Quasi-one-dimensional electron gas for ultrahigh sensitivity of ambient light
Two-dimensional electron gas (2DEG) has drawn significant attention due to its intriguing properties. Recent advances have encouraged the use of one-dimensional electron gas for high-performance functional devices. Here, we develop a universal method of atomic force microscope tip etching to constru...
Saved in:
Published in | Applied physics letters Vol. 124; no. 21 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
20.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional electron gas (2DEG) has drawn significant attention due to its intriguing properties. Recent advances have encouraged the use of one-dimensional electron gas for high-performance functional devices. Here, we develop a universal method of atomic force microscope tip etching to construct a quasi-one-dimensional (Q1D) channel on the STO surface. Ar+ ion beam is used to bombard the SrTiO3 surface for inducing the Q1D electron gas (Q1DEG). Compared with 2DEG, Q1DEG exhibits a significant enhancement in terms of photoconductivity. At room temperature, it exhibits ultrahigh sensitivity to ambient light with increase in photocurrent by over five orders of magnitude. A slow response to the ON/OFF light indicates persistent photoconductivity (PPC), originating from the defect levels. Furthermore, we investigate the wavelength dependence of PPC in Q1DEG. It is found that decreasing wavelength favors photoresponsivity and prolongs the response time. Based on the electron diffusion process in the oxygen-deficient region, a mechanism has been proposed to explain the advantages of Q1DEG over 2DEG in regard to photoelectric response. This work paves a path for the development of high-performance photoelectric devices based on Q1D electronic systems. |
---|---|
AbstractList | Two-dimensional electron gas (2DEG) has drawn significant attention due to its intriguing properties. Recent advances have encouraged the use of one-dimensional electron gas for high-performance functional devices. Here, we develop a universal method of atomic force microscope tip etching to construct a quasi-one-dimensional (Q1D) channel on the STO surface. Ar+ ion beam is used to bombard the SrTiO3 surface for inducing the Q1D electron gas (Q1DEG). Compared with 2DEG, Q1DEG exhibits a significant enhancement in terms of photoconductivity. At room temperature, it exhibits ultrahigh sensitivity to ambient light with increase in photocurrent by over five orders of magnitude. A slow response to the ON/OFF light indicates persistent photoconductivity (PPC), originating from the defect levels. Furthermore, we investigate the wavelength dependence of PPC in Q1DEG. It is found that decreasing wavelength favors photoresponsivity and prolongs the response time. Based on the electron diffusion process in the oxygen-deficient region, a mechanism has been proposed to explain the advantages of Q1DEG over 2DEG in regard to photoelectric response. This work paves a path for the development of high-performance photoelectric devices based on Q1D electronic systems. |
Author | Qi, Yaping Tong, Tong Gao, Ju Ma, Chunlan Jiang, Yucheng Liu, Zhenqi Xue, Yue Xu, Hang Wang, Lin |
Author_xml | – sequence: 1 givenname: Zhenqi surname: Liu fullname: Liu, Zhenqi organization: 4Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Av. Wai Long, Macau 999078, China – sequence: 2 givenname: Lin surname: Wang fullname: Wang, Lin organization: School of Materials Science and Engineering, Shanghai University – sequence: 3 givenname: Tong surname: Tong fullname: Tong, Tong organization: Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology – sequence: 4 givenname: Hang surname: Xu fullname: Xu, Hang organization: Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology – sequence: 5 givenname: Yue surname: Xue fullname: Xue, Yue organization: Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology – sequence: 6 givenname: Yaping surname: Qi fullname: Qi, Yaping organization: 4Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Av. Wai Long, Macau 999078, China – sequence: 7 givenname: Ju surname: Gao fullname: Gao, Ju organization: Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology – sequence: 8 givenname: Chunlan surname: Ma fullname: Ma, Chunlan organization: Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology – sequence: 9 givenname: Yucheng surname: Jiang fullname: Jiang, Yucheng organization: Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology |
BookMark | eNp9kE1LAzEQhoNUsK0e_AcBTwqpSWaTJkcpfkFFBD2HmM22KdtNTbJC_71b2rMwMAzvw8vwTNCoi51H6JrRGaMS7sWMMq2EpmdozOh8ToAxNUJjSikQqQW7QJOcN8MpOMAYvX30NgcylJA6bH2XQ-xsi33rXUmxwyubcRMT7tuS7Dqs1jgfoBJ-Q9nj2GC7_Q6-K7gdsnKJzhvbZn912lP09fT4uXghy_fn18XDkjheqUI0eK8Z51QA2DmHqubDeOHAMSuVspbRqqmZrkVTay21ZEK7mgvZgK9AwBTdHHt3Kf70PheziX0aHs8GqFBAlVQH6vZIuRRzTr4xuxS2Nu0No-ZgywhzsjWwd0c2u1BsGSz8A_8BfgVqlQ |
CODEN | APPLAB |
Cites_doi | 10.1063/1.5099546 10.1063/5.0082864 10.1002/admi.202200103 10.1103/PhysRevLett.45.494 10.1021/nn203991q 10.1038/nmat1821 10.1038/s41467-022-33350-5 10.1002/adom.201300150 10.1103/PhysRevLett.127.217401 10.1016/j.cap.2017.01.017 10.1038/nmat1402 10.1186/s43593-023-00040-8 10.1038/nature02308 10.1021/nl201821j 10.1103/PhysRevLett.112.136801 10.1016/j.jmst.2022.08.006 10.1103/PhysRevLett.113.216801 10.1063/1.365893 10.1103/PhysRevLett.104.126803 10.1021/acsami.1c12394 10.1126/science.1168294 10.1038/nmat1931 10.1038/nmat2136 10.1186/s43593-022-00033-z 10.1063/1.4861730 10.1002/adma.201304634 10.1088/1361-6463/ab257c 10.1016/0921-4526(96)00326-2 10.1126/science.254.5036.1326 10.1186/s43593-021-00008-6 10.1021/acsaelm.0c00860 10.1007/s13391-015-5402-5 10.1063/1.4966546 10.7567/APEX.6.085201 10.1063/1.4769374 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0198590 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0198590 apl |
GrantInformation_xml | – fundername: Yuchen jiang grantid: No. KYCX22_3257 – fundername: Yucheng jiang grantid: No. 12274316 |
GroupedDBID | -DZ -~X .DC 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c248t-93ee91220533a7234d24d2e5c3c1a688aa104fd19d5fd99696159cd256f3e4353 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 06:27:07 EDT 2025 Tue Jul 01 03:41:11 EDT 2025 Fri Jun 21 00:17:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c248t-93ee91220533a7234d24d2e5c3c1a688aa104fd19d5fd99696159cd256f3e4353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9944-4255 0000-0002-8494-3174 0000-0002-0367-3695 0000-0002-3064-4099 0009-0000-1805-147X |
PQID | 3058308685 |
PQPubID | 2050678 |
PageCount | 6 |
ParticipantIDs | proquest_journals_3058308685 scitation_primary_10_1063_5_0198590 crossref_primary_10_1063_5_0198590 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240520 2024-05-20 |
PublicationDateYYYYMMDD | 2024-05-20 |
PublicationDate_xml | – month: 05 year: 2024 text: 20240520 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Ohtomo, Hwang (c5) 2004 Ma, Wang, Huang, Gong, Qi, Zhang, Zhao, Li, Liu, Ma, Gao, Jiang (c13) 2022 Chen, Bovet, Kasama, Gao, Yazdi, Ma, Pryds, Linderoth (c19) 2014 He, Jiang, Chen, Zhao, Liu, Gao (c35) 2019 Kioupakis, Yan, Van de Walle (c30) 2012 Lee, Cheng, Wang, Zhou, Li, Wang, Liu, Guo, Wu, Kang, Huang, Duan (c3) 2023 Tebano, Fabbri, Pergolesi, Balestrino, Traversa (c9) 2012 Choi, Kim, Chang, Go, Lee, Koo (c7) 2017 Moon, Moon, Chang, Kim, Kang, Choi, Kim, Baek, Jang (c15) 2016 Cen, Thiel, Mannhart, Levy (c22) 2009 Jiang, He, Zhao, Chen, Liu, Lu, Zhang, Zhang, Wang, Zhao, Long, Hu, Wang, Qi, Gao, Wu, Ge, Ning, Wee, Qiu (c12) 2021 Kaneta-Takada, Kitamura, Arai, Arai, Okano, Anh, Endo, Horiba, Kumigashira, Kobayashi, Seki, Tabata, Tanaka, Ohya (c17) 2022 Lee, So, Hu, Kim, Badloe, Cho, Kim, Kim, Qiu, Rho (c4) 2022 Di Gennaro, di Uccio, Aruta, Cantoni, Gadaleta, Lupini, Maccariello, Marré, Pallecchi, Paparo, Perna, Riaz, Granozio (c33) 2013 Eom, Lee, Yang, Kim, Jeon, Yeon, Lee (c32) 2023 Brinkman, Huijben, van Zalk, Huijben, Zeitler, Maan, van der Wiel, Rijnders, Blank, Hilgenkamp (c10) 2007 Reagor, Butko (c20) 2005 Dong, Ran, Gao, Li, Xia, Huang (c2) 2023 Sundaram, Chalmers, Hopkins, Gossard (c1) 1991 Tomar, Wadehra, Kumar, Venkatesan, Sarma, Maryenko, Chakraverty (c21) 2019 Chang, Song, Lee, Noh, Seung, Baasandorj, Lee, Doh, Kim (c24) 2013 Silva, Dalpian (c29) 2014 Hong, Zhang, Zhang, Zhang, Wang, Chen, Shen, Sun (c27) 2016 Niu, Wang, Xu, Zhang (c14) 2021 Jeon, Eom, Hong, Eom, Heo, Lee (c11) 2021 Ohta, Kim, Mune, Mizoguchi, Nomura, Ohta, Nomura, Nakanishi, Ikuhara, Hirano, Hosono, Koumoto (c18) 2007 Qi, Zhang, Zhang, Gan, Chen, Shen, Chen, Chen, Sun (c34) 2022 Ron, Dagan (c28) 2014 Chen, Pryds, Kleibeuker, Koster, Sun, Stamate, Shen, Rijnders, Linderoth (c16) 2011 Cen, Thiel, Hammerl, Schneider, Andersen, Hellberg, Mannhart, Levy (c23) 2008 Caviglia, Gabay, Gariglio, Reyren, Cancellieri, Triscone (c8) 2010 Li, Lin, Jiang, Asif Khan, Chen (c31) 1997 Ron, Maniv, Graf, Park, Dagan (c26) 2014 Klitzing, Dorda, Pepper (c6) 1980 Wirner, Momose, Hamaguchi (c25) 1996 (2024052211202442700_c5) 2004; 427 (2024052211202442700_c1) 1991; 254 (2024052211202442700_c20) 2005; 4 (2024052211202442700_c8) 2010; 104 (2024052211202442700_c13) 2022; 120 (2024052211202442700_c34) 2022; 9 (2024052211202442700_c17) 2022; 13 (2024052211202442700_c21) 2019; 126 (2024052211202442700_c6) 1980; 45 (2024052211202442700_c35) 2019; 52 (2024052211202442700_c18) 2007; 6 (2024052211202442700_c19) 2014; 26 (2024052211202442700_c25) 1996; 227 (2024052211202442700_c29) 2014; 115 (2024052211202442700_c10) 2007; 6 (2024052211202442700_c16) 2011; 11 (2024052211202442700_c23) 2008; 7 (2024052211202442700_c14) 2021; 3 (2024052211202442700_c2) 2023; 3 (2024052211202442700_c7) 2017; 17 (2024052211202442700_c3) 2023; 3 (2024052211202442700_c15) 2016; 12 (2024052211202442700_c26) 2014; 113 (2024052211202442700_c4) 2022; 2 (2024052211202442700_c33) 2013; 1 (2024052211202442700_c9) 2012; 6 (2024052211202442700_c12) 2021; 127 (2024052211202442700_c11) 2021; 13 (2024052211202442700_c28) 2014; 112 (2024052211202442700_c27) 2016; 109 (2024052211202442700_c30) 2012; 101 (2024052211202442700_c31) 1997; 82 (2024052211202442700_c32) 2023; 137 (2024052211202442700_c24) 2013; 6 (2024052211202442700_c22) 2009; 323 |
References_xml | – start-page: 8 year: 2023 ident: c3 publication-title: eLight – start-page: 136801 year: 2014 ident: c28 publication-title: Phys. Rev. Lett. – start-page: 493 year: 2007 ident: c10 publication-title: Nat. Mater. – start-page: 035303 year: 2019 ident: c21 publication-title: J. Appl. Phys. – start-page: 513 year: 2017 ident: c7 publication-title: Curr. Appl Phys. – start-page: 1227 year: 1997 ident: c31 publication-title: J. Appl. Phys. – start-page: 061107 year: 2022 ident: c13 publication-title: Appl. Phys. Lett. – start-page: 3774 year: 2011 ident: c16 publication-title: Nano Lett. – start-page: 033710 year: 2014 ident: c29 publication-title: J. Appl. Phys. – start-page: 5631 year: 2022 ident: c17 publication-title: Nat. Commun. – start-page: 834 year: 2013 ident: c33 publication-title: Adv. Opt. Mater. – start-page: 2200103 year: 2022 ident: c34 publication-title: Adv. Mater. Interfaces – start-page: 375303 year: 2019 ident: c35 publication-title: J. Phys. D – start-page: 217401 year: 2021 ident: c12 publication-title: Phys. Rev. Lett. – start-page: 1 year: 2022 ident: c4 publication-title: eLight – start-page: 494 year: 1980 ident: c6 publication-title: Phys. Rev. Lett. – start-page: 1462 year: 2014 ident: c19 publication-title: Adv. Mater. – start-page: 126803 year: 2010 ident: c8 publication-title: Phys. Rev. Lett. – start-page: 216801 year: 2014 ident: c26 publication-title: Phys. Rev. Lett. – start-page: 423 year: 2004 ident: c5 publication-title: Nature – start-page: 593 year: 2005 ident: c20 publication-title: Nat. Mater. – start-page: 243 year: 2016 ident: c15 publication-title: Electron. Mater. Lett. – start-page: 1278 year: 2012 ident: c9 publication-title: ACS Nano – start-page: 34 year: 1996 ident: c25 publication-title: Physica B – start-page: 085201 year: 2013 ident: c24 publication-title: Appl. Phys. Express – start-page: 231107 year: 2012 ident: c30 publication-title: Appl. Phys. Lett. – start-page: 3 year: 2023 ident: c2 publication-title: eLight – start-page: 173505 year: 2016 ident: c27 publication-title: Appl. Phys. Lett. – start-page: 1326 year: 1991 ident: c1 publication-title: Science – start-page: 298 year: 2008 ident: c23 publication-title: Nat. Mater. – start-page: 129 year: 2007 ident: c18 publication-title: Nat. Mater. – start-page: 47208 year: 2021 ident: c11 publication-title: ACS Appl. Mater. Interfaces – start-page: 1026 year: 2009 ident: c22 publication-title: Science – start-page: 128 year: 2021 ident: c14 publication-title: ACS Appl. Electron. Mater. – start-page: 152 year: 2023 ident: c32 publication-title: J. Mater. Sci. Technol. – volume: 126 start-page: 035303 year: 2019 ident: 2024052211202442700_c21 publication-title: J. Appl. Phys. doi: 10.1063/1.5099546 – volume: 120 start-page: 061107 year: 2022 ident: 2024052211202442700_c13 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0082864 – volume: 9 start-page: 2200103 year: 2022 ident: 2024052211202442700_c34 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202200103 – volume: 45 start-page: 494 year: 1980 ident: 2024052211202442700_c6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.494 – volume: 6 start-page: 1278 year: 2012 ident: 2024052211202442700_c9 publication-title: ACS Nano doi: 10.1021/nn203991q – volume: 6 start-page: 129 year: 2007 ident: 2024052211202442700_c18 publication-title: Nat. Mater. doi: 10.1038/nmat1821 – volume: 13 start-page: 5631 year: 2022 ident: 2024052211202442700_c17 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33350-5 – volume: 1 start-page: 834 year: 2013 ident: 2024052211202442700_c33 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300150 – volume: 127 start-page: 217401 year: 2021 ident: 2024052211202442700_c12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.217401 – volume: 17 start-page: 513 year: 2017 ident: 2024052211202442700_c7 publication-title: Curr. Appl Phys. doi: 10.1016/j.cap.2017.01.017 – volume: 4 start-page: 593 year: 2005 ident: 2024052211202442700_c20 publication-title: Nat. Mater. doi: 10.1038/nmat1402 – volume: 3 start-page: 8 year: 2023 ident: 2024052211202442700_c3 publication-title: eLight doi: 10.1186/s43593-023-00040-8 – volume: 427 start-page: 423 year: 2004 ident: 2024052211202442700_c5 publication-title: Nature doi: 10.1038/nature02308 – volume: 11 start-page: 3774 year: 2011 ident: 2024052211202442700_c16 publication-title: Nano Lett. doi: 10.1021/nl201821j – volume: 112 start-page: 136801 year: 2014 ident: 2024052211202442700_c28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.136801 – volume: 137 start-page: 152 year: 2023 ident: 2024052211202442700_c32 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.08.006 – volume: 113 start-page: 216801 year: 2014 ident: 2024052211202442700_c26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.216801 – volume: 82 start-page: 1227 year: 1997 ident: 2024052211202442700_c31 publication-title: J. Appl. Phys. doi: 10.1063/1.365893 – volume: 104 start-page: 126803 year: 2010 ident: 2024052211202442700_c8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.126803 – volume: 13 start-page: 47208 year: 2021 ident: 2024052211202442700_c11 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c12394 – volume: 323 start-page: 1026 year: 2009 ident: 2024052211202442700_c22 publication-title: Science doi: 10.1126/science.1168294 – volume: 6 start-page: 493 year: 2007 ident: 2024052211202442700_c10 publication-title: Nat. Mater. doi: 10.1038/nmat1931 – volume: 7 start-page: 298 year: 2008 ident: 2024052211202442700_c23 publication-title: Nat. Mater. doi: 10.1038/nmat2136 – volume: 3 start-page: 3 year: 2023 ident: 2024052211202442700_c2 publication-title: eLight doi: 10.1186/s43593-022-00033-z – volume: 115 start-page: 033710 year: 2014 ident: 2024052211202442700_c29 publication-title: J. Appl. Phys. doi: 10.1063/1.4861730 – volume: 26 start-page: 1462 year: 2014 ident: 2024052211202442700_c19 publication-title: Adv. Mater. doi: 10.1002/adma.201304634 – volume: 52 start-page: 375303 year: 2019 ident: 2024052211202442700_c35 publication-title: J. Phys. D doi: 10.1088/1361-6463/ab257c – volume: 227 start-page: 34 year: 1996 ident: 2024052211202442700_c25 publication-title: Physica B doi: 10.1016/0921-4526(96)00326-2 – volume: 254 start-page: 1326 year: 1991 ident: 2024052211202442700_c1 publication-title: Science doi: 10.1126/science.254.5036.1326 – volume: 2 start-page: 1 year: 2022 ident: 2024052211202442700_c4 publication-title: eLight doi: 10.1186/s43593-021-00008-6 – volume: 3 start-page: 128 year: 2021 ident: 2024052211202442700_c14 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00860 – volume: 12 start-page: 243 year: 2016 ident: 2024052211202442700_c15 publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-015-5402-5 – volume: 109 start-page: 173505 year: 2016 ident: 2024052211202442700_c27 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4966546 – volume: 6 start-page: 085201 year: 2013 ident: 2024052211202442700_c24 publication-title: Appl. Phys. Express doi: 10.7567/APEX.6.085201 – volume: 101 start-page: 231107 year: 2012 ident: 2024052211202442700_c30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4769374 |
SSID | ssj0005233 |
Score | 2.4509585 |
Snippet | Two-dimensional electron gas (2DEG) has drawn significant attention due to its intriguing properties. Recent advances have encouraged the use of... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Argon ions Electron diffusion Electron gas Electronic systems Ion beams Photoconductivity Photoelectric effect Photoelectricity Room temperature Sensitivity |
Title | Quasi-one-dimensional electron gas for ultrahigh sensitivity of ambient light |
URI | http://dx.doi.org/10.1063/5.0198590 https://www.proquest.com/docview/3058308685 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5BJwQ8IBhMFAaygLfIsNhOaj9OsGlC3QDRivIUubGDJpVuWpMXfj3n2E5SMRAgVWllVZbl-3L5zrn7DuAVPnFSLUtOJ1xWVFSC0WUuBd54aG5tMpPaVu3zLD-Zi_eLbNH372yrS-rl6_LHtXUl_2NVHEO7uirZf7BsNykO4G-0L17Rwnj9Kxt_avTmnF6sLTVOpN8LbCSxs03yTbdiC0mzqtGlYBSebNyfQr8IlwDwfenKIZOVi9CHNDVyU3_usUlWbdFPR7-_hEPm6XmfxhtSe913HFs07YNND0ds8rWxw6MGJtxbcnbQgyO-Q9rKY_joV7LlZDnNVdCRtd6vHkzccWhwtdHx-urpgDBfKP2LR0cKhWZw2qpKZr6z6LZq9tmH4ng-nRazo8XsJuwwDBfYCHYO351OPw-SfTiPvRPd0qLGVM7fdFNvM5M-3LiNXMSnRQyYx-w-3AshAzn09n8AN-x6F-4OhCR34VbYnodwei0mSMQEQUwQxATpMEEGmCAXFQmYIC0mHsH8-Gj29oSGlhm0ZELWVHFrVeqKpznXE8aFYfixWcnLVOdSao3hd2VSZbLKKKeMhHS2NMh7K26ROfM9GK1xiY-BKJYiXSxFKq0RKjUYSPNJZZUsXUwg1RhexO0qLr0yStFmNOS8yIqwp2PYjxtZhBtnU-AjRnIMpWU2hpfd5v5-kid_nuQp3OnBug-j-qqxz5Ap1svnAQY_ARkOaV0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-one-dimensional+electron+gas+for+ultrahigh+sensitivity+of+ambient+light&rft.jtitle=Applied+physics+letters&rft.au=Wang%2C+Lin&rft.au=Tong%2C+Tong&rft.au=Xu%2C+Hang&rft.au=Xue+Yue&rft.date=2024-05-20&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=124&rft.issue=21&rft_id=info:doi/10.1063%2F5.0198590&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |