Discovery of novel reticular materials for carbon dioxide capture using GFlowNets

Artificial intelligence holds promise to improve materials discovery. GFlowNets are an emerging deep learning algorithm with many applications in AI-assisted discovery. Using GFlowNets, we generate porous reticular materials, such as Metal Organic Frameworks and Covalent Organic Frameworks, for appl...

Full description

Saved in:
Bibliographic Details
Published inDigital discovery Vol. 3; no. 3; pp. 449 - 455
Main Authors Cipcigan, Flaviu, Booth, Jonathan, Barros Ferreira, Rodrigo Neumann, Ribeiro dos Santos, Carine, Steiner, Mathias
Format Journal Article
LanguageEnglish
Published 13.03.2024
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence holds promise to improve materials discovery. GFlowNets are an emerging deep learning algorithm with many applications in AI-assisted discovery. Using GFlowNets, we generate porous reticular materials, such as Metal Organic Frameworks and Covalent Organic Frameworks, for applications in carbon dioxide capture. We introduce a new Python package (matgfn) to train and sample GFlowNets. We use matgfn to generate the matgfn-rm dataset of novel and diverse reticular materials with gravimetric surface area above 5000 m 2 g −1 . We calculate single- and two-component gas adsorption isotherms for the top-100 candidates in matgfn-rm. These candidates are novel compared to the state-of-art ARC-MOF dataset and rank in the 90th percentile in terms of working capacity compared to the CoRE2019 dataset. We identify 13 materials with CO 2 working capacity outperforming all materials in CoRE2019. After further analysis and structural relaxation, two outperforming materials remain. GFlowNets discover reticular materials with simulated CO 2 working capacity outperforming all materials in CoRE2019.
AbstractList Artificial intelligence holds promise to improve materials discovery. GFlowNets are an emerging deep learning algorithm with many applications in AI-assisted discovery. Using GFlowNets, we generate porous reticular materials, such as Metal Organic Frameworks and Covalent Organic Frameworks, for applications in carbon dioxide capture. We introduce a new Python package (matgfn) to train and sample GFlowNets. We use matgfn to generate the matgfn-rm dataset of novel and diverse reticular materials with gravimetric surface area above 5000 m 2 g −1 . We calculate single- and two-component gas adsorption isotherms for the top-100 candidates in matgfn-rm. These candidates are novel compared to the state-of-art ARC-MOF dataset and rank in the 90th percentile in terms of working capacity compared to the CoRE2019 dataset. We identify 13 materials with CO 2 working capacity outperforming all materials in CoRE2019. After further analysis and structural relaxation, two outperforming materials remain.
Artificial intelligence holds promise to improve materials discovery. GFlowNets are an emerging deep learning algorithm with many applications in AI-assisted discovery. Using GFlowNets, we generate porous reticular materials, such as Metal Organic Frameworks and Covalent Organic Frameworks, for applications in carbon dioxide capture. We introduce a new Python package (matgfn) to train and sample GFlowNets. We use matgfn to generate the matgfn-rm dataset of novel and diverse reticular materials with gravimetric surface area above 5000 m 2 g −1 . We calculate single- and two-component gas adsorption isotherms for the top-100 candidates in matgfn-rm. These candidates are novel compared to the state-of-art ARC-MOF dataset and rank in the 90th percentile in terms of working capacity compared to the CoRE2019 dataset. We identify 13 materials with CO 2 working capacity outperforming all materials in CoRE2019. After further analysis and structural relaxation, two outperforming materials remain. GFlowNets discover reticular materials with simulated CO 2 working capacity outperforming all materials in CoRE2019.
Author Steiner, Mathias
Cipcigan, Flaviu
Ribeiro dos Santos, Carine
Booth, Jonathan
Barros Ferreira, Rodrigo Neumann
AuthorAffiliation IBM Research
IBM Research Europe
Science and Technologies Facilities Council
AuthorAffiliation_xml – name: Science and Technologies Facilities Council
– name: IBM Research Europe
– name: IBM Research
Author_xml – sequence: 1
  givenname: Flaviu
  surname: Cipcigan
  fullname: Cipcigan, Flaviu
– sequence: 2
  givenname: Jonathan
  surname: Booth
  fullname: Booth, Jonathan
– sequence: 3
  givenname: Rodrigo Neumann
  surname: Barros Ferreira
  fullname: Barros Ferreira, Rodrigo Neumann
– sequence: 4
  givenname: Carine
  surname: Ribeiro dos Santos
  fullname: Ribeiro dos Santos, Carine
– sequence: 5
  givenname: Mathias
  surname: Steiner
  fullname: Steiner, Mathias
BookMark eNpNkN9LwzAUhYNMcM69-C7kWagmbdIfj7K6qQxFUPCtpDc3ktE1I2l1--_tnKhP91z4znn4TsmodS0Scs7ZFWdJca2F1oyxmK2OyDhOExmxIn8b_csnZBrCas9kGedJOibPpQ3gPtDvqDO0HVJDPXYW-kZ5ulYdequaQI3zFJSvXUu1dVurcXg3Xe-R9sG273Qxb9znI3bhjByboYHTnzshr_Pbl9ldtHxa3M9ulhHEIu8iYLWATCZMcM1zY3gKWSw0l1BLFDFKlRYGtBQmVZlCiDNTC10bVptCIMhkQi4Pu-BdCB5NtfF2rfyu4qza-6hKUZbfPh4G-OIA-wC_3J-v5AuPqGBd
Cites_doi 10.1039/D0ME00060D
10.1021/acs.chemmater.2c02485
10.1038/s43246-023-00409-9
10.1038/s41597-023-02116-z
10.5281/zenodo.10246465
10.1021/ja3055639
10.1021/acs.chemmater.8b02257
10.48550/arXiv.1912.01703
10.1021/acs.jced.9b00835
10.46793/match.87-3.529W
10.1101/731877
10.1021/acsnano.1c00218
10.48550/arXiv.2303.14223
10.1039/D3DD00053B
10.1002/9783527821099
10.48550/arXiv.2306.03792
10.48550/arXiv.2302.00615
10.1038/s42256-020-00271-1
10.1016/j.micromeso.2011.08.020
10.1145/1963405.1963487
10.1021/acs.chemrev.0c01266
10.48550/arXiv.2106.04399
10.1002/anie.202101644
10.48550/arXiv.2111.09266
10.48550/arXiv.2306.17693
10.1021/ar800124u
10.1063/1.4946894
10.1126/sciadv.aat9180
10.1021/acs.jcim.0c00803
10.1038/s41551-021-00689-x
10.1038/s41586-019-1798-7
10.1038/s41467-020-17755-8
10.1021/acsami.1c02471
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1039/d4dd00020j
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2635-098X
EndPage 455
ExternalDocumentID 10_1039_D4DD00020J
d4dd00020j
GroupedDBID AAFWJ
AFPKN
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
C6K
EBS
GROUPED_DOAJ
M~E
RRC
0R~
AARTK
AAYXX
CITATION
H13
ID FETCH-LOGICAL-c248t-c0b4c753041d18ff16c724d15cb5e42e5a69fcd54f6a7aec27fb4dbf0bf94ec53
ISSN 2635-098X
IngestDate Fri Aug 23 03:24:45 EDT 2024
Thu Mar 14 07:25:52 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c248t-c0b4c753041d18ff16c724d15cb5e42e5a69fcd54f6a7aec27fb4dbf0bf94ec53
Notes https://doi.org/10.1039/d4dd00020j
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0002-5015-1443
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00020j
PageCount 7
ParticipantIDs rsc_primary_d4dd00020j
crossref_primary_10_1039_D4DD00020J
PublicationCentury 2000
PublicationDate 2024-03-13
PublicationDateYYYYMMDD 2024-03-13
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-13
  day: 13
PublicationDecade 2020
PublicationTitle Digital discovery
PublicationYear 2024
References Jain (D4DD00020J/cit39/1) 2022
Hey (D4DD00020J/cit1/1) 2009
Yaghi (D4DD00020J/cit8/1) 2019
Chung (D4DD00020J/cit19/1) 2019; 64
Freund (D4DD00020J/cit9/1) 2021; 60
Malkin (D4DD00020J/cit28/1) 2022; 35
Paszke (D4DD00020J/cit22/1) 2019
Widdowson (D4DD00020J/cit29/1) 2021; 87
Lahlou (D4DD00020J/cit24/1) 2023
Poličar (D4DD00020J/cit30/1) 2019
Pedregosa (D4DD00020J/cit32/1) 2011; 12
Burner (D4DD00020J/cit21/1) 2023; 35
Bengio (D4DD00020J/cit13/1) 2021
Jain (D4DD00020J/cit42/1) 2023
Dong (D4DD00020J/cit31/1) 2011
Rector-Brooks (D4DD00020J/cit40/1) 2023
Farha (D4DD00020J/cit11/1) 2012; 134
Cipcigan (D4DD00020J/cit12/1) 2023
Liu (D4DD00020J/cit43/1) 2023
Willems (D4DD00020J/cit25/1) 2012; 149
Agrawal (D4DD00020J/cit2/1) 2016; 4
Mohamed (D4DD00020J/cit45/1) 2023; 4
O'Keeffe (D4DD00020J/cit16/1) 2008; 41
Yao (D4DD00020J/cit18/1) 2021; 3
Yancy-Caballero (D4DD00020J/cit37/1) 2020; 5
Madan (D4DD00020J/cit41/1) 2022
Anderson (D4DD00020J/cit26/1) 2018; 30
Boyd (D4DD00020J/cit27/1) 2019; 576
Hammond (D4DD00020J/cit5/1) 2021; 15
Jain (D4DD00020J/cit15/1) 2023
Farmahini (D4DD00020J/cit38/1) 2021; 121
Bengio (D4DD00020J/cit14/1) 2021
He (D4DD00020J/cit44/1) 2022; 2022
Das (D4DD00020J/cit3/1) 2021; 5
McDonagh (D4DD00020J/cit7/1) 2023
Kalmutzki (D4DD00020J/cit10/1) 2018; 4
Crusius (D4DD00020J/cit4/1) 2023; 2
Cipcigan (D4DD00020J/cit6/1) 2020; 61
Lee (D4DD00020J/cit17/1) 2021; 13
Deng (D4DD00020J/cit36/1) 2023
Moosavi (D4DD00020J/cit20/1) 2020; 11
Neumann Barros Ferreira (D4DD00020J/cit33/1) 2022
Oliveira (D4DD00020J/cit34/1) 2023; 10
Jablonka (D4DD00020J/cit35/1) 2023
References_xml – issn: 2023
  publication-title: arXiv
  doi: Rector-Brooks Madan Jain Korablyov Liu Chandar Malkin Bengio
– issn: 2022
  publication-title: Biological Sequence Design with GFlowNets
  doi: Jain Bengio Garcia Rector-Brooks Dossou Ekbote Fu Zhang Kilgour Zhang Simine Das Bengio
– issn: 2009
  publication-title: The Fourth Paradigm: Data-Intensive Scientific Discovery
  doi: Hey Tansley Tolle
– issn: 2019
  publication-title: bioRxiv
  doi: Poli ar Stra ar Zupan
– issn: 2022
  issue: 2022
  end-page: p 2205-2215
  publication-title: Proceedings of the ACM Web Conference
  doi: He Feng Cheng Ji Guo Caverlee
– issn: 2021
  publication-title: arXiv
  doi: Bengio Jain Korablyov Precup Bengio
– issn: 2023
  end-page: p 14631-14653
  publication-title: International Conference on Machine Learning
  doi: Jain Raparthy Hernández-Garc a Rector-Brooks Bengio Miret Bengio
– issn: 2023
  publication-title: Gymnasium
  doi: Towers Terry Kwiatkowski Balis Cola Deleu Goulão Kallinteris Arjun Krimmel Perez-Vicente Pierré Schulhoff Tai Shen Younis
– issn: 2023
  publication-title: Zenodo archive for flaviucipcigan/matgfn
  doi: Cipcigan
– issn: 2023
  publication-title: arXiv
  doi: McDonagh Wunsch Zavitsanou Harrison Elmegreen Gifford van Kessel Cipcigan
– issn: 2019
  publication-title: Introduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks
  doi: Yaghi Kalmutzki Diercks
– issn: 2023
  doi: Jablonka
– issn: 2022
  publication-title: International Conference on Machine Learning
  doi: Madan Rector-Brooks Korablyov Bengio Jain Nica Bosc Bengio Malkin
– issn: 2021
  publication-title: arXiv
  doi: Bengio Deleu Hu Lahlou Tiwari Bengio
– issn: 2023
  publication-title: torchgfn, A PyTorch GFlowNet library
  doi: Lahlou Viviano Schmidt Bengio
– issn: 2023
  publication-title: arXiv
  doi: Liu Feng Stone Liu
– issn: 2023
  publication-title: arXiv
  doi: Jain Deleu Hartford Liu Hernández-García Bengio
– issn: 2022
  publication-title: Proceedings of the 16th Greenhouse Gas Control Technologies Conference
  doi: Neumann Barros Ferreira O Conchuir Elengikal Luan Ohta Lopes Oliveira Mhadeshwar Kalyanaraman Sundaram Falkowski
– issn: 2011
  end-page: p 577-586
  publication-title: Proceedings of the 20th International Conference on World Wide Web
  doi: Dong Moses Li
– issn: 2019
  publication-title: arXiv
  doi: Paszke Gross Massa Lerer Bradbury Chanan Killeen Lin Gimelshein Antiga Desmaison Köpf Yang DeVito Raison Tejani Chilamkurthy Steiner Fang Bai Chintala
– year: 2023
  ident: D4DD00020J/cit35/1
  contributor:
    fullname: Jablonka
– volume-title: International Conference on Machine Learning
  year: 2022
  ident: D4DD00020J/cit41/1
  contributor:
    fullname: Madan
– volume: 5
  start-page: 1205
  year: 2020
  ident: D4DD00020J/cit37/1
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/D0ME00060D
  contributor:
    fullname: Yancy-Caballero
– volume: 35
  start-page: 900
  year: 2023
  ident: D4DD00020J/cit21/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c02485
  contributor:
    fullname: Burner
– volume: 4
  start-page: 79
  year: 2023
  ident: D4DD00020J/cit45/1
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-023-00409-9
  contributor:
    fullname: Mohamed
– volume: 10
  start-page: 230
  year: 2023
  ident: D4DD00020J/cit34/1
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02116-z
  contributor:
    fullname: Oliveira
– volume: 35
  start-page: 5955
  year: 2022
  ident: D4DD00020J/cit28/1
  publication-title: Adv. Neural Inf. Process.
  contributor:
    fullname: Malkin
– volume-title: Zenodo archive for flaviucipcigan/matgfn
  year: 2023
  ident: D4DD00020J/cit12/1
  doi: 10.5281/zenodo.10246465
  contributor:
    fullname: Cipcigan
– volume: 134
  start-page: 15016
  year: 2012
  ident: D4DD00020J/cit11/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3055639
  contributor:
    fullname: Farha
– volume: 30
  start-page: 6325
  issue: 18
  year: 2018
  ident: D4DD00020J/cit26/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02257
  contributor:
    fullname: Anderson
– volume-title: The Fourth Paradigm: Data-Intensive Scientific Discovery
  year: 2009
  ident: D4DD00020J/cit1/1
  contributor:
    fullname: Hey
– volume-title: arXiv
  year: 2019
  ident: D4DD00020J/cit22/1
  doi: 10.48550/arXiv.1912.01703
  contributor:
    fullname: Paszke
– volume: 64
  start-page: 5985
  year: 2019
  ident: D4DD00020J/cit19/1
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.9b00835
  contributor:
    fullname: Chung
– volume: 87
  start-page: 529
  year: 2021
  ident: D4DD00020J/cit29/1
  publication-title: MATCH Commun. Math. Comput. Chem.
  doi: 10.46793/match.87-3.529W
  contributor:
    fullname: Widdowson
– volume-title: bioRxiv
  year: 2019
  ident: D4DD00020J/cit30/1
  doi: 10.1101/731877
  contributor:
    fullname: Poličar
– volume: 2022
  start-page: 2205
  volume-title: Proceedings of the ACM Web Conference
  year: 2022
  ident: D4DD00020J/cit44/1
  contributor:
    fullname: He
– volume: 15
  start-page: 9679
  year: 2021
  ident: D4DD00020J/cit5/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00218
  contributor:
    fullname: Hammond
– volume-title: arXiv
  year: 2023
  ident: D4DD00020J/cit7/1
  doi: 10.48550/arXiv.2303.14223
  contributor:
    fullname: McDonagh
– volume: 2
  start-page: 1163
  year: 2023
  ident: D4DD00020J/cit4/1
  publication-title: Digital Discovery
  doi: 10.1039/D3DD00053B
  contributor:
    fullname: Crusius
– volume-title: Introduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks
  year: 2019
  ident: D4DD00020J/cit8/1
  doi: 10.1002/9783527821099
  contributor:
    fullname: Yaghi
– start-page: 14631
  volume-title: International Conference on Machine Learning
  year: 2023
  ident: D4DD00020J/cit42/1
  contributor:
    fullname: Jain
– volume-title: arXiv
  year: 2023
  ident: D4DD00020J/cit43/1
  doi: 10.48550/arXiv.2306.03792
  contributor:
    fullname: Liu
– volume-title: Proceedings of the 16th Greenhouse Gas Control Technologies Conference
  year: 2022
  ident: D4DD00020J/cit33/1
  contributor:
    fullname: Neumann Barros Ferreira
– volume-title: arXiv
  year: 2023
  ident: D4DD00020J/cit15/1
  doi: 10.48550/arXiv.2302.00615
  contributor:
    fullname: Jain
– volume: 3
  start-page: 76
  year: 2021
  ident: D4DD00020J/cit18/1
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00271-1
  contributor:
    fullname: Yao
– volume: 149
  start-page: 134
  year: 2012
  ident: D4DD00020J/cit25/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2011.08.020
  contributor:
    fullname: Willems
– start-page: 577
  volume-title: Proceedings of the 20th International Conference on World Wide Web
  year: 2011
  ident: D4DD00020J/cit31/1
  doi: 10.1145/1963405.1963487
  contributor:
    fullname: Dong
– start-page: 1
  year: 2023
  ident: D4DD00020J/cit36/1
  publication-title: Nat. Mach. Intell.
  contributor:
    fullname: Deng
– volume: 121
  start-page: 10666
  year: 2021
  ident: D4DD00020J/cit38/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01266
  contributor:
    fullname: Farmahini
– volume-title: arXiv
  year: 2021
  ident: D4DD00020J/cit13/1
  doi: 10.48550/arXiv.2106.04399
  contributor:
    fullname: Bengio
– volume: 60
  start-page: 23946
  issue: 45
  year: 2021
  ident: D4DD00020J/cit9/1
  publication-title: Angew. Chem.
  doi: 10.1002/anie.202101644
  contributor:
    fullname: Freund
– volume-title: arXiv
  year: 2021
  ident: D4DD00020J/cit14/1
  doi: 10.48550/arXiv.2111.09266
  contributor:
    fullname: Bengio
– volume-title: arXiv
  year: 2023
  ident: D4DD00020J/cit40/1
  doi: 10.48550/arXiv.2306.17693
  contributor:
    fullname: Rector-Brooks
– volume-title: Biological Sequence Design with GFlowNets
  year: 2022
  ident: D4DD00020J/cit39/1
  contributor:
    fullname: Jain
– volume: 41
  start-page: 1782
  year: 2008
  ident: D4DD00020J/cit16/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800124u
  contributor:
    fullname: O'Keeffe
– volume: 4
  start-page: 053208
  year: 2016
  ident: D4DD00020J/cit2/1
  publication-title: APL Mater.
  doi: 10.1063/1.4946894
  contributor:
    fullname: Agrawal
– volume: 4
  start-page: eaat9180
  year: 2018
  ident: D4DD00020J/cit10/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat9180
  contributor:
    fullname: Kalmutzki
– volume: 61
  start-page: 263
  year: 2020
  ident: D4DD00020J/cit6/1
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00803
  contributor:
    fullname: Cipcigan
– volume: 5
  start-page: 613
  year: 2021
  ident: D4DD00020J/cit3/1
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00689-x
  contributor:
    fullname: Das
– volume: 576
  start-page: 253
  year: 2019
  ident: D4DD00020J/cit27/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1798-7
  contributor:
    fullname: Boyd
– volume-title: torchgfn, A PyTorch GFlowNet library
  year: 2023
  ident: D4DD00020J/cit24/1
  contributor:
    fullname: Lahlou
– volume: 11
  start-page: 4068
  year: 2020
  ident: D4DD00020J/cit20/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17755-8
  contributor:
    fullname: Moosavi
– volume: 13
  start-page: 23647
  year: 2021
  ident: D4DD00020J/cit17/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c02471
  contributor:
    fullname: Lee
– volume: 12
  start-page: 2825
  year: 2011
  ident: D4DD00020J/cit32/1
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
SSID ssj0002771136
Score 2.297198
Snippet Artificial intelligence holds promise to improve materials discovery. GFlowNets are an emerging deep learning algorithm with many applications in AI-assisted...
SourceID crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 449
Title Discovery of novel reticular materials for carbon dioxide capture using GFlowNets
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25QAXxKuiPCpLcFsFHMd5HVHDUlWiEqKVels5fqyMqvUq3YWqB_4Cf5mxHScL7aFwiSKvvYk8XzzjmfE3CL3Vkqicc55IltcJAwWQVKpKk0IImROdCe5d2Z9PiqMzdnyen08mv7ayljbr9p24vvVcyf9IFdpAru6U7D9IdvhTaIB7kC9cQcJwvZOMG3MpXApmYIWGO0fS79k0eDcFUzS8g88kFLxrQdDS2CsjXa7XyocONt5V8Gl2YX-cqEDqFE3VxixcQREXwgkPGcIVZiXMIjhOZxf8u9kMe3prg5sm-uRHP2kH2ng6U12nTBfsVSs7s7CwyrowwngezbTQw04ldP_qChxf9mkpMf7feygocyla4YBpWMgc301Cal9CGHTOLW39SpxtAS7bWlVZYDXtFTQLvL431n6SOerUhjWNj68ejxouRvX_UnxDOqIPxGf1fBy7g-5RxxzockF_jk47WpauBo4rWBjfP1LeZvX7cfgfRs5OF2vJeJvl9BF62G828IeAnMdoopZP0P3DWOPvKfoyIAhbjT2C8IAgPCAIA4JwQBDuEYR7BGGPIDwg6Bk6m308PTxK-iIbiaCsWieCtEzAnpWwVKaV1mkhSspkmos2V4zCh1zUGr5bpgteciVoqVsmW01aXTMl8mwP7S7tUj1HOGVCEyooKV1xea0rwomQtCiLQqS5yvfRmzgr81XgUpnfnPp9tAcTNnSQTEr_w7cXdxr-Ej0YMfgK7a67jXoNduO6PfD-lgMv0d85lnHo
link.rule.ids 315,783,787,867,27937,27938
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+novel+reticular+materials+for+carbon+dioxide+capture+using+GFlowNets&rft.jtitle=Digital+discovery&rft.au=Cipcigan%2C+Flaviu&rft.au=Booth%2C+Jonathan&rft.au=Barros+Ferreira%2C+Rodrigo+Neumann&rft.au=Ribeiro+dos+Santos%2C+Carine&rft.date=2024-03-13&rft.issn=2635-098X&rft.eissn=2635-098X&rft.volume=3&rft.issue=3&rft.spage=449&rft.epage=455&rft_id=info:doi/10.1039%2FD4DD00020J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4DD00020J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-098X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-098X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-098X&client=summon