Agriculture data analysis using parallel k-nearest neighbour classification algorithm
A cost-effective and effective agriculture management system is created by utilizing data analytics (DA), internet of things (IoT), and cloud computing (CC). Geographic information system (GIS) technology and remote sensing predictions give users and stakeholders access to a variety of sensory data,...
Saved in:
Published in | International journal of reconfigurable and embedded systems Vol. 13; no. 2; p. 332 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Yogyakarta
IAES Institute of Advanced Engineering and Science
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2089-4864 2722-2608 2089-4864 |
DOI | 10.11591/ijres.v13.i2.pp332-340 |
Cover
Loading…
Abstract | A cost-effective and effective agriculture management system is created by utilizing data analytics (DA), internet of things (IoT), and cloud computing (CC). Geographic information system (GIS) technology and remote sensing predictions give users and stakeholders access to a variety of sensory data, including rainfall patterns and weather-related information (such as pressure, humidity, and temperatures). They have unstructured format for sensory data. The current systems do a poor job of analysing such data since they cannot effectively balance speed and memory usage. An effective categorization model (ECM) on agriculture management system is proposed to address this research difficulty. First, a classification technique called priority-based k-nearest neighbour (KNN) is provided to categorize unstructured multi-dimensional data into a structured form. Additionally, the Hadoop MapReduce (HMR) framework is used to do classification utilizing a parallel approach. Data from real-time IoT sensors used in agriculture is the subject of experiments. The suggested approach significantly outperforms previous approaches that are computing time, memory efficiency, model accuracy, and speedup. |
---|---|
AbstractList | A cost-effective and effective agriculture management system is created by utilizing data analytics (DA), internet of things (IoT), and cloud computing (CC). Geographic information system (GIS) technology and remote sensing predictions give users and stakeholders access to a variety of sensory data, including rainfall patterns and weather-related information (such as pressure, humidity, and temperatures). They have unstructured format for sensory data. The current systems do a poor job of analysing such data since they cannot effectively balance speed and memory usage. An effective categorization model (ECM) on agriculture management system is proposed to address this research difficulty. First, a classification technique called priority-based k-nearest neighbour (KNN) is provided to categorize unstructured multi-dimensional data into a structured form. Additionally, the Hadoop MapReduce (HMR) framework is used to do classification utilizing a parallel approach. Data from real-time IoT sensors used in agriculture is the subject of experiments. The suggested approach significantly outperforms previous approaches that are computing time, memory efficiency, model accuracy, and speedup. |
Author | Ranjan, Rajeev Muninarayanappa, Vimala |
Author_xml | – sequence: 1 givenname: Vimala orcidid: 0000-0003-0856-6431 surname: Muninarayanappa fullname: Muninarayanappa, Vimala – sequence: 2 givenname: Rajeev orcidid: 0000-0002-0048-2885 surname: Ranjan fullname: Ranjan, Rajeev |
BookMark | eNqFkE1PwzAMhiM0JMbYb6AS55Z8uGt64DBNfEmTuLBzlGTJlpG1JWmR9u8JHScunGzZfu3XzzWaNG1jELoluCCkrMm9OwQTiy_CCkeLrmOM5gzwBZrSitKcLjCfpBzzOge-gCs0j_GAMSYMSA0wRZvlLjg9-H4IJtvKXmaykf4UXcyG6Jpd1skgvTc--8gbI9OxPmuM2-1VO4RMexmjs07L3rVNJv2uDa7fH2_QpZU-mvlvnKHN0-P76iVfvz2_rpbrXFOocW5KteAgqQILjGtFlKqYshZKkBYAZKVLjqGuecXIFmquy1JXqc6tMqnBZujuvLcL7eeQvIlDspUeiIIRYJSUwH-mHs5TOrQxBmOFdv3ouA_SeUGwGGGKEaZIMIWjYoQpEsykr_7ou-COMpz-VX4DygyAnA |
CitedBy_id | crossref_primary_10_1016_j_compag_2024_109545 |
ContentType | Journal Article |
Copyright | Copyright IAES Institute of Advanced Engineering and Science Jul 2024 |
Copyright_xml | – notice: Copyright IAES Institute of Advanced Engineering and Science Jul 2024 |
DBID | AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.11591/ijres.v13.i2.pp332-340 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection East & South Asia Database ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Architecture Agriculture |
EISSN | 2722-2608 2089-4864 |
ExternalDocumentID | 10_11591_ijres_v13_i2_pp332_340 |
GroupedDBID | .DC 8FE 8FG AAKDD AAKPC AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQQKQ PROAC RNS 3V. 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c2490-e5b684a2b4f438cb1bb73bff454af444a7c5804998731d498c55c744a8fbe8043 |
IEDL.DBID | BENPR |
ISSN | 2089-4864 |
IngestDate | Fri Jul 25 23:04:44 EDT 2025 Tue Jul 01 04:31:02 EDT 2025 Thu Apr 24 22:52:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://creativecommons.org/licenses/by-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2490-e5b684a2b4f438cb1bb73bff454af444a7c5804998731d498c55c744a8fbe8043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0856-6431 0000-0002-0048-2885 |
OpenAccessLink | https://ijres.iaescore.com/index.php/IJRES/article/download/20816/pdf |
PQID | 3143215484 |
PQPubID | 1686338 |
ParticipantIDs | proquest_journals_3143215484 crossref_citationtrail_10_11591_ijres_v13_i2_pp332_340 crossref_primary_10_11591_ijres_v13_i2_pp332_340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Yogyakarta |
PublicationPlace_xml | – name: Yogyakarta |
PublicationTitle | International journal of reconfigurable and embedded systems |
PublicationYear | 2024 |
Publisher | IAES Institute of Advanced Engineering and Science |
Publisher_xml | – name: IAES Institute of Advanced Engineering and Science |
SSID | ssj0001341944 |
Score | 2.306975 |
Snippet | A cost-effective and effective agriculture management system is created by utilizing data analytics (DA), internet of things (IoT), and cloud computing (CC).... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 332 |
SubjectTerms | Agricultural production Agriculture Algorithms Architecture Artificial intelligence Big Data Classification Cloud computing Cluster analysis Clustering Computer science Computing time Coronaviruses Data analysis Data processing Efficiency Embedded systems Geographic information systems Humidity Internet of Things Machine learning Multidimensional data Rain Rainfall Real time Remote sensing Sensors Temperature Unstructured data |
Title | Agriculture data analysis using parallel k-nearest neighbour classification algorithm |
URI | https://www.proquest.com/docview/3143215484 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT8MwDLVgXACJjwHiWzlwLbSN02YnNBADIYEQYhK3KknTMSjdYIPfT9xlMC5wbZqLk9h-L84zwFGowlDb2AQ2yqmFmS0CaRxKKVKULiHXaSLogfPNbXLVxetH8egJt5Evq5z6xNpR5wNDHPkJd4E9pvwaT4dvAXWNottV30JjHhacC5aiAQtnF7d39z8sC8mVIfrCLhe6o5P-s8Oxx58RP-47TDnkPA44UR-zYem3V65DTWcNVnyOyNqTRV2HOVs1Yande_c6GbYJy-2ZC4AmrE6bMzB_VjegO_M_ozpQprz-CKNa9x4j0e-ytCV7CSoSsh2NWUU8KdGczFBSTVVE9cIxVfacLcZPr5vQ7Vw8nF8FvodCYBywCgMrdCJRxRoL5NLoSOuU66JAgapARJUaIQn2yJRHObakEcKk7rsstHUDfAsa1aCy28CQHqoKnoc6lZjnooWJNYXVyrS4yqXagWRqwsx4gXHqc1FmNdBwts9q2ztczrN-nNW2z5ztdyD8njicaGz8P2V_ukaZP3Sj7GeL7P49vAeLsctNJlW3-9AYv3_YA5dbjPUhzMvO5aHfRl_nA9K3 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lc9MwEN4p6YHHDIUAQ6EFHeDo1NbDVg49pEAnpY9T0-lwEZIsh1DjdBIXhv4V_go_jpUjt4EDnDrD1bI8Y_nzar_V7rcAr2Idx8ZRG7kk9y3MXBFJiyylyLhEh9xkqfAFzodH6XDE35-K0xX40dbC-LTK1iY2hjqfWh8j32K4sVPvX_OQQbnvvn9Dfjbf3nuLH_M1pbvvjt8Mo9BCILLIK-LICZNKrqnhBWfSmsSYjJmi4ILrgnOuMyuk9_plxpKc96UVwmZ4XRbG4QDD596CVWQVlHZgdedk58PJdQjHa6FxHrLG0C9ItiafkST3viasN0HCes4YjZiPqyzveb-b_GYf212Dn-0KLNJXznoXtenZyz_EIf_TJXoA94P_TAYLwD-EFVd14e5gPAsaIq4L9wZLhyNdWGsbV5Bgxx7BaOl-4nNkiQ7aLMTXAYyJF0QvS1eSs6jyIr_zmlQ-huxDwMR6wuEzrBpQE12Op7NJ_enLYxjdyJs_gU41rdxTINwX8QqWxyaTPM9Fn6fOFs5o22c6l3od0hYBygbxdd8DpFQNCUPoqAY6CqGjJlQ10FEInXWIryaeL_RH_j1lo4WHCgZprq6x8ezvwy_h9vD48EAd7B3tP4c7FH24RXbyBnTq2YXbRB-sNi_Cv0Dg401j6xcZbUFX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agriculture+data+analysis+using+parallel+k-nearest+neighbour+classification+algorithm&rft.jtitle=International+journal+of+reconfigurable+and+embedded+systems&rft.au=Muninarayanappa%2C+Vimala&rft.au=Ranjan%2C+Rajeev&rft.date=2024-07-01&rft.issn=2089-4864&rft.eissn=2722-2608&rft.volume=13&rft.issue=2&rft.spage=332&rft_id=info:doi/10.11591%2Fijres.v13.i2.pp332-340&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijres_v13_i2_pp332_340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4864&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4864&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4864&client=summon |