Evaluation and Correction of the Radiometric Calibration Biases in MERSI-RM/FY-3G Middle Infrared and Thermal Infrared Channels Against MODIS/Aqua Channels
The accurate and stable radiometric calibration is a fundamental for quantitative remote sensing. This article addresses the evaluation and correction of radiometric calibration biases in the middle infrared channel (channel 6 centered at <inline-formula> <tex-math notation="LaTeX"...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The accurate and stable radiometric calibration is a fundamental for quantitative remote sensing. This article addresses the evaluation and correction of radiometric calibration biases in the middle infrared channel (channel 6 centered at <inline-formula> <tex-math notation="LaTeX">3.8~\mu </tex-math></inline-formula>m) and the thermal infrared channels (channels 7 and 8 centered at 10.8 and <inline-formula> <tex-math notation="LaTeX">12.0~\mu </tex-math></inline-formula>m, respectively) of the MEdium Resolution Spectral Imager for the Rainfall Mission (MERSI-RM) on FengYun-3G (FY-3G) satellite against the channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua satellite using the double-difference (DD) method. First, an infrared radiative transfer model is constructed to simulate the observations in both middle infrared and thermal infrared channels, in which surface reflected solar irradiances are fully taken into account. Then, the matching samples between the MERSI-RM and MODIS observations in January, April, July, and October of 2024 are collected in terms of the matching criteria. Next, the radiances at top of atmosphere (TOA) are simulated using the infrared radiative transfer model. Finally, the radiometric calibration biases in the MERSI-RM channels 6-8 are evaluated and corrected. The results show that the impact of the simulation errors, the spectral response differences, and geolocation errors on the final intercalibration results can be ignored. The radiometric calibration of the MERSI-RM channel 6 is quite consistent with that of the MODIS channel 20, while the radiometric calibrations in the MERSI-RM channels 7 and 8 are about 0.5-K underestimated. Although more or less calibration biases exist in the MERSI-RM channels, their on-orbit calibrations are generally stable in the four months of 2024. |
---|---|
AbstractList | The accurate and stable radiometric calibration is a fundamental for quantitative remote sensing. This article addresses the evaluation and correction of radiometric calibration biases in the middle infrared channel (channel 6 centered at [Formula Omitted]m) and the thermal infrared channels (channels 7 and 8 centered at 10.8 and [Formula Omitted]m, respectively) of the MEdium Resolution Spectral Imager for the Rainfall Mission (MERSI-RM) on FengYun-3G (FY-3G) satellite against the channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua satellite using the double-difference (DD) method. First, an infrared radiative transfer model is constructed to simulate the observations in both middle infrared and thermal infrared channels, in which surface reflected solar irradiances are fully taken into account. Then, the matching samples between the MERSI-RM and MODIS observations in January, April, July, and October of 2024 are collected in terms of the matching criteria. Next, the radiances at top of atmosphere (TOA) are simulated using the infrared radiative transfer model. Finally, the radiometric calibration biases in the MERSI-RM channels 6–8 are evaluated and corrected. The results show that the impact of the simulation errors, the spectral response differences, and geolocation errors on the final intercalibration results can be ignored. The radiometric calibration of the MERSI-RM channel 6 is quite consistent with that of the MODIS channel 20, while the radiometric calibrations in the MERSI-RM channels 7 and 8 are about 0.5-K underestimated. Although more or less calibration biases exist in the MERSI-RM channels, their on-orbit calibrations are generally stable in the four months of 2024. The accurate and stable radiometric calibration is a fundamental for quantitative remote sensing. This article addresses the evaluation and correction of radiometric calibration biases in the middle infrared channel (channel 6 centered at <inline-formula> <tex-math notation="LaTeX">3.8~\mu </tex-math></inline-formula>m) and the thermal infrared channels (channels 7 and 8 centered at 10.8 and <inline-formula> <tex-math notation="LaTeX">12.0~\mu </tex-math></inline-formula>m, respectively) of the MEdium Resolution Spectral Imager for the Rainfall Mission (MERSI-RM) on FengYun-3G (FY-3G) satellite against the channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua satellite using the double-difference (DD) method. First, an infrared radiative transfer model is constructed to simulate the observations in both middle infrared and thermal infrared channels, in which surface reflected solar irradiances are fully taken into account. Then, the matching samples between the MERSI-RM and MODIS observations in January, April, July, and October of 2024 are collected in terms of the matching criteria. Next, the radiances at top of atmosphere (TOA) are simulated using the infrared radiative transfer model. Finally, the radiometric calibration biases in the MERSI-RM channels 6-8 are evaluated and corrected. The results show that the impact of the simulation errors, the spectral response differences, and geolocation errors on the final intercalibration results can be ignored. The radiometric calibration of the MERSI-RM channel 6 is quite consistent with that of the MODIS channel 20, while the radiometric calibrations in the MERSI-RM channels 7 and 8 are about 0.5-K underestimated. Although more or less calibration biases exist in the MERSI-RM channels, their on-orbit calibrations are generally stable in the four months of 2024. |
Author | Chen, Hao Jiang, Geng-Ming Jiang, Ming-Xu |
Author_xml | – sequence: 1 givenname: Ming-Xu surname: Jiang fullname: Jiang, Ming-Xu email: 22210720152@m.fudan.edu.cn organization: College of Future Information Technology and the Key Laboratory for Information Science of Electromagnetic Waves, Ministry of Education, Fudan University, Shanghai, China – sequence: 2 givenname: Geng-Ming orcidid: 0000-0002-8022-1959 surname: Jiang fullname: Jiang, Geng-Ming email: jianggm@fudan.edu.cn organization: College of Future Information Technology and the Key Laboratory for Information Science of Electromagnetic Waves, Ministry of Education, Fudan University, Shanghai, China – sequence: 3 givenname: Hao orcidid: 0000-0001-7371-0933 surname: Chen fullname: Chen, Hao email: chenhao_fdu@hotmail.com organization: Jiangsu Meteorological Observatory, Nanjing, Jiangsu, China |
BookMark | eNpFkU1PAjEQhhujiYj-ABMPTTwv9GO7uz3iCkgCMQE8eNp0t1OpWbrQLib-Fv-sfBg5TWbmeWcOzw26dI0DhO4p6VFKZH85ni96jDDR4yJjkokL1KFCZBFJ4vgSdQiVScQyya7RTQifhNBY0LSDfoZfqt6p1jYOK6dx3ngP1bFtDG5XgOdK22YNrbcVzlVtS3-in6wKELB1eDacLybRfNYfvUd8jGdW6xrwxBmvPOjj2eUK_FrV52G-Us5BHfDgQ1kXWjx7fZ4s-oPtTv3vbtGVUXWAu7_aRW-j4TJ_iaav40k-mEYVi7M2yoROy7TULOOVTLgAzUoaawG8LHnCElIKyk2mDaGGClZWiU4lAFMEmAGjeRc9nu5ufLPdQWiLz2bn3f5lwRlLYpnKmOwpeqIq34TgwRQbb9fKfxeUFAcHxcFBcXBQ_DnYZx5OGQsAZ54SQWRK-S_mxoUp |
CODEN | IGRSD2 |
Cites_doi | 10.34133/remotesensing.0097 10.1109/LGRS.2013.2255859 10.1016/j.rse.2006.07.015 10.1364/AO.36.002609 10.1364/AO.12.000555 10.1080/014311600210876 10.1109/MICRORAD.2018.8430717 10.1117/12.366388 10.1364/OE.16.019310 10.3390/rs1040697 10.1016/0034-4257(90)90095-4 10.1109/JSTARS.2017.2672723 10.1109/TGRS.2024.3385657 10.1109/JSTARS.2018.2801305 10.1080/01431160802392638 10.2467/mripapers.32.267 10.1117/1.jrs.17.037501 10.1109/LGRS.2022.3231289 10.1175/2007jamc1590.1 10.1109/TGRS.2022.3156999 10.1109/TGRS.2013.2295260 10.1029/2010JD014988 10.1016/0034-4257(88)90032-6 10.5194/essd-13-4349-2021 10.1364/AO.8.002073 10.1109/TGRS.2008.2005200 10.1109/TGRS.2022.3215806 10.11834/jrs.20198235 10.1109/36.602541 10.1364/AO.3.000781 10.1109/36.700995 10.4401/ag-3150 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2025.3582925 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 10 |
ExternalDocumentID | 10_1109_TGRS_2025_3582925 11050971 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41871222; 42475164 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c248t-85d7b7bd283c9635ed2b14d5e3bb36260b513f8df01f152bc6d79ee2a0e2fefd3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Thu Jul 03 05:40:46 EDT 2025 Thu Jul 10 08:11:09 EDT 2025 Wed Aug 27 02:13:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c248t-85d7b7bd283c9635ed2b14d5e3bb36260b513f8df01f152bc6d79ee2a0e2fefd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7371-0933 0000-0002-8022-1959 |
PQID | 3226497940 |
PQPubID | 85465 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2025_3582925 proquest_journals_3226497940 ieee_primary_11050971 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref25 ref20 ref22 ref21 Han (ref26) 2023; 38 ref27 ref29 ref8 ref7 ref9 ref4 Cox (ref28) 1954; 13 ref3 ref6 ref5 |
References_xml | – ident: ref1 doi: 10.34133/remotesensing.0097 – ident: ref3 doi: 10.1109/LGRS.2013.2255859 – ident: ref15 doi: 10.1016/j.rse.2006.07.015 – ident: ref20 doi: 10.1364/AO.36.002609 – ident: ref30 doi: 10.1364/AO.12.000555 – ident: ref24 doi: 10.1080/014311600210876 – ident: ref33 doi: 10.1109/MICRORAD.2018.8430717 – ident: ref16 doi: 10.1117/12.366388 – ident: ref25 doi: 10.1364/OE.16.019310 – ident: ref31 doi: 10.3390/rs1040697 – ident: ref21 doi: 10.1016/0034-4257(90)90095-4 – ident: ref32 doi: 10.1109/JSTARS.2017.2672723 – volume: 13 start-page: 198 year: 1954 ident: ref28 article-title: Statistics of the sea surface derived from sun glitter publication-title: J. Mar. Res. – ident: ref4 doi: 10.1109/TGRS.2024.3385657 – ident: ref8 doi: 10.1109/JSTARS.2018.2801305 – ident: ref6 doi: 10.1080/01431160802392638 – ident: ref18 doi: 10.2467/mripapers.32.267 – ident: ref5 doi: 10.1117/1.jrs.17.037501 – ident: ref12 doi: 10.1109/LGRS.2022.3231289 – ident: ref14 doi: 10.1175/2007jamc1590.1 – ident: ref34 doi: 10.1109/TGRS.2022.3156999 – ident: ref2 doi: 10.1109/TGRS.2013.2295260 – ident: ref10 doi: 10.1029/2010JD014988 – volume: 38 start-page: 173 issue: 1 year: 2023 ident: ref26 article-title: Research on Fire SPOT detection algorithm based on the new generation of geostationary meteorological satellite publication-title: Remote Sens. Technol. Appl. – ident: ref19 doi: 10.1016/0034-4257(88)90032-6 – ident: ref13 doi: 10.5194/essd-13-4349-2021 – ident: ref29 doi: 10.1364/AO.8.002073 – ident: ref7 doi: 10.1109/TGRS.2008.2005200 – ident: ref11 doi: 10.1109/TGRS.2022.3215806 – ident: ref9 doi: 10.11834/jrs.20198235 – ident: ref22 doi: 10.1109/36.602541 – ident: ref17 doi: 10.1364/AO.3.000781 – ident: ref23 doi: 10.1109/36.700995 – ident: ref27 doi: 10.4401/ag-3150 |
SSID | ssj0014517 |
Score | 2.463082 |
Snippet | The accurate and stable radiometric calibration is a fundamental for quantitative remote sensing. This article addresses the evaluation and correction of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Atmospheric modeling Bias Calibration Channels double-difference (DD) method Errors Instruments Intercalibration Land surface Land surface temperature Matching MEdium Resolution Spectral Imager for the Rainfall Mission (MERSI-RM) Microwave radiometry Moderate Resolution Imaging Spectroradiometer (MODIS) MODIS Ocean temperature Orbital stability Radiative transfer radiative transfer model Rainfall Remote sensing Satellite broadcasting Satellites Sea surface Spectral sensitivity Spectroradiometers |
Title | Evaluation and Correction of the Radiometric Calibration Biases in MERSI-RM/FY-3G Middle Infrared and Thermal Infrared Channels Against MODIS/Aqua Channels |
URI | https://ieeexplore.ieee.org/document/11050971 https://www.proquest.com/docview/3226497940 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_WwqB72EfbsWzd0MOeBkps2XLix6xL2gzcQdJC-2Qs6VRCh7Pl42X_yv7Z3clOWlYGezO2LAR30v3udL87gI9ktVHlsZEuVVamuUJJquxkoo3FPPNR5jg0UFxk51fp12t93ZLVAxcGEUPyGXb5Mdzlu4XdcKisR6ZKc82jPdgjz60ha-2uDFIdt9zoTJIXodorzDjKe5dn0xm5gkp3mReac1vsB0YodFV5dBQH-zJ-ARfblTVpJXfdzdp07a-_ijb-99JfwvMWaYphoxqv4AnWh_DsQf3BQ3ga8j_t6gh-j3ZVv0VVO3HKTTsC5UEsvCCQKKaVY6Y-F_QXTOgyjeqIz3Oygysxr0Uxms4mclr0xjcyORNFCH2ISe2XnOQepiWlJEPw_f4lkxtqMs9ieFvNCamK4tuXyaw3_Lmpdt-O4Wo8ujw9l23fBmlVOljLgXZ90zeOkIul_a3RKROnTmNiDFe_iYyOEz9wPoo9wQdjM9fPEVUVofLoXfIa9utFjW9AKGMUYZg49oagD_YHnoYllUusdwTEVAc-bQVZ_mjKc5TBrYnykqVestTLVuodOGbB3A9sZdKBk63sy3YHr8qEGcY5nVbR23_89g4OePYmHnMC--vlBt8TQlmbD0Ez_wBkQOI4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3Pb9MwFH4aQwg48GMMrWOAD3BBcps4cdocOJStXcOWIbWdtJ1CHNuo2pSOtdUE_wriX-Fv4z0n7SYQx0ncosRxJOez3_fs970H8AatthGxr7gORcHDWBiOUNY8kKowcWS9SNPWQHoUDY7DjyfyZA1-rrQwxhgXfGaadOnO8vW0WNBWWQtNlaScR3UM5YH5doUe2ux9soe_860Q_d54d8DrIgK8EGFnzjtSt1VbaTSjBYJNGi2UH2ppAqUoFYunpB_Yjraeb9GWqSLS7dgYkXtGWGN1gP3egbtINKSo5GGrQ4pQ-rUaO-Lot4j60NT34tZ4fzhC51PIJilRYyrEfcPsuToufy3-zqL1H8Ov5VhUgSxnzcVcNYvvf6SJ_G8H6wk8qrk061bgfwprptyAhzcyLG7APRfhWsyewY_eKq85y0vNdqksiRN1sKllSIPZMNeUi4BKFjCSrKlqcrAPE7T0MzYpWdobjhI-TFv9Ux7ss9Rt7rCktJcUxu-6xWmHpu78-ibJN0okIKz7JZ8gF2fpp71k1Op-XeSrZ5twfCvj9BzWy2lptoAJpQSyNN-3CsmdaXcsNgtyHRRWI9UUDXi3BE52USUgyZzj5sUZoSwjlGU1yhqwSUC4blhjoAE7S6xl9Ro1ywLSUMe4Hnvb_3jtNdwfjNPD7DA5OngBD-hL1e7TDqzPLxfmJfKxuXrlZgWDz7eNrN-IBkGp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+and+Correction+of+the+Radiometric+Calibration+Biases+in+MERSI-RM%2FFY-3G+Middle+Infrared+and+Thermal+Infrared+Channels+Against+MODIS%2FAqua+Channels&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Jiang%2C+Ming-Xu&rft.au=Jiang%2C+Geng-Ming&rft.au=Chen%2C+Hao&rft.date=2025&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=63&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTGRS.2025.3582925&rft.externalDocID=11050971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |