of coherent nuclear spin oscillations in phosphorus-doped silicon using pulsed ENDOR publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.187601 – volume: 6 start-page: 436 year: 1972 ident: 10.1016/j.ssc.2022.114846_bib7 article-title: Spin-dependent recombination on silicon surface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.6.436 – volume: 40 start-page: 2840 year: 2001 ident: 10.1016/j.ssc.2022.114846_bib24 article-title: Spin-dependent trap-assisted tunneling current in ultra-thin gate dielectrics publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.40.2840 – volume: 260 start-page: 216 year: 1999 ident: 10.1016/j.ssc.2022.114846_bib15 article-title: A magnetic resonance study on the structure of amorphous networks in the Si–B–N(–C) system publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(99)00578-5 – year: 1990 ident: 10.1016/j.ssc.2022.114846_bib26 – volume: 98 year: 2018 ident: 10.1016/j.ssc.2022.114846_bib16 article-title: Electron paramagnetic resonance signature of point defects in neutron-irradiated hexagonal boron nitride publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.155203 – volume: 118 year: 2021 ident: 10.1016/j.ssc.2022.114846_bib11 article-title: Observation of electrically detected electron nuclear double resonance in amorphous hydrogenated silicon films publication-title: Appl. Phys. Lett. doi: 10.1063/5.0041059 – volume: 67 start-page: 155 year: 1979 ident: 10.1016/j.ssc.2022.114846_bib19 article-title: The quantitative evaluation of the electron paramagnetic resonance anisotropy of β rhombohedral boron publication-title: J. Less Common Met. doi: 10.1016/0022-5088(79)90086-9 – volume: 108 year: 2010 ident: 10.1016/j.ssc.2022.114846_bib23 article-title: Spin dependent tunneling spectroscopy in 1.2 nm dielectrics publication-title: J. Appl. Phys. doi: 10.1063/1.3482071 – volume: 68 start-page: 1669 year: 1996 ident: 10.1016/j.ssc.2022.114846_bib22 article-title: Electrically detected magnetic resonance study of stress‐induced leakage current in thin SiO2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.115900 – volume: 67 start-page: 228 year: 2020 ident: 10.1016/j.ssc.2022.114846_bib21 article-title: Observation of radiation-induced leakage current defects in MOS oxides with multifrequency electrically detected magnetic resonance and near-zero-field magnetoresistance publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2019.2958351 – year: 2010 ident: 10.1016/j.ssc.2022.114846_bib3 – volume: 39 start-page: 51 year: 1978 ident: 10.1016/j.ssc.2022.114846_bib6 article-title: Explanation of the large spin-dependent recombination effect in semiconductors publication-title: J. Phys., Lett. doi: 10.1051/jphyslet:0197800390405100 – volume: 67 start-page: 245 year: 1979 ident: 10.1016/j.ssc.2022.114846_bib18 article-title: Electron paramagnetic resonance investigations of carbon-doped β rhombohedral boron publication-title: J. Less Common Met. doi: 10.1016/0022-5088(79)90099-7 – volume: 119 year: 2016 ident: 10.1016/j.ssc.2022.114846_bib20 article-title: Defect chemistry and electronic transport in low-κ dielectrics studied with electrically detected magnetic resonance publication-title: J. Appl. Phys. doi: 10.1063/1.4942675 – volume: 81 year: 2010 ident: 10.1016/j.ssc.2022.114846_bib17 article-title: Electron paramagnetic resonance of boron acceptors in isotopically purified silicon publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.161203 – volume: 1 start-page: P250 year: 2012 ident: 10.1016/j.ssc.2022.114846_bib28 article-title: Valence band offset at a-B:H and a-BP:H/Si interfaces publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.007206jss – volume: 54 start-page: 7957 year: 1996 ident: 10.1016/j.ssc.2022.114846_bib8 article-title: Carrier transport in amorphous silicon-based thin-film transistors studied by spin-dependent transport publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.7957 – year: 1976 ident: 10.1016/j.ssc.2022.114846_bib2 – volume: 227–230 start-page: 343 year: 1998 ident: 10.1016/j.ssc.2022.114846_bib25 article-title: Electrically detected magnetic resonance of a-Si:H at low magnetic fields: the influence of hydrogen on the dangling bond resonance publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00073-8 |
SSID | ssj0007871 |
Score | 2.372181 |
Snippet | We report on electrically detected electron nuclear double resonance (EDENDOR) observations via spin dependent trap assisted tunneling (SDTAT) in amorphous... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 114846 |
SubjectTerms | D. Magnetic resonance D. Variable range hopping E. EDMR E. ENDOR |
Title | Electrically detected electron nuclear double resonance in amorphous hydrogenated boron thin films |
URI | https://dx.doi.org/10.1016/j.ssc.2022.114846 |
Volume | 353 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60InoRn1hf7MGTEHWTbbI5SlGqYk8WvIXd7AQrNSlNe-jF3-5MHqKgF48JGUi-HWa-yc5-A3Au056vItSesoYKFEq4nrVB5DkWw3IYu8jwf8inYTgYqYeX3ssK9NuzMNxW2cT-OqZX0bq5c9WgeTUdj_mML6tTsf5cNWNer8KaH8RhrwNrN_ePg-FXQCafrAfnBaxkGut2c7Nq8ypLFjL0fRbN1UyDf0tP31LO3TZsNVxR3NSvswMrmO_CRr8d0bYL61X_Zlrugb2txtkw4pOlcMhbA-hEO-RG5CxbbGbCFQs7QUE1dsFKGyjGuTDvBYFdLErxunSzgjzKsK1lbQMxf6UnsvHkvdyH0d3tc3_gNeMTvJRqqjl9qlUGjcE4kCnVwFJbTdVwakJKjFKjCpVT1w5tFmXaj6yNJBJ_IrZtMDQqCg6gkxc5HoLwoyxMqdjRUqGyPgWmgJimMtJaiXEWduGiRS2Z1ioZSds-9pYQxAlDnNQQd0G1uCY_ljqhKP632dH_zI5hk6-4xUP2TqAzny3wlHjE3J7B6uWHPGu85RPGFMei |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xEIIF8RTl6YEJKYATN3ZHVIEKtEwgsUV2fBFFbVK1ZWDht3OXhwAJFtYklpLP1t198efvAE5l2g6VRhMoZ4mgUMINnIt04NkMy2PHa8v_IQcPce9J3T23nxeg25yFYVllHfurmF5G6_rKRY3mxWQ45DO-7E7F_nNlj3mzCMuqHWnW9Z1_fOk8aEVWbfMi9jHtmGZrsxR5zWZsYxiGbJlruAj-LTl9Szg3G7BeV4riqnqZTVjAfAtWu02Dti1YKdWb6Wwb3HXZzIbxHr0Lj7wxgF40LW5EzqbFdip88eZGKIhhF-yzgWKYCzsuCGri_-Ll3U8LWk-Wxzp2NhDzF3oiG47Gsx14url-7PaCunlCkBKjmtOnOmXRWuxEMiUGLI0zxIVTG1NalAZVrLy69OgynZlQO6clUvVEtbbF2Cod7cJSXuS4ByLUWZwS1TFSoXIhhaWI6kxlpXMSO1ncgrMGtWRSeWQkjXjsNSGIE4Y4qSBugWpwTX5MdEIx_O9h-_8bdgKrvcdBP-nfPtwfwBrfYbGHbB_C0nz6hkdUUczdcbliPgFw-8ht |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrically+detected+electron+nuclear+double+resonance+in+amorphous+hydrogenated+boron+thin+films&rft.jtitle=Solid+state+communications&rft.au=Myers%2C+Kenneth+J.&rft.au=Manning%2C+Brian&rft.au=Lenahan%2C+Patrick+M.&rft.date=2022-09-15&rft.issn=0038-1098&rft.volume=353&rft.spage=114846&rft_id=info:doi/10.1016%2Fj.ssc.2022.114846&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ssc_2022_114846 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1098&client=summon |