Accelerating Mobile Edge Generation (MEG) by Constrained Learning
A novel mobile edge generation (MEG) framework is proposed for low-latency image generation on mobile devices. Exploiting a latent diffusion model (LDM) distributed across the edge server (ES) and the user equipment (UE), only low-dimension features need to be transmitted for creating artificial int...
Saved in:
Published in | IEEE transactions on cognitive communications and networking Vol. 11; no. 3; pp. 1854 - 1869 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel mobile edge generation (MEG) framework is proposed for low-latency image generation on mobile devices. Exploiting a latent diffusion model (LDM) distributed across the edge server (ES) and the user equipment (UE), only low-dimension features need to be transmitted for creating artificial intelligence generative content (AIGC). Two novel modules, namely dynamic diffusion and feature merging, are conceived to compress the diffusion model and transmitted features, respectively. By jointly optimizing compression rates of denoising steps and feature merging, the image quality maximization problem is formulated subject to latency and energy consumption constraints. To address this problem in dynamic channel conditions, a low-complexity compression protocol is developed. First, a backbone LDM architecture is learned by offline distillation to support various compression options. Then, compression rates are predicted in online environment specific to channel and task features. To solve the resultant constrained Markov Decision Process (MDP), a constrained variational policy optimization (CVPO) based MEG algorithm, MEG-CVPO , is further developed to learn constraint-guaranteed optimization. Numerical results demonstrate that: 1) The proposed framework improves image distortions while reducing over 40% latency compared to conventional generation schemes. 2) MEG-CVPO stringently guarantee constraints and realizes a flexible trade-off between generation qualities and overheads. Code is available at https://github.com/xiaoxiaxusummer/LowLatencyMEG . |
---|---|
AbstractList | A novel mobile edge generation (MEG) framework is proposed for low-latency image generation on mobile devices. Exploiting a latent diffusion model (LDM) distributed across the edge server (ES) and the user equipment (UE), only low-dimension features need to be transmitted for creating artificial intelligence generative content (AIGC). Two novel modules, namely dynamic diffusion and feature merging, are conceived to compress the diffusion model and transmitted features, respectively. By jointly optimizing compression rates of denoising steps and feature merging, the image quality maximization problem is formulated subject to latency and energy consumption constraints. To address this problem in dynamic channel conditions, a low-complexity compression protocol is developed. First, a backbone LDM architecture is learned by offline distillation to support various compression options. Then, compression rates are predicted in online environment specific to channel and task features. To solve the resultant constrained Markov Decision Process (MDP), a constrained variational policy optimization (CVPO) based MEG algorithm, MEG-CVPO , is further developed to learn constraint-guaranteed optimization. Numerical results demonstrate that: 1) The proposed framework improves image distortions while reducing over 40% latency compared to conventional generation schemes. 2) MEG-CVPO stringently guarantee constraints and realizes a flexible trade-off between generation qualities and overheads. Code is available at https://github.com/xiaoxiaxusummer/LowLatencyMEG . |
Author | Xing, Hong Xu, Xiaoxia Mu, Xidong Liu, Yuanwei Nallanathan, Arumugam |
Author_xml | – sequence: 1 givenname: Xiaoxia orcidid: 0009-0005-3699-235X surname: Xu fullname: Xu, Xiaoxia email: x.xiaoxia@qmul.ac.uk organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K – sequence: 2 givenname: Yuanwei orcidid: 0000-0002-6389-8941 surname: Liu fullname: Liu, Yuanwei email: yuanwei@hku.hk organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China – sequence: 3 givenname: Xidong orcidid: 0000-0001-8351-360X surname: Mu fullname: Mu, Xidong email: x.mu@qub.ac.uk organization: Centre for Wireless Innovation, School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, U.K – sequence: 4 givenname: Hong orcidid: 0000-0001-5206-1225 surname: Xing fullname: Xing, Hong email: hongxing@ust.hk organization: IoT Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China – sequence: 5 givenname: Arumugam orcidid: 0000-0001-8337-5884 surname: Nallanathan fullname: Nallanathan, Arumugam email: a.nallanathan@qmul.ac.uk organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K |
BookMark | eNpNkDtPwzAUhS0EEqX0ByAxRGKBIcWP-JGxikpBamEps2U711WqYhcnHfrvSWiHTvfo6pz7-O7QdYgBEHogeEoILl_XVfU5pZjyKeNclZJfoRFljOZSMnJ9oW_RpG23GGMiqBCqGKHZzDnYQTJdEzbZKtpmB9m83kC2gPDfjiF7Xs0XL5k9ZlUMbZdME6DOlmBS6EP36MabXQuTcx2j77f5unrPl1-Lj2q2zB0tVJdLWzoDtVXKCa-8ct4Z1Z9rTc04Y0BoIZ31ogZfDKpQBpdOgCuJdCVYNkZPp7n7FH8P0HZ6Gw8p9Cs1o0T27wlMexc5uVyKbZvA631qfkw6aoL1AEsPsPQAS59h9ZnHU6YBgAt_ybmkBfsDdixm0w |
CODEN | ITCCG7 |
Cites_doi | 10.1109/PADSW.2018.8645013 10.1145/3093337.3037698 10.1145/3229556.3229562 10.1109/COMST.2020.3007787 10.1109/ICCWorkshops49005.2020.9145068 10.1109/MNET.011.2300046 10.1109/COMST.2024.3353265 10.1109/tmc.2024.3377226 10.1109/tmc.2024.3493375 10.1109/CVPRW59228.2023.00484 10.1109/MNET.2024.3420240 10.1007/978-3-319-24574-4_28 10.1109/JSAC.2021.3126087 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCCN.2025.3558975 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2332-7731 |
EndPage | 1869 |
ExternalDocumentID | 10_1109_TCCN_2025_3558975 10955724 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2025A1515010123 funderid: 10.13039/100017942 – fundername: Guangdong Provincial Key Lab of Integrated Communication, Sensing and Computation for Ubiquitous Internet of Things grantid: 2023B1212010007 – fundername: Guangzhou Municipal Science and Technology Project grantid: 2024A04J4527; 2023A03J0663 funderid: 10.13039/501100010256 – fundername: EPSRC grantid: EP/W004100/1; EP/W034786/1; EP/Y037243/1; EP/X04047X/2 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c248t-7b9caedb88c6f8f8cfca8355bad3533e1247cbf6def447cb48a09c6ec917c9eb3 |
IEDL.DBID | RIE |
ISSN | 2332-7731 |
IngestDate | Mon Jun 30 07:32:01 EDT 2025 Thu Jul 03 08:30:23 EDT 2025 Wed Aug 27 01:47:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c248t-7b9caedb88c6f8f8cfca8355bad3533e1247cbf6def447cb48a09c6ec917c9eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5206-1225 0000-0002-6389-8941 0000-0001-8351-360X 0009-0005-3699-235X 0000-0001-8337-5884 |
PQID | 3217773602 |
PQPubID | 4437218 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3217773602 ieee_primary_10955724 crossref_primary_10_1109_TCCN_2025_3558975 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive communications and networking |
PublicationTitleAbbrev | TCCN |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 Yan (ref27) 2024 ref14 Podell (ref32) 2023 ref11 ref10 Xu (ref1) ref16 (ref2) 2024 Tishby (ref15) ref19 Du (ref18) 2023 Cai (ref7) Bolya (ref25) Stooke (ref35) Levine (ref30) 2018 Achiam (ref31) Schuhmann (ref33) ref26 Huang (ref4) 2024 ref21 Xu (ref17) 2024 (ref3) 2024 Li (ref20) 2024 Ding (ref28) Meng (ref22) 2021 Desislavov (ref24) 2021 ref8 ref9 Schulman (ref34) 2017 ref6 ref5 Song (ref23) 2022 Liu (ref29) |
References_xml | – ident: ref13 doi: 10.1109/PADSW.2018.8645013 – year: 2024 ident: ref27 article-title: Perflow: Piecewise rectified flow as universal plug-and-play accelerator publication-title: arXiv:2405.07510 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref25 article-title: Token merging: Your ViT but faster – start-page: 13644 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref29 article-title: Constrained variational policy optimization for safe reinforcement learning – year: 2024 ident: ref20 article-title: Trustworthy AI-generative content in intelligent 6G network: Adversarial, privacy, and fairness publication-title: arXiv:2405.05930 – ident: ref12 doi: 10.1145/3093337.3037698 – year: 2017 ident: ref34 article-title: Proximal policy optimization algorithms publication-title: arXiv:1707.06347 – ident: ref9 doi: 10.1145/3229556.3229562 – start-page: 8378 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref28 article-title: Natural policy gradient primal-dual method for constrained Markov decision processes – volume-title: ChatGPT: Optimizing language models for dialogue year: 2024 ident: ref2 – year: 2018 ident: ref30 article-title: Reinforcement learning and control as probabilistic inference: Tutorial and review publication-title: arXiv:1805.00909 – ident: ref10 doi: 10.1109/COMST.2020.3007787 – ident: ref16 doi: 10.1109/ICCWorkshops49005.2020.9145068 – year: 2023 ident: ref32 article-title: SDXL: Improving latent diffusion models for high-resolution image synthesis publication-title: arXiv:2307.01952 – ident: ref11 doi: 10.1109/MNET.011.2300046 – ident: ref5 doi: 10.1109/COMST.2024.3353265 – volume-title: DALL-E 3 year: 2024 ident: ref3 – start-page: 25278 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref33 article-title: LAION-5B: An open large-scale dataset for training next generation image-text models – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref7 article-title: Once-for-all: Train one network and specialize it for efficient deployment – ident: ref19 doi: 10.1109/tmc.2024.3377226 – ident: ref6 doi: 10.1109/tmc.2024.3493375 – year: 2022 ident: ref23 article-title: Denoising diffusion implicit models publication-title: arXiv:2010.02502 – volume-title: Generative AI: A creative new world year: 2024 ident: ref4 – ident: ref26 doi: 10.1109/CVPRW59228.2023.00484 – ident: ref8 doi: 10.1109/MNET.2024.3420240 – ident: ref21 doi: 10.1007/978-3-319-24574-4_28 – year: 2023 ident: ref18 article-title: User-centric interactive AI for distributed diffusion model-based AI-generated content publication-title: arXiv:2311.11094 – start-page: 22 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref31 article-title: Constrained policy optimization – start-page: 368 volume-title: Proc. Annu. Allerton Conf. Commun. Control Comput. ident: ref15 article-title: The information bottleneck method – year: 2021 ident: ref22 article-title: SDEdit: Guided image synthesis and editing with stochastic differential equations publication-title: arXiv:2108.01073 – start-page: 9133 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref35 article-title: Responsive safety in reinforcement learning by PID Lagrangian methods – year: 2021 ident: ref24 article-title: Compute and energy consumption trends in deep learning inference publication-title: arXiv:2109.05472 – start-page: 1 volume-title: Proc. IEEE Globecom Workshops ident: ref1 article-title: End-to-end latency reduction for mobile edge generation (MEG) – ident: ref14 doi: 10.1109/JSAC.2021.3126087 – year: 2024 ident: ref17 article-title: Mobile edge generation-enabled digital twin: Architecture design and research opportunities publication-title: arXiv: 2407.02804 |
SSID | ssj0001626684 |
Score | 2.3023965 |
Snippet | A novel mobile edge generation (MEG) framework is proposed for low-latency image generation on mobile devices. Exploiting a latent diffusion model (LDM)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1854 |
SubjectTerms | Artificial intelligence Artificial intelligence generated content (AIGC) Computational modeling Constraints Diffusion models Diffusion rate Edge AI edge artificial intelligence (AI) Edge computing Energy consumption generative AI (GAI) Image coding Image compression Image edge detection Image processing Image quality Markov processes Merging mobile edge generation (MEG) Mobile handsets Neurons Noise reduction Optimization reinforcement learning (RL) Videos |
Title | Accelerating Mobile Edge Generation (MEG) by Constrained Learning |
URI | https://ieeexplore.ieee.org/document/10955724 https://www.proquest.com/docview/3217773602 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4nfTg58TplBw8qNBa2yRtj2NsDmE7bbBbab52EDqZ3UH_el-SDocieCkpJCG8X5L3kfcBcKtikcvYmpeULAOqeBkIwTh-MmkMNZmJbLzzZMrHc_qyYIsmWN3FwmitnfOZDm3TveWrldxYUxme8JyxNKYtaKHm5oO1vg0qKJrzjDYvl9j1cTYYTFEDjFloc4jn1pVwh_e4Yiq_bmDHVkZHMN0uyHuTvIabWoTy80euxn-v-BgOGwGT9P2OOIE9XZ3CwU7awTPo96VEbmOxr5ZkshJ4M5ChWmrik1BbrMjdZPh8T8QHsSU9XSEJrUiTjXXZgfloOBuMg6aUQiBjmtVBioiUWokskxzpjzjIEmUvJkqVoMCnkcunUhiutKG2RbMyyiXXErU5maPCfQ7talXpCyCU06c00jxG7keVSXBmpHbChEHREn-78LAlcvHmM2YUTtOI8sIiUlhEigaRLnQs0XY6enp1obfFpWgO1XuRoPqUpgmP4ss_hl3Bvp3du3L1oF2vN_oahYZa3LjN8gWyKb-v |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBZxGFAh4YACklTWwnGauqpUCTqZW6RfGrA1KKIB3g13NOUlGBkFgiR7IT6z7b9_A9AK6VJyLpWfOSkplDFc8cIRjHRyiNoSY0ro13jhM-mtKnGZvVweplLIzWunQ-0x3bLO_y1UIurakMd3jEWODRTdhCxs-6VbjWt0kFhXMe0vruEjvfT_r9BHVAj3VsFvHIOhOucZ-ynMqvM7hkLMN9SFZTqvxJXjrLQnTk549sjf-e8wHs1SIm6VVr4hA2dH4Eu2uJB4-h15MS-Y1FP5-TeCHwbCADNdekSkNt0SI38eDhlogPYot6lqUktCJ1PtZ5E6bDwaQ_cupiCo70aFg4AWKSaSXCUHJEAJGQGUpfTGTKR5FPI58PpDBcaUNti4aZG0muJepzMkKV-wQa-SLXp0Aop93A1dxD_keV8fHLSG2fCYPCJb624G5F5PS1ypmRlrqGG6UWkdQiktaItKBpibbWsaJXC9orXNJ6W72nPipQQeBz1zv7Y9gVbI8m8TgdPybP57Bj_1Q5drWhUbwt9QWKEIW4LBfOF-Gcwvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Mobile+Edge+Generation+%28MEG%29+by+Constrained+Learning&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Xu%2C+Xiaoxia&rft.au=Liu%2C+Yuanwei&rft.au=Mu%2C+Xidong&rft.au=Xing%2C+Hong&rft.date=2025-06-01&rft.pub=IEEE&rft.eissn=2332-7731&rft.volume=11&rft.issue=3&rft.spage=1854&rft.epage=1869&rft_id=info:doi/10.1109%2FTCCN.2025.3558975&rft.externalDocID=10955724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon |