Insight into faradaic mechanism of NiCo-CHH microspheres in high-performance Ni-Cu batteries

Preintercalation of ions/molecules into the crystal structure with further structural reconstruction can provide fundamental optimizations to improve the electrochemical performance of electrode materials. Herein, Co-doped nickel carbonate hydroxide hybridized (NiCo-CHH) microspheres are prepared by...

Full description

Saved in:
Bibliographic Details
Published inScripta materialia Vol. 215; p. 114691
Main Authors Dai, Shuge, Zhang, Wang, Xia, Tianyu, Hu, Hao, Zhang, Zhuangfei, Li, Xinjian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Preintercalation of ions/molecules into the crystal structure with further structural reconstruction can provide fundamental optimizations to improve the electrochemical performance of electrode materials. Herein, Co-doped nickel carbonate hydroxide hybridized (NiCo-CHH) microspheres are prepared by incorporating cobalt cations, carbonate ions and water molecules into the layered-structure of Ni(OH)2. The optimized NiCo-CHH electrode shows ultrahigh specific capacity, superior rate performance and excellent cycling stability. In situ Raman spectroscopy demonstrates that the preintercalation of Co cations, carbonate ions and crystal water molecules into the layered crystal structure of Ni(OH)2 can activate more active sites, improve the electronic conductivity, facilitate diffusion kinetics, and strengthen the crystal structural integrity of Ni(OH)2. Ex situ XRD, ex situ SEM and TEM images reveal the electrochemical reaction mechanism on the anode surface. These findings provide new insight into the faradaic mechanism generally applicable to aqueous rechargeable Ni-Cu batteries. [Display omitted] A novel Ni-Cu cell is assembled from NiCo-CHH microspheres as the cathode and pure Cu foil as the anode, delivering high capacity, superior rate capability and good cycling stability. The charge storage behavior and structural evolution of the NiCo-CHH//Cu cell are carefully understood using in situ Raman spectroscopy.
AbstractList Preintercalation of ions/molecules into the crystal structure with further structural reconstruction can provide fundamental optimizations to improve the electrochemical performance of electrode materials. Herein, Co-doped nickel carbonate hydroxide hybridized (NiCo-CHH) microspheres are prepared by incorporating cobalt cations, carbonate ions and water molecules into the layered-structure of Ni(OH)2. The optimized NiCo-CHH electrode shows ultrahigh specific capacity, superior rate performance and excellent cycling stability. In situ Raman spectroscopy demonstrates that the preintercalation of Co cations, carbonate ions and crystal water molecules into the layered crystal structure of Ni(OH)2 can activate more active sites, improve the electronic conductivity, facilitate diffusion kinetics, and strengthen the crystal structural integrity of Ni(OH)2. Ex situ XRD, ex situ SEM and TEM images reveal the electrochemical reaction mechanism on the anode surface. These findings provide new insight into the faradaic mechanism generally applicable to aqueous rechargeable Ni-Cu batteries. [Display omitted] A novel Ni-Cu cell is assembled from NiCo-CHH microspheres as the cathode and pure Cu foil as the anode, delivering high capacity, superior rate capability and good cycling stability. The charge storage behavior and structural evolution of the NiCo-CHH//Cu cell are carefully understood using in situ Raman spectroscopy.
ArticleNumber 114691
Author Xia, Tianyu
Zhang, Zhuangfei
Zhang, Wang
Dai, Shuge
Hu, Hao
Li, Xinjian
Author_xml – sequence: 1
  givenname: Shuge
  orcidid: 0000-0003-0718-2559
  surname: Dai
  fullname: Dai, Shuge
  email: shugedai@zzu.edu.cn
  organization: Key Laboratory of Material Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, P.R. China
– sequence: 2
  givenname: Wang
  surname: Zhang
  fullname: Zhang, Wang
  organization: Key Laboratory of Material Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, P.R. China
– sequence: 3
  givenname: Tianyu
  surname: Xia
  fullname: Xia, Tianyu
  email: tyxia@zzu.edu.cn
  organization: Key Laboratory of Material Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, P.R. China
– sequence: 4
  givenname: Hao
  surname: Hu
  fullname: Hu, Hao
  organization: School of Material Science and Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
– sequence: 5
  givenname: Zhuangfei
  surname: Zhang
  fullname: Zhang, Zhuangfei
  email: zhangzf@zzu.edu.cn
  organization: Key Laboratory of Material Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, P.R. China
– sequence: 6
  givenname: Xinjian
  surname: Li
  fullname: Li, Xinjian
  organization: Key Laboratory of Material Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, P.R. China
BookMark eNqNkMFKxDAQhoOs4O7qO-QFUpO0m3YvghZ1hUUvehPKNJnYLNumJFHw7e2yguBFTzOH__uZ-RZkNvgBCaGCZ4ILdbnLog5uTNBDyiSXMhOiUGtxQuaiKiWripWaTXu-WjNVKHlGFjHuOOdKSDEnrw9DdG9dom5InloIYMBp2qPuYHCxp97SR1d7Vm82tHc6-Dh2GDBOAO0mko0YrA89DBqnJKvfaQspYXAYz8mphX3Ei--5JC93t8_1hm2f7h_q6y3TsqgSA1ut5ao0ha5EDoUxlhtuOXADWrSizbVFgdoaMFgppfNSSqxEiTlvW2lkviRXx97DeTGgbbRLkJwfUgC3bwRvDq6aXfPjqjm4ao6upoLqV8EYXA_h8z_ozRHF6cEPh2EKOpxkGBdQp8Z493fJFzzkjwU
CitedBy_id crossref_primary_10_1016_j_est_2023_107528
crossref_primary_10_1016_j_inoche_2024_112053
crossref_primary_10_1016_j_est_2024_112838
crossref_primary_10_1016_j_jallcom_2022_167158
crossref_primary_10_1007_s11581_024_05624_z
crossref_primary_10_1016_j_surfin_2023_102756
crossref_primary_10_1016_j_cej_2024_155112
crossref_primary_10_1016_j_est_2024_113321
crossref_primary_10_1016_j_rser_2025_115381
crossref_primary_10_1016_j_jelechem_2022_116860
crossref_primary_10_1016_j_est_2023_109589
crossref_primary_10_1016_j_jpowsour_2023_233922
crossref_primary_10_1016_j_est_2022_105945
crossref_primary_10_1016_j_cej_2023_148206
crossref_primary_10_1016_j_diamond_2023_110076
crossref_primary_10_1007_s10854_023_10976_9
crossref_primary_10_1016_j_compositesb_2023_111025
crossref_primary_10_1016_j_electacta_2023_142321
crossref_primary_10_1016_j_mtsust_2023_100335
crossref_primary_10_1016_j_colsurfa_2022_130191
crossref_primary_10_1007_s12598_024_02818_2
crossref_primary_10_1016_j_est_2023_107075
crossref_primary_10_1016_j_jpowsour_2024_235138
crossref_primary_10_1016_j_jpowsour_2024_235974
crossref_primary_10_1016_j_jallcom_2024_173991
crossref_primary_10_1039_D4TC02245A
crossref_primary_10_1016_j_diamond_2024_111372
crossref_primary_10_1016_j_jallcom_2023_169915
crossref_primary_10_1016_j_matlet_2024_137139
crossref_primary_10_3390_chemengineering8050087
crossref_primary_10_1016_j_nxener_2023_100076
crossref_primary_10_1016_j_surfin_2023_103501
crossref_primary_10_1016_j_mtchem_2024_102120
crossref_primary_10_1016_j_jallcom_2022_166289
crossref_primary_10_1016_j_jpowsour_2024_234288
crossref_primary_10_1016_j_jelechem_2024_118381
crossref_primary_10_1016_j_jpowsour_2023_233352
crossref_primary_10_1016_j_synthmet_2024_117600
crossref_primary_10_1016_j_jpowsour_2024_235370
crossref_primary_10_1016_j_est_2024_112454
crossref_primary_10_1016_j_est_2023_109045
crossref_primary_10_1016_j_est_2024_114473
crossref_primary_10_1016_j_materresbull_2023_112287
crossref_primary_10_1016_j_est_2024_114195
crossref_primary_10_1016_j_est_2024_115041
crossref_primary_10_1016_j_energy_2024_133593
crossref_primary_10_1016_j_jallcom_2024_176296
crossref_primary_10_1016_j_scriptamat_2023_115352
crossref_primary_10_1016_j_colsurfa_2023_130953
crossref_primary_10_1016_j_est_2024_113718
crossref_primary_10_1016_j_est_2024_111415
crossref_primary_10_1016_j_cej_2024_158074
crossref_primary_10_1021_acsanm_2c04566
crossref_primary_10_1016_j_est_2024_113715
crossref_primary_10_1016_j_apsusc_2024_161612
crossref_primary_10_1016_j_est_2024_112622
crossref_primary_10_1016_j_est_2024_112621
crossref_primary_10_1016_j_enchem_2022_100097
crossref_primary_10_1016_j_jallcom_2023_170364
crossref_primary_10_1016_j_est_2024_114886
crossref_primary_10_1016_j_est_2024_113472
crossref_primary_10_1016_j_matchemphys_2024_130135
crossref_primary_10_1016_j_jelechem_2023_117665
crossref_primary_10_1016_j_matlet_2023_134232
crossref_primary_10_1016_j_jelechem_2023_117305
crossref_primary_10_1016_j_est_2023_107614
Cites_doi 10.1016/j.jallcom.2020.156024
10.1002/jrs.1978
10.1038/s41560-020-0575-z
10.1039/C8TA11249E
10.1016/j.cclet.2017.09.064
10.1021/acsenergylett.8b02555
10.1016/j.jpowsour.2020.228915
10.1021/acs.nanolett.0c04519
10.1038/s41560-019-0428-9
10.1016/j.gee.2017.09.003
10.1039/D0EE01221A
10.1039/D0NR00291G
10.1039/D1NR02158C
10.1021/acsaem.0c01043
10.1016/j.matdes.2020.108992
ContentType Journal Article
Copyright 2022 Acta Materialia Inc.
Copyright_xml – notice: 2022 Acta Materialia Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.scriptamat.2022.114691
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-8456
ExternalDocumentID 10_1016_j_scriptamat_2022_114691
S1359646222001919
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
T9H
ID FETCH-LOGICAL-c248t-af89257d4c813a4ddf0d0f0a0dac1b1b3cfe1ecfdade866c3722e817e30bb2d23
IEDL.DBID .~1
ISSN 1359-6462
IngestDate Tue Jul 01 01:27:42 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Fri Feb 23 02:41:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords In-situ Raman
NiCo-CHH microspheres
Energy storage mechanism
Ni-Cu batteries
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-af89257d4c813a4ddf0d0f0a0dac1b1b3cfe1ecfdade866c3722e817e30bb2d23
ORCID 0000-0003-0718-2559
ParticipantIDs crossref_citationtrail_10_1016_j_scriptamat_2022_114691
crossref_primary_10_1016_j_scriptamat_2022_114691
elsevier_sciencedirect_doi_10_1016_j_scriptamat_2022_114691
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Scripta materialia
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yao, Zhao, Castro, Mai (bib0017) 2019; 4
Weber, Genovese, Louli, Hames, Martin, Hill (bib0019) 2019; 4
Lee, Fujiki, Jung, Suzuki, Yashiro, Omoda, Ko, Shiratsuchi, Sugimoto, Ryu, Ku, Watanabe, Park, Aihara, Im, Han (bib0020) 2020; 5
Yang, Deng, Chen, Wang, Sun (bib0007) 2020; 32
Li, Wu, Elshahawy, Wang, Pennycook, Guan, Wang (bib0024) 2018; 28
Zhao, Song, Ding, Qin, Cui, Li, Pan (bib0016) 2020; 32
Dai, Zhang, Xu, Shen, Zhang, X.G.Yang, Dang, Hu, Zhao, Wang, Qu, Fu, Li, Hu, Liu (bib0030) 2019; 64
Zhou, Zeng, Zheng, Zeng, Wang, Xua, Liu, Lu (bib0012) 2020; 400
Frost, Dickfos, Reddy (bib0029) 2008; 39
Wang, Duan, Gao, Wang, Zhou, Sun, Shang, Kuang, Tian, Li, Liu, Sun (bib0009) 2020; 167
Zhang, He, Zhou, Zhang, Wang, Huang, Lu, Tong, Wang (bib0013) 2021; 31
Lee, Lee, Choi, Jin, Han, Yun (bib0021) 2019; 15
Wang, Li, Li, Lin, Bai, Dai, Liang, Zhu, Sun, Dou (bib0014) 2019; 7
Yang, Qiao, Chang, Deng, He, Zhou (bib0008) 2020; 32
Zhou, Zhu, He, Li, Chen, Chen, Chao (bib0011) 2020; 13
Wang, Yang, Liu, Hu, Qiu (bib0026) 2020; 3
Yu, Wei, Zhang, Zeng, Wang, Chen, Shen, Du (bib0001) 2021; 31
Wang, Yan, Zhang, Ye, Yang, Li (bib0027) 2021; 31
Hou, Shi, Wu, Zhang, Ma, Sun, Sun, Zhang, Yuan (bib0025) 2018; 28
Chen, Li, Zang, Zhang, Wang, Lou, Bai, Fu, Zhuang, Zhang, Zhang, Dai, Shan (bib0005) 2021; 13
Li, Qu, Xu, Zhang, Wang, Wang, Dai (bib0006) 2021; 895
Zhu, Cui, Alshareef (bib0018) 2021; 21
Tian, Jin, Yuan, Chua, Tor, Zhou (bib0002) 2017; 7
Li, Liu, Zhao, Shen, Zhao, Tan, Zhang, Li, Jiao, Qu (bib0028) 2021; 33
Tian, Zhou (bib0004) 2020; 12
Wang, Li, Li, Lin, Bai, Dai, Liang, Zhu, Sun, Dou (bib0022) 2019; 7
Shen, Zang, Hu, Xu, Zhang, Yan, Dai (bib0003) 2020; 195
Zhang, Zhang, Li, Zhang, Zeng, Tong, Zhang, Lu (bib0010) 2018; 3
Dai, Bai, Shen, Zhang, Hu, Fu, Wang, Hu, Liu (bib0015) 2021; 482
Dang, Jia, Wang, Zhang, Wang, Wang (bib0031) 2017; 28
Fang, Li, Xiang, Zou, Xu, Sun, Zhang (bib0023) 2020; 845
Lee (10.1016/j.scriptamat.2022.114691_bib0020) 2020; 5
Zhao (10.1016/j.scriptamat.2022.114691_bib0016) 2020; 32
Wang (10.1016/j.scriptamat.2022.114691_bib0022) 2019; 7
Yang (10.1016/j.scriptamat.2022.114691_bib0007) 2020; 32
Yu (10.1016/j.scriptamat.2022.114691_bib0001) 2021; 31
Wang (10.1016/j.scriptamat.2022.114691_bib0027) 2021; 31
Tian (10.1016/j.scriptamat.2022.114691_bib0002) 2017; 7
Dang (10.1016/j.scriptamat.2022.114691_bib0031) 2017; 28
Weber (10.1016/j.scriptamat.2022.114691_bib0019) 2019; 4
Chen (10.1016/j.scriptamat.2022.114691_bib0005) 2021; 13
Zhou (10.1016/j.scriptamat.2022.114691_bib0011) 2020; 13
Li (10.1016/j.scriptamat.2022.114691_bib0028) 2021; 33
Zhu (10.1016/j.scriptamat.2022.114691_bib0018) 2021; 21
Wang (10.1016/j.scriptamat.2022.114691_bib0026) 2020; 3
Wang (10.1016/j.scriptamat.2022.114691_bib0009) 2020; 167
Fang (10.1016/j.scriptamat.2022.114691_bib0023) 2020; 845
Lee (10.1016/j.scriptamat.2022.114691_bib0021) 2019; 15
Zhang (10.1016/j.scriptamat.2022.114691_bib0013) 2021; 31
Zhang (10.1016/j.scriptamat.2022.114691_bib0010) 2018; 3
Hou (10.1016/j.scriptamat.2022.114691_bib0025) 2018; 28
Wang (10.1016/j.scriptamat.2022.114691_bib0014) 2019; 7
Shen (10.1016/j.scriptamat.2022.114691_bib0003) 2020; 195
Yang (10.1016/j.scriptamat.2022.114691_bib0008) 2020; 32
Zhou (10.1016/j.scriptamat.2022.114691_bib0012) 2020; 400
Dai (10.1016/j.scriptamat.2022.114691_bib0030) 2019; 64
Tian (10.1016/j.scriptamat.2022.114691_bib0004) 2020; 12
Li (10.1016/j.scriptamat.2022.114691_bib0006) 2021; 895
Yao (10.1016/j.scriptamat.2022.114691_bib0017) 2019; 4
Li (10.1016/j.scriptamat.2022.114691_bib0024) 2018; 28
Frost (10.1016/j.scriptamat.2022.114691_bib0029) 2008; 39
Dai (10.1016/j.scriptamat.2022.114691_bib0015) 2021; 482
References_xml – volume: 4
  start-page: 771
  year: 2019
  end-page: 778
  ident: bib0017
  publication-title: ACS Energy Lett
– volume: 195
  year: 2020
  ident: bib0003
  publication-title: Materials and Design
– volume: 7
  start-page: 2291
  year: 2019
  end-page: 2300
  ident: bib0014
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2017
  ident: bib0002
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 4157
  year: 2020
  end-page: 4167
  ident: bib0011
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 6977
  year: 2020
  end-page: 6984
  ident: bib0026
  publication-title: ACS Appl. Energy Mater.
– volume: 39
  start-page: 1250
  year: 2008
  end-page: 1256
  ident: bib0029
  publication-title: J. Raman Spectrosc.
– volume: 3
  start-page: 56
  year: 2018
  end-page: 62
  ident: bib0010
  publication-title: Green Energy & Environment
– volume: 31
  year: 2021
  ident: bib0027
  publication-title: Adv. Funct. Mater.
– volume: 895
  year: 2021
  ident: bib0006
  publication-title: Journal of Electroanalytical Chemistry
– volume: 28
  year: 2018
  ident: bib0024
  publication-title: Adv. Funct. Mater.
– volume: 64
  year: 2019
  ident: bib0030
  publication-title: Nano Energy
– volume: 482
  year: 2021
  ident: bib0015
  publication-title: Journal of Power Sources
– volume: 21
  start-page: 1446
  year: 2021
  end-page: 1453
  ident: bib0018
  publication-title: Nano Lett
– volume: 12
  start-page: 7416
  year: 2020
  end-page: 7432
  ident: bib0004
  publication-title: Nanoscale
– volume: 4
  start-page: 683
  year: 2019
  end-page: 689
  ident: bib0019
  publication-title: J.R. Dahn, Nat. Energy
– volume: 31
  year: 2021
  ident: bib0013
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  ident: bib0016
  publication-title: Adv. Mater.
– volume: 32
  year: 2020
  ident: bib0008
  publication-title: Adv. Mater.
– volume: 33
  year: 2021
  ident: bib0028
  publication-title: Adv. Mater.
– volume: 167
  year: 2020
  ident: bib0009
  publication-title: Journal of the Electrochemical Society
– volume: 15
  year: 2019
  ident: bib0021
  publication-title: Small
– volume: 845
  year: 2020
  ident: bib0023
  publication-title: Journal of Alloys and Compounds
– volume: 32
  year: 2020
  ident: bib0007
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2291
  year: 2019
  end-page: 2300
  ident: bib0022
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 12370
  year: 2021
  end-page: 12378
  ident: bib0005
  publication-title: Nanoscale
– volume: 28
  year: 2018
  ident: bib0025
  publication-title: Adv. Funct. Mater.
– volume: 400
  year: 2020
  ident: bib0012
  publication-title: Chemical Engineering Journal
– volume: 28
  start-page: 2263
  year: 2017
  end-page: 2268
  ident: bib0031
  publication-title: Chinese Chemical Letters
– volume: 5
  start-page: 299
  year: 2020
  end-page: 308
  ident: bib0020
  publication-title: Nat. Energy
– volume: 31
  year: 2021
  ident: bib0001
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0008
  publication-title: Adv. Mater.
– volume: 400
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0012
  publication-title: Chemical Engineering Journal
– volume: 845
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0023
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2020.156024
– volume: 31
  year: 2021
  ident: 10.1016/j.scriptamat.2022.114691_bib0001
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2017
  ident: 10.1016/j.scriptamat.2022.114691_bib0002
  publication-title: Adv. Energy Mater.
– volume: 39
  start-page: 1250
  year: 2008
  ident: 10.1016/j.scriptamat.2022.114691_bib0029
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1978
– volume: 5
  start-page: 299
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0020
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0575-z
– volume: 7
  start-page: 2291
  year: 2019
  ident: 10.1016/j.scriptamat.2022.114691_bib0014
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11249E
– volume: 31
  year: 2021
  ident: 10.1016/j.scriptamat.2022.114691_bib0027
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 2291
  year: 2019
  ident: 10.1016/j.scriptamat.2022.114691_bib0022
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11249E
– volume: 28
  start-page: 2263
  year: 2017
  ident: 10.1016/j.scriptamat.2022.114691_bib0031
  publication-title: Chinese Chemical Letters
  doi: 10.1016/j.cclet.2017.09.064
– volume: 4
  start-page: 771
  year: 2019
  ident: 10.1016/j.scriptamat.2022.114691_bib0017
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b02555
– volume: 15
  year: 2019
  ident: 10.1016/j.scriptamat.2022.114691_bib0021
  publication-title: Small
– volume: 482
  year: 2021
  ident: 10.1016/j.scriptamat.2022.114691_bib0015
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2020.228915
– volume: 21
  start-page: 1446
  year: 2021
  ident: 10.1016/j.scriptamat.2022.114691_bib0018
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.0c04519
– volume: 4
  start-page: 683
  year: 2019
  ident: 10.1016/j.scriptamat.2022.114691_bib0019
  publication-title: J.R. Dahn, Nat. Energy
  doi: 10.1038/s41560-019-0428-9
– volume: 3
  start-page: 56
  year: 2018
  ident: 10.1016/j.scriptamat.2022.114691_bib0010
  publication-title: Green Energy & Environment
  doi: 10.1016/j.gee.2017.09.003
– volume: 32
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0016
  publication-title: Adv. Mater.
– volume: 33
  year: 2021
  ident: 10.1016/j.scriptamat.2022.114691_bib0028
  publication-title: Adv. Mater.
– volume: 13
  start-page: 4157
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0011
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01221A
– volume: 64
  year: 2019
  ident: 10.1016/j.scriptamat.2022.114691_bib0030
  publication-title: Nano Energy
– volume: 12
  start-page: 7416
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0004
  publication-title: Nanoscale
  doi: 10.1039/D0NR00291G
– volume: 28
  year: 2018
  ident: 10.1016/j.scriptamat.2022.114691_bib0024
  publication-title: Adv. Funct. Mater.
– volume: 895
  year: 2021
  ident: 10.1016/j.scriptamat.2022.114691_bib0006
  publication-title: Journal of Electroanalytical Chemistry
– volume: 13
  start-page: 12370
  year: 2021
  ident: 10.1016/j.scriptamat.2022.114691_bib0005
  publication-title: Nanoscale
  doi: 10.1039/D1NR02158C
– volume: 31
  year: 2021
  ident: 10.1016/j.scriptamat.2022.114691_bib0013
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 6977
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0026
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01043
– volume: 32
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0007
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  ident: 10.1016/j.scriptamat.2022.114691_bib0025
  publication-title: Adv. Funct. Mater.
– volume: 167
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0009
  publication-title: Journal of the Electrochemical Society
– volume: 195
  year: 2020
  ident: 10.1016/j.scriptamat.2022.114691_bib0003
  publication-title: Materials and Design
  doi: 10.1016/j.matdes.2020.108992
SSID ssj0006121
Score 2.5988731
Snippet Preintercalation of ions/molecules into the crystal structure with further structural reconstruction can provide fundamental optimizations to improve the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114691
SubjectTerms Energy storage mechanism
In-situ Raman
Ni-Cu batteries
NiCo-CHH microspheres
Title Insight into faradaic mechanism of NiCo-CHH microspheres in high-performance Ni-Cu batteries
URI https://dx.doi.org/10.1016/j.scriptamat.2022.114691
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iFz2IK-7k4DVOs0ya4kmKUhXnooIHobxsUHE6w8x49bebtB1HQVDw2JIPwuvLW8r3viB0mngTZT6AMOkZERQE0ZxLIjWADvkHjI__O-4GsngUN0_9pyWUz2dhIq2yi_1tTG-idfem11mzN66q3j3l_UwKGRJcrFMa6U8h0ujlZ-8LmkdUyGqarn5G4uqOzdNyvNqTCaE2DJ0iY41wbkZ_TlFf0s7VBlrv6kV80W5pEy25egutfVER3EbP1_U0tti4qmcj7GECFiqDhy4O9VbTIR55PKjyEcmLAg8jAW8atQTcNABwlCsm48X0QFhJ8jesG9nN0EXvoMery4e8IN2lCcQwoWYEvMrCMbTCKMpBWOsTm_gEEguGaqq58Y464y1Yp6Q0PGXMKZo6nmjNLOO7aLke1W4PYWGl1olySQZKZFYpDp5BlqXaylDV8H2Uzu1Umk5RPF5s8VrOqWMv5cLCZbRw2Vp4H9FP5LhV1fgD5nz-KcpvHlKG4P8r-uBf6EO0Gp9amu4RWp5N3txxKEZm-qTxthO0cnF9Www-AFxu4ZU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iB_Ugrribg9c4zTKZFE9SlLrNRQUPQnnZoOJ0Bme8-ttN2o6jICh4bfIgvOZt4XvfQ-g48SbSfABh0jMiKAiiOZdEagAd4g8YH987bvsyfxBXj93HOZRNe2EirLL1_Y1Pr711-6XTarMzKsvOHeXdVAoZAlzMUyL154II5hvHGJy8z3AekSKrrrq6KYnbWzhPA_JqTBNCchhKRcZq5tyU_hyjvsSdi1W00iaM-Kw50xqac9U6Wv5CI7iBni6rcayxcVlNhtjDK1goDR642NVbjgd46HG_zIYky3M8iAi8cSQTcOMggCNfMRnN2gfCTpK9YV3zboYyehM9XJzfZzlppyYQw4SaEPAqDXZohVGUg7DWJzbxCSQWDNVUc-MddcZbsE5JaXiPMadoz_FEa2YZ30Lz1bBy2wgLK7VOlEtSUCK1SnHwDNK0p60MaQ3fQb2pngrTUorHyRYvxRQ79lzMNFxEDReNhncQ_ZQcNbQaf5A5nf6K4tsVKYL3_1V691_SR2gxv7-9KW4u-9d7aCmuNJjdfTQ_eX1zByEzmejD-uZ9AJmy4yM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+faradaic+mechanism+of+NiCo-CHH+microspheres+in+high-performance+Ni-Cu+batteries&rft.jtitle=Scripta+materialia&rft.au=Dai%2C+Shuge&rft.au=Zhang%2C+Wang&rft.au=Xia%2C+Tianyu&rft.au=Hu%2C+Hao&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6462&rft.eissn=1872-8456&rft.volume=215&rft_id=info:doi/10.1016%2Fj.scriptamat.2022.114691&rft.externalDocID=S1359646222001919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6462&client=summon