Agriculture data analysis using parallel k-nearest neighbour classification algorithm

A cost-effective and effective agriculture management system is created by utilizing data analytics (DA), internet of things (IoT), and cloud computing (CC). Geographic information system (GIS) technology and remote sensing predictions give users and stakeholders access to a variety of sensory data,...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of reconfigurable and embedded systems Vol. 13; no. 2; p. 332
Main Authors Muninarayanappa, Vimala, Ranjan, Rajeev
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.07.2024
Subjects
Online AccessGet full text
ISSN2089-4864
2722-2608
2089-4864
DOI10.11591/ijres.v13.i2.pp332-340

Cover

Loading…
Abstract A cost-effective and effective agriculture management system is created by utilizing data analytics (DA), internet of things (IoT), and cloud computing (CC). Geographic information system (GIS) technology and remote sensing predictions give users and stakeholders access to a variety of sensory data, including rainfall patterns and weather-related information (such as pressure, humidity, and temperatures). They have unstructured format for sensory data. The current systems do a poor job of analysing such data since they cannot effectively balance speed and memory usage. An effective categorization model (ECM) on agriculture management system is proposed to address this research difficulty. First, a classification technique called priority-based k-nearest neighbour (KNN) is provided to categorize unstructured multi-dimensional data into a structured form. Additionally, the Hadoop MapReduce (HMR) framework is used to do classification utilizing a parallel approach. Data from real-time IoT sensors used in agriculture is the subject of experiments. The suggested approach significantly outperforms previous approaches that are computing time, memory efficiency, model accuracy, and speedup.
AbstractList A cost-effective and effective agriculture management system is created by utilizing data analytics (DA), internet of things (IoT), and cloud computing (CC). Geographic information system (GIS) technology and remote sensing predictions give users and stakeholders access to a variety of sensory data, including rainfall patterns and weather-related information (such as pressure, humidity, and temperatures). They have unstructured format for sensory data. The current systems do a poor job of analysing such data since they cannot effectively balance speed and memory usage. An effective categorization model (ECM) on agriculture management system is proposed to address this research difficulty. First, a classification technique called priority-based k-nearest neighbour (KNN) is provided to categorize unstructured multi-dimensional data into a structured form. Additionally, the Hadoop MapReduce (HMR) framework is used to do classification utilizing a parallel approach. Data from real-time IoT sensors used in agriculture is the subject of experiments. The suggested approach significantly outperforms previous approaches that are computing time, memory efficiency, model accuracy, and speedup.
Author Ranjan, Rajeev
Muninarayanappa, Vimala
Author_xml – sequence: 1
  givenname: Vimala
  orcidid: 0000-0003-0856-6431
  surname: Muninarayanappa
  fullname: Muninarayanappa, Vimala
– sequence: 2
  givenname: Rajeev
  orcidid: 0000-0002-0048-2885
  surname: Ranjan
  fullname: Ranjan, Rajeev
BookMark eNqFkE1PwzAMhiM0JMbYb6AS55Z8uGt64DBNfEmTuLBzlGTJlpG1JWmR9u8JHScunGzZfu3XzzWaNG1jELoluCCkrMm9OwQTiy_CCkeLrmOM5gzwBZrSitKcLjCfpBzzOge-gCs0j_GAMSYMSA0wRZvlLjg9-H4IJtvKXmaykf4UXcyG6Jpd1skgvTc--8gbI9OxPmuM2-1VO4RMexmjs07L3rVNJv2uDa7fH2_QpZU-mvlvnKHN0-P76iVfvz2_rpbrXFOocW5KteAgqQILjGtFlKqYshZKkBYAZKVLjqGuecXIFmquy1JXqc6tMqnBZujuvLcL7eeQvIlDspUeiIIRYJSUwH-mHs5TOrQxBmOFdv3ouA_SeUGwGGGKEaZIMIWjYoQpEsykr_7ou-COMpz-VX4DygyAnA
CitedBy_id crossref_primary_10_1016_j_compag_2024_109545
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science Jul 2024
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science Jul 2024
DBID AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.11591/ijres.v13.i2.pp332-340
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Architecture
Agriculture
EISSN 2722-2608
2089-4864
ExternalDocumentID 10_11591_ijres_v13_i2_pp332_340
GroupedDBID .DC
8FE
8FG
AAKDD
AAKPC
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQQKQ
PROAC
RNS
3V.
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2490-e5b684a2b4f438cb1bb73bff454af444a7c5804998731d498c55c744a8fbe8043
IEDL.DBID BENPR
ISSN 2089-4864
IngestDate Fri Jul 25 23:04:44 EDT 2025
Tue Jul 01 04:31:02 EDT 2025
Thu Apr 24 22:52:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2490-e5b684a2b4f438cb1bb73bff454af444a7c5804998731d498c55c744a8fbe8043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0856-6431
0000-0002-0048-2885
OpenAccessLink https://ijres.iaescore.com/index.php/IJRES/article/download/20816/pdf
PQID 3143215484
PQPubID 1686338
ParticipantIDs proquest_journals_3143215484
crossref_citationtrail_10_11591_ijres_v13_i2_pp332_340
crossref_primary_10_11591_ijres_v13_i2_pp332_340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle International journal of reconfigurable and embedded systems
PublicationYear 2024
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssj0001341944
Score 2.306975
Snippet A cost-effective and effective agriculture management system is created by utilizing data analytics (DA), internet of things (IoT), and cloud computing (CC)....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 332
SubjectTerms Agricultural production
Agriculture
Algorithms
Architecture
Artificial intelligence
Big Data
Classification
Cloud computing
Cluster analysis
Clustering
Computer science
Computing time
Coronaviruses
Data analysis
Data processing
Efficiency
Embedded systems
Geographic information systems
Humidity
Internet of Things
Machine learning
Multidimensional data
Rain
Rainfall
Real time
Remote sensing
Sensors
Temperature
Unstructured data
Title Agriculture data analysis using parallel k-nearest neighbour classification algorithm
URI https://www.proquest.com/docview/3143215484
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT8MwDLVgXACJjwHiWzlwLbSN02YnNBADIYEQYhK3KknTMSjdYIPfT9xlMC5wbZqLk9h-L84zwFGowlDb2AQ2yqmFmS0CaRxKKVKULiHXaSLogfPNbXLVxetH8egJt5Evq5z6xNpR5wNDHPkJd4E9pvwaT4dvAXWNottV30JjHhacC5aiAQtnF7d39z8sC8mVIfrCLhe6o5P-s8Oxx58RP-47TDnkPA44UR-zYem3V65DTWcNVnyOyNqTRV2HOVs1Yande_c6GbYJy-2ZC4AmrE6bMzB_VjegO_M_ozpQprz-CKNa9x4j0e-ytCV7CSoSsh2NWUU8KdGczFBSTVVE9cIxVfacLcZPr5vQ7Vw8nF8FvodCYBywCgMrdCJRxRoL5NLoSOuU66JAgapARJUaIQn2yJRHObakEcKk7rsstHUDfAsa1aCy28CQHqoKnoc6lZjnooWJNYXVyrS4yqXagWRqwsx4gXHqc1FmNdBwts9q2ztczrN-nNW2z5ztdyD8njicaGz8P2V_ukaZP3Sj7GeL7P49vAeLsctNJlW3-9AYv3_YA5dbjPUhzMvO5aHfRl_nA9K3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lc9MwEN4p6YHHDIUAQ6EFHeDo1NbDVg49pEAnpY9T0-lwEZIsh1DjdBIXhv4V_go_jpUjt4EDnDrD1bI8Y_nzar_V7rcAr2Idx8ZRG7kk9y3MXBFJiyylyLhEh9xkqfAFzodH6XDE35-K0xX40dbC-LTK1iY2hjqfWh8j32K4sVPvX_OQQbnvvn9Dfjbf3nuLH_M1pbvvjt8Mo9BCILLIK-LICZNKrqnhBWfSmsSYjJmi4ILrgnOuMyuk9_plxpKc96UVwmZ4XRbG4QDD596CVWQVlHZgdedk58PJdQjHa6FxHrLG0C9ItiafkST3viasN0HCes4YjZiPqyzveb-b_GYf212Dn-0KLNJXznoXtenZyz_EIf_TJXoA94P_TAYLwD-EFVd14e5gPAsaIq4L9wZLhyNdWGsbV5Bgxx7BaOl-4nNkiQ7aLMTXAYyJF0QvS1eSs6jyIr_zmlQ-huxDwMR6wuEzrBpQE12Op7NJ_enLYxjdyJs_gU41rdxTINwX8QqWxyaTPM9Fn6fOFs5o22c6l3od0hYBygbxdd8DpFQNCUPoqAY6CqGjJlQ10FEInXWIryaeL_RH_j1lo4WHCgZprq6x8ezvwy_h9vD48EAd7B3tP4c7FH24RXbyBnTq2YXbRB-sNi_Cv0Dg401j6xcZbUFX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agriculture+data+analysis+using+parallel+k-nearest+neighbour+classification+algorithm&rft.jtitle=International+journal+of+reconfigurable+and+embedded+systems&rft.au=Muninarayanappa%2C+Vimala&rft.au=Ranjan%2C+Rajeev&rft.date=2024-07-01&rft.issn=2089-4864&rft.eissn=2722-2608&rft.volume=13&rft.issue=2&rft.spage=332&rft_id=info:doi/10.11591%2Fijres.v13.i2.pp332-340&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijres_v13_i2_pp332_340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4864&client=summon