Evaluation and Correction of the Radiometric Calibration Biases in MERSI-RM/FY-3G Middle Infrared and Thermal Infrared Channels Against MODIS/Aqua Channels

The accurate and stable radiometric calibration is a fundamental for quantitative remote sensing. This article addresses the evaluation and correction of radiometric calibration biases in the middle infrared channel (channel 6 centered at <inline-formula> <tex-math notation="LaTeX"...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 10
Main Authors Jiang, Ming-Xu, Jiang, Geng-Ming, Chen, Hao
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The accurate and stable radiometric calibration is a fundamental for quantitative remote sensing. This article addresses the evaluation and correction of radiometric calibration biases in the middle infrared channel (channel 6 centered at <inline-formula> <tex-math notation="LaTeX">3.8~\mu </tex-math></inline-formula>m) and the thermal infrared channels (channels 7 and 8 centered at 10.8 and <inline-formula> <tex-math notation="LaTeX">12.0~\mu </tex-math></inline-formula>m, respectively) of the MEdium Resolution Spectral Imager for the Rainfall Mission (MERSI-RM) on FengYun-3G (FY-3G) satellite against the channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua satellite using the double-difference (DD) method. First, an infrared radiative transfer model is constructed to simulate the observations in both middle infrared and thermal infrared channels, in which surface reflected solar irradiances are fully taken into account. Then, the matching samples between the MERSI-RM and MODIS observations in January, April, July, and October of 2024 are collected in terms of the matching criteria. Next, the radiances at top of atmosphere (TOA) are simulated using the infrared radiative transfer model. Finally, the radiometric calibration biases in the MERSI-RM channels 6-8 are evaluated and corrected. The results show that the impact of the simulation errors, the spectral response differences, and geolocation errors on the final intercalibration results can be ignored. The radiometric calibration of the MERSI-RM channel 6 is quite consistent with that of the MODIS channel 20, while the radiometric calibrations in the MERSI-RM channels 7 and 8 are about 0.5-K underestimated. Although more or less calibration biases exist in the MERSI-RM channels, their on-orbit calibrations are generally stable in the four months of 2024.
AbstractList The accurate and stable radiometric calibration is a fundamental for quantitative remote sensing. This article addresses the evaluation and correction of radiometric calibration biases in the middle infrared channel (channel 6 centered at [Formula Omitted]m) and the thermal infrared channels (channels 7 and 8 centered at 10.8 and [Formula Omitted]m, respectively) of the MEdium Resolution Spectral Imager for the Rainfall Mission (MERSI-RM) on FengYun-3G (FY-3G) satellite against the channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua satellite using the double-difference (DD) method. First, an infrared radiative transfer model is constructed to simulate the observations in both middle infrared and thermal infrared channels, in which surface reflected solar irradiances are fully taken into account. Then, the matching samples between the MERSI-RM and MODIS observations in January, April, July, and October of 2024 are collected in terms of the matching criteria. Next, the radiances at top of atmosphere (TOA) are simulated using the infrared radiative transfer model. Finally, the radiometric calibration biases in the MERSI-RM channels 6–8 are evaluated and corrected. The results show that the impact of the simulation errors, the spectral response differences, and geolocation errors on the final intercalibration results can be ignored. The radiometric calibration of the MERSI-RM channel 6 is quite consistent with that of the MODIS channel 20, while the radiometric calibrations in the MERSI-RM channels 7 and 8 are about 0.5-K underestimated. Although more or less calibration biases exist in the MERSI-RM channels, their on-orbit calibrations are generally stable in the four months of 2024.
The accurate and stable radiometric calibration is a fundamental for quantitative remote sensing. This article addresses the evaluation and correction of radiometric calibration biases in the middle infrared channel (channel 6 centered at <inline-formula> <tex-math notation="LaTeX">3.8~\mu </tex-math></inline-formula>m) and the thermal infrared channels (channels 7 and 8 centered at 10.8 and <inline-formula> <tex-math notation="LaTeX">12.0~\mu </tex-math></inline-formula>m, respectively) of the MEdium Resolution Spectral Imager for the Rainfall Mission (MERSI-RM) on FengYun-3G (FY-3G) satellite against the channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua satellite using the double-difference (DD) method. First, an infrared radiative transfer model is constructed to simulate the observations in both middle infrared and thermal infrared channels, in which surface reflected solar irradiances are fully taken into account. Then, the matching samples between the MERSI-RM and MODIS observations in January, April, July, and October of 2024 are collected in terms of the matching criteria. Next, the radiances at top of atmosphere (TOA) are simulated using the infrared radiative transfer model. Finally, the radiometric calibration biases in the MERSI-RM channels 6-8 are evaluated and corrected. The results show that the impact of the simulation errors, the spectral response differences, and geolocation errors on the final intercalibration results can be ignored. The radiometric calibration of the MERSI-RM channel 6 is quite consistent with that of the MODIS channel 20, while the radiometric calibrations in the MERSI-RM channels 7 and 8 are about 0.5-K underestimated. Although more or less calibration biases exist in the MERSI-RM channels, their on-orbit calibrations are generally stable in the four months of 2024.
Author Chen, Hao
Jiang, Geng-Ming
Jiang, Ming-Xu
Author_xml – sequence: 1
  givenname: Ming-Xu
  surname: Jiang
  fullname: Jiang, Ming-Xu
  email: 22210720152@m.fudan.edu.cn
  organization: College of Future Information Technology and the Key Laboratory for Information Science of Electromagnetic Waves, Ministry of Education, Fudan University, Shanghai, China
– sequence: 2
  givenname: Geng-Ming
  orcidid: 0000-0002-8022-1959
  surname: Jiang
  fullname: Jiang, Geng-Ming
  email: jianggm@fudan.edu.cn
  organization: College of Future Information Technology and the Key Laboratory for Information Science of Electromagnetic Waves, Ministry of Education, Fudan University, Shanghai, China
– sequence: 3
  givenname: Hao
  orcidid: 0000-0001-7371-0933
  surname: Chen
  fullname: Chen, Hao
  email: chenhao_fdu@hotmail.com
  organization: Jiangsu Meteorological Observatory, Nanjing, Jiangsu, China
BookMark eNpFkU1PAjEQhhujiYj-ABMPTTwv9GO7uz3iCkgCMQE8eNp0t1OpWbrQLib-Fv-sfBg5TWbmeWcOzw26dI0DhO4p6VFKZH85ni96jDDR4yJjkokL1KFCZBFJ4vgSdQiVScQyya7RTQifhNBY0LSDfoZfqt6p1jYOK6dx3ngP1bFtDG5XgOdK22YNrbcVzlVtS3-in6wKELB1eDacLybRfNYfvUd8jGdW6xrwxBmvPOjj2eUK_FrV52G-Us5BHfDgQ1kXWjx7fZ4s-oPtTv3vbtGVUXWAu7_aRW-j4TJ_iaav40k-mEYVi7M2yoROy7TULOOVTLgAzUoaawG8LHnCElIKyk2mDaGGClZWiU4lAFMEmAGjeRc9nu5ufLPdQWiLz2bn3f5lwRlLYpnKmOwpeqIq34TgwRQbb9fKfxeUFAcHxcFBcXBQ_DnYZx5OGQsAZ54SQWRK-S_mxoUp
CODEN IGRSD2
Cites_doi 10.34133/remotesensing.0097
10.1109/LGRS.2013.2255859
10.1016/j.rse.2006.07.015
10.1364/AO.36.002609
10.1364/AO.12.000555
10.1080/014311600210876
10.1109/MICRORAD.2018.8430717
10.1117/12.366388
10.1364/OE.16.019310
10.3390/rs1040697
10.1016/0034-4257(90)90095-4
10.1109/JSTARS.2017.2672723
10.1109/TGRS.2024.3385657
10.1109/JSTARS.2018.2801305
10.1080/01431160802392638
10.2467/mripapers.32.267
10.1117/1.jrs.17.037501
10.1109/LGRS.2022.3231289
10.1175/2007jamc1590.1
10.1109/TGRS.2022.3156999
10.1109/TGRS.2013.2295260
10.1029/2010JD014988
10.1016/0034-4257(88)90032-6
10.5194/essd-13-4349-2021
10.1364/AO.8.002073
10.1109/TGRS.2008.2005200
10.1109/TGRS.2022.3215806
10.11834/jrs.20198235
10.1109/36.602541
10.1364/AO.3.000781
10.1109/36.700995
10.4401/ag-3150
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2025.3582925
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 10
ExternalDocumentID 10_1109_TGRS_2025_3582925
11050971
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41871222; 42475164
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c248t-85d7b7bd283c9635ed2b14d5e3bb36260b513f8df01f152bc6d79ee2a0e2fefd3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Thu Jul 03 05:40:46 EDT 2025
Thu Jul 10 08:11:09 EDT 2025
Wed Aug 27 02:13:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-85d7b7bd283c9635ed2b14d5e3bb36260b513f8df01f152bc6d79ee2a0e2fefd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7371-0933
0000-0002-8022-1959
PQID 3226497940
PQPubID 85465
PageCount 10
ParticipantIDs crossref_primary_10_1109_TGRS_2025_3582925
proquest_journals_3226497940
ieee_primary_11050971
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref25
ref20
ref22
ref21
Han (ref26) 2023; 38
ref27
ref29
ref8
ref7
ref9
ref4
Cox (ref28) 1954; 13
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.34133/remotesensing.0097
– ident: ref3
  doi: 10.1109/LGRS.2013.2255859
– ident: ref15
  doi: 10.1016/j.rse.2006.07.015
– ident: ref20
  doi: 10.1364/AO.36.002609
– ident: ref30
  doi: 10.1364/AO.12.000555
– ident: ref24
  doi: 10.1080/014311600210876
– ident: ref33
  doi: 10.1109/MICRORAD.2018.8430717
– ident: ref16
  doi: 10.1117/12.366388
– ident: ref25
  doi: 10.1364/OE.16.019310
– ident: ref31
  doi: 10.3390/rs1040697
– ident: ref21
  doi: 10.1016/0034-4257(90)90095-4
– ident: ref32
  doi: 10.1109/JSTARS.2017.2672723
– volume: 13
  start-page: 198
  year: 1954
  ident: ref28
  article-title: Statistics of the sea surface derived from sun glitter
  publication-title: J. Mar. Res.
– ident: ref4
  doi: 10.1109/TGRS.2024.3385657
– ident: ref8
  doi: 10.1109/JSTARS.2018.2801305
– ident: ref6
  doi: 10.1080/01431160802392638
– ident: ref18
  doi: 10.2467/mripapers.32.267
– ident: ref5
  doi: 10.1117/1.jrs.17.037501
– ident: ref12
  doi: 10.1109/LGRS.2022.3231289
– ident: ref14
  doi: 10.1175/2007jamc1590.1
– ident: ref34
  doi: 10.1109/TGRS.2022.3156999
– ident: ref2
  doi: 10.1109/TGRS.2013.2295260
– ident: ref10
  doi: 10.1029/2010JD014988
– volume: 38
  start-page: 173
  issue: 1
  year: 2023
  ident: ref26
  article-title: Research on Fire SPOT detection algorithm based on the new generation of geostationary meteorological satellite
  publication-title: Remote Sens. Technol. Appl.
– ident: ref19
  doi: 10.1016/0034-4257(88)90032-6
– ident: ref13
  doi: 10.5194/essd-13-4349-2021
– ident: ref29
  doi: 10.1364/AO.8.002073
– ident: ref7
  doi: 10.1109/TGRS.2008.2005200
– ident: ref11
  doi: 10.1109/TGRS.2022.3215806
– ident: ref9
  doi: 10.11834/jrs.20198235
– ident: ref22
  doi: 10.1109/36.602541
– ident: ref17
  doi: 10.1364/AO.3.000781
– ident: ref23
  doi: 10.1109/36.700995
– ident: ref27
  doi: 10.4401/ag-3150
SSID ssj0014517
Score 2.463082
Snippet The accurate and stable radiometric calibration is a fundamental for quantitative remote sensing. This article addresses the evaluation and correction of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Atmospheric modeling
Bias
Calibration
Channels
double-difference (DD) method
Errors
Instruments
Intercalibration
Land surface
Land surface temperature
Matching
MEdium Resolution Spectral Imager for the Rainfall Mission (MERSI-RM)
Microwave radiometry
Moderate Resolution Imaging Spectroradiometer (MODIS)
MODIS
Ocean temperature
Orbital stability
Radiative transfer
radiative transfer model
Rainfall
Remote sensing
Satellite broadcasting
Satellites
Sea surface
Spectral sensitivity
Spectroradiometers
Title Evaluation and Correction of the Radiometric Calibration Biases in MERSI-RM/FY-3G Middle Infrared and Thermal Infrared Channels Against MODIS/Aqua Channels
URI https://ieeexplore.ieee.org/document/11050971
https://www.proquest.com/docview/3226497940
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_WwqB72EfbsWzd0MOeBkps2XLix6xL2gzcQdJC-2Qs6VRCh7Pl42X_yv7Z3clOWlYGezO2LAR30v3udL87gI9ktVHlsZEuVVamuUJJquxkoo3FPPNR5jg0UFxk51fp12t93ZLVAxcGEUPyGXb5Mdzlu4XdcKisR6ZKc82jPdgjz60ha-2uDFIdt9zoTJIXodorzDjKe5dn0xm5gkp3mReac1vsB0YodFV5dBQH-zJ-ARfblTVpJXfdzdp07a-_ijb-99JfwvMWaYphoxqv4AnWh_DsQf3BQ3ga8j_t6gh-j3ZVv0VVO3HKTTsC5UEsvCCQKKaVY6Y-F_QXTOgyjeqIz3Oygysxr0Uxms4mclr0xjcyORNFCH2ISe2XnOQepiWlJEPw_f4lkxtqMs9ieFvNCamK4tuXyaw3_Lmpdt-O4Wo8ujw9l23fBmlVOljLgXZ90zeOkIul_a3RKROnTmNiDFe_iYyOEz9wPoo9wQdjM9fPEVUVofLoXfIa9utFjW9AKGMUYZg49oagD_YHnoYllUusdwTEVAc-bQVZ_mjKc5TBrYnykqVestTLVuodOGbB3A9sZdKBk63sy3YHr8qEGcY5nVbR23_89g4OePYmHnMC--vlBt8TQlmbD0Ez_wBkQOI4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3Pb9MwFH4aQwg48GMMrWOAD3BBcps4cdocOJStXcOWIbWdtJ1CHNuo2pSOtdUE_wriX-Fv4z0n7SYQx0ncosRxJOez3_fs970H8AatthGxr7gORcHDWBiOUNY8kKowcWS9SNPWQHoUDY7DjyfyZA1-rrQwxhgXfGaadOnO8vW0WNBWWQtNlaScR3UM5YH5doUe2ux9soe_860Q_d54d8DrIgK8EGFnzjtSt1VbaTSjBYJNGi2UH2ppAqUoFYunpB_Yjraeb9GWqSLS7dgYkXtGWGN1gP3egbtINKSo5GGrQ4pQ-rUaO-Lot4j60NT34tZ4fzhC51PIJilRYyrEfcPsuToufy3-zqL1H8Ov5VhUgSxnzcVcNYvvf6SJ_G8H6wk8qrk061bgfwprptyAhzcyLG7APRfhWsyewY_eKq85y0vNdqksiRN1sKllSIPZMNeUi4BKFjCSrKlqcrAPE7T0MzYpWdobjhI-TFv9Ux7ss9Rt7rCktJcUxu-6xWmHpu78-ibJN0okIKz7JZ8gF2fpp71k1Op-XeSrZ5twfCvj9BzWy2lptoAJpQSyNN-3CsmdaXcsNgtyHRRWI9UUDXi3BE52USUgyZzj5sUZoSwjlGU1yhqwSUC4blhjoAE7S6xl9Ro1ywLSUMe4Hnvb_3jtNdwfjNPD7DA5OngBD-hL1e7TDqzPLxfmJfKxuXrlZgWDz7eNrN-IBkGp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+and+Correction+of+the+Radiometric+Calibration+Biases+in+MERSI-RM%2FFY-3G+Middle+Infrared+and+Thermal+Infrared+Channels+Against+MODIS%2FAqua+Channels&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Jiang%2C+Ming-Xu&rft.au=Jiang%2C+Geng-Ming&rft.au=Chen%2C+Hao&rft.date=2025&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=63&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTGRS.2025.3582925&rft.externalDocID=11050971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon