Accelerating Mobile Edge Generation (MEG) by Constrained Learning

A novel mobile edge generation (MEG) framework is proposed for low-latency image generation on mobile devices. Exploiting a latent diffusion model (LDM) distributed across the edge server (ES) and the user equipment (UE), only low-dimension features need to be transmitted for creating artificial int...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking Vol. 11; no. 3; pp. 1854 - 1869
Main Authors Xu, Xiaoxia, Liu, Yuanwei, Mu, Xidong, Xing, Hong, Nallanathan, Arumugam
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel mobile edge generation (MEG) framework is proposed for low-latency image generation on mobile devices. Exploiting a latent diffusion model (LDM) distributed across the edge server (ES) and the user equipment (UE), only low-dimension features need to be transmitted for creating artificial intelligence generative content (AIGC). Two novel modules, namely dynamic diffusion and feature merging, are conceived to compress the diffusion model and transmitted features, respectively. By jointly optimizing compression rates of denoising steps and feature merging, the image quality maximization problem is formulated subject to latency and energy consumption constraints. To address this problem in dynamic channel conditions, a low-complexity compression protocol is developed. First, a backbone LDM architecture is learned by offline distillation to support various compression options. Then, compression rates are predicted in online environment specific to channel and task features. To solve the resultant constrained Markov Decision Process (MDP), a constrained variational policy optimization (CVPO) based MEG algorithm, MEG-CVPO , is further developed to learn constraint-guaranteed optimization. Numerical results demonstrate that: 1) The proposed framework improves image distortions while reducing over 40% latency compared to conventional generation schemes. 2) MEG-CVPO stringently guarantee constraints and realizes a flexible trade-off between generation qualities and overheads. Code is available at https://github.com/xiaoxiaxusummer/LowLatencyMEG .
AbstractList A novel mobile edge generation (MEG) framework is proposed for low-latency image generation on mobile devices. Exploiting a latent diffusion model (LDM) distributed across the edge server (ES) and the user equipment (UE), only low-dimension features need to be transmitted for creating artificial intelligence generative content (AIGC). Two novel modules, namely dynamic diffusion and feature merging, are conceived to compress the diffusion model and transmitted features, respectively. By jointly optimizing compression rates of denoising steps and feature merging, the image quality maximization problem is formulated subject to latency and energy consumption constraints. To address this problem in dynamic channel conditions, a low-complexity compression protocol is developed. First, a backbone LDM architecture is learned by offline distillation to support various compression options. Then, compression rates are predicted in online environment specific to channel and task features. To solve the resultant constrained Markov Decision Process (MDP), a constrained variational policy optimization (CVPO) based MEG algorithm, MEG-CVPO , is further developed to learn constraint-guaranteed optimization. Numerical results demonstrate that: 1) The proposed framework improves image distortions while reducing over 40% latency compared to conventional generation schemes. 2) MEG-CVPO stringently guarantee constraints and realizes a flexible trade-off between generation qualities and overheads. Code is available at https://github.com/xiaoxiaxusummer/LowLatencyMEG .
Author Xing, Hong
Xu, Xiaoxia
Mu, Xidong
Liu, Yuanwei
Nallanathan, Arumugam
Author_xml – sequence: 1
  givenname: Xiaoxia
  orcidid: 0009-0005-3699-235X
  surname: Xu
  fullname: Xu, Xiaoxia
  email: x.xiaoxia@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 2
  givenname: Yuanwei
  orcidid: 0000-0002-6389-8941
  surname: Liu
  fullname: Liu, Yuanwei
  email: yuanwei@hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Xidong
  orcidid: 0000-0001-8351-360X
  surname: Mu
  fullname: Mu, Xidong
  email: x.mu@qub.ac.uk
  organization: Centre for Wireless Innovation, School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, U.K
– sequence: 4
  givenname: Hong
  orcidid: 0000-0001-5206-1225
  surname: Xing
  fullname: Xing, Hong
  email: hongxing@ust.hk
  organization: IoT Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
– sequence: 5
  givenname: Arumugam
  orcidid: 0000-0001-8337-5884
  surname: Nallanathan
  fullname: Nallanathan, Arumugam
  email: a.nallanathan@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
BookMark eNpNkDtPwzAUhS0EEqX0ByAxRGKBIcWP-JGxikpBamEps2U711WqYhcnHfrvSWiHTvfo6pz7-O7QdYgBEHogeEoILl_XVfU5pZjyKeNclZJfoRFljOZSMnJ9oW_RpG23GGMiqBCqGKHZzDnYQTJdEzbZKtpmB9m83kC2gPDfjiF7Xs0XL5k9ZlUMbZdME6DOlmBS6EP36MabXQuTcx2j77f5unrPl1-Lj2q2zB0tVJdLWzoDtVXKCa-8ct4Z1Z9rTc04Y0BoIZ31ogZfDKpQBpdOgCuJdCVYNkZPp7n7FH8P0HZ6Gw8p9Cs1o0T27wlMexc5uVyKbZvA631qfkw6aoL1AEsPsPQAS59h9ZnHU6YBgAt_ybmkBfsDdixm0w
CODEN ITCCG7
Cites_doi 10.1109/PADSW.2018.8645013
10.1145/3093337.3037698
10.1145/3229556.3229562
10.1109/COMST.2020.3007787
10.1109/ICCWorkshops49005.2020.9145068
10.1109/MNET.011.2300046
10.1109/COMST.2024.3353265
10.1109/tmc.2024.3377226
10.1109/tmc.2024.3493375
10.1109/CVPRW59228.2023.00484
10.1109/MNET.2024.3420240
10.1007/978-3-319-24574-4_28
10.1109/JSAC.2021.3126087
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCCN.2025.3558975
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7731
EndPage 1869
ExternalDocumentID 10_1109_TCCN_2025_3558975
10955724
Genre orig-research
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2025A1515010123
  funderid: 10.13039/100017942
– fundername: Guangdong Provincial Key Lab of Integrated Communication, Sensing and Computation for Ubiquitous Internet of Things
  grantid: 2023B1212010007
– fundername: Guangzhou Municipal Science and Technology Project
  grantid: 2024A04J4527; 2023A03J0663
  funderid: 10.13039/501100010256
– fundername: EPSRC
  grantid: EP/W004100/1; EP/W034786/1; EP/Y037243/1; EP/X04047X/2
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c248t-7b9caedb88c6f8f8cfca8355bad3533e1247cbf6def447cb48a09c6ec917c9eb3
IEDL.DBID RIE
ISSN 2332-7731
IngestDate Mon Jun 30 07:32:01 EDT 2025
Thu Jul 03 08:30:23 EDT 2025
Wed Aug 27 01:47:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-7b9caedb88c6f8f8cfca8355bad3533e1247cbf6def447cb48a09c6ec917c9eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5206-1225
0000-0002-6389-8941
0000-0001-8351-360X
0009-0005-3699-235X
0000-0001-8337-5884
PQID 3217773602
PQPubID 4437218
PageCount 16
ParticipantIDs proquest_journals_3217773602
ieee_primary_10955724
crossref_primary_10_1109_TCCN_2025_3558975
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive communications and networking
PublicationTitleAbbrev TCCN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Yan (ref27) 2024
ref14
Podell (ref32) 2023
ref11
ref10
Xu (ref1)
ref16
(ref2) 2024
Tishby (ref15)
ref19
Du (ref18) 2023
Cai (ref7)
Bolya (ref25)
Stooke (ref35)
Levine (ref30) 2018
Achiam (ref31)
Schuhmann (ref33)
ref26
Huang (ref4) 2024
ref21
Xu (ref17) 2024
(ref3) 2024
Li (ref20) 2024
Ding (ref28)
Meng (ref22) 2021
Desislavov (ref24) 2021
ref8
ref9
Schulman (ref34) 2017
ref6
ref5
Song (ref23) 2022
Liu (ref29)
References_xml – ident: ref13
  doi: 10.1109/PADSW.2018.8645013
– year: 2024
  ident: ref27
  article-title: Perflow: Piecewise rectified flow as universal plug-and-play accelerator
  publication-title: arXiv:2405.07510
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref25
  article-title: Token merging: Your ViT but faster
– start-page: 13644
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref29
  article-title: Constrained variational policy optimization for safe reinforcement learning
– year: 2024
  ident: ref20
  article-title: Trustworthy AI-generative content in intelligent 6G network: Adversarial, privacy, and fairness
  publication-title: arXiv:2405.05930
– ident: ref12
  doi: 10.1145/3093337.3037698
– year: 2017
  ident: ref34
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv:1707.06347
– ident: ref9
  doi: 10.1145/3229556.3229562
– start-page: 8378
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref28
  article-title: Natural policy gradient primal-dual method for constrained Markov decision processes
– volume-title: ChatGPT: Optimizing language models for dialogue
  year: 2024
  ident: ref2
– year: 2018
  ident: ref30
  article-title: Reinforcement learning and control as probabilistic inference: Tutorial and review
  publication-title: arXiv:1805.00909
– ident: ref10
  doi: 10.1109/COMST.2020.3007787
– ident: ref16
  doi: 10.1109/ICCWorkshops49005.2020.9145068
– year: 2023
  ident: ref32
  article-title: SDXL: Improving latent diffusion models for high-resolution image synthesis
  publication-title: arXiv:2307.01952
– ident: ref11
  doi: 10.1109/MNET.011.2300046
– ident: ref5
  doi: 10.1109/COMST.2024.3353265
– volume-title: DALL-E 3
  year: 2024
  ident: ref3
– start-page: 25278
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref33
  article-title: LAION-5B: An open large-scale dataset for training next generation image-text models
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref7
  article-title: Once-for-all: Train one network and specialize it for efficient deployment
– ident: ref19
  doi: 10.1109/tmc.2024.3377226
– ident: ref6
  doi: 10.1109/tmc.2024.3493375
– year: 2022
  ident: ref23
  article-title: Denoising diffusion implicit models
  publication-title: arXiv:2010.02502
– volume-title: Generative AI: A creative new world
  year: 2024
  ident: ref4
– ident: ref26
  doi: 10.1109/CVPRW59228.2023.00484
– ident: ref8
  doi: 10.1109/MNET.2024.3420240
– ident: ref21
  doi: 10.1007/978-3-319-24574-4_28
– year: 2023
  ident: ref18
  article-title: User-centric interactive AI for distributed diffusion model-based AI-generated content
  publication-title: arXiv:2311.11094
– start-page: 22
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref31
  article-title: Constrained policy optimization
– start-page: 368
  volume-title: Proc. Annu. Allerton Conf. Commun. Control Comput.
  ident: ref15
  article-title: The information bottleneck method
– year: 2021
  ident: ref22
  article-title: SDEdit: Guided image synthesis and editing with stochastic differential equations
  publication-title: arXiv:2108.01073
– start-page: 9133
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref35
  article-title: Responsive safety in reinforcement learning by PID Lagrangian methods
– year: 2021
  ident: ref24
  article-title: Compute and energy consumption trends in deep learning inference
  publication-title: arXiv:2109.05472
– start-page: 1
  volume-title: Proc. IEEE Globecom Workshops
  ident: ref1
  article-title: End-to-end latency reduction for mobile edge generation (MEG)
– ident: ref14
  doi: 10.1109/JSAC.2021.3126087
– year: 2024
  ident: ref17
  article-title: Mobile edge generation-enabled digital twin: Architecture design and research opportunities
  publication-title: arXiv: 2407.02804
SSID ssj0001626684
Score 2.3023965
Snippet A novel mobile edge generation (MEG) framework is proposed for low-latency image generation on mobile devices. Exploiting a latent diffusion model (LDM)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1854
SubjectTerms Artificial intelligence
Artificial intelligence generated content (AIGC)
Computational modeling
Constraints
Diffusion models
Diffusion rate
Edge AI
edge artificial intelligence (AI)
Edge computing
Energy consumption
generative AI (GAI)
Image coding
Image compression
Image edge detection
Image processing
Image quality
Markov processes
Merging
mobile edge generation (MEG)
Mobile handsets
Neurons
Noise reduction
Optimization
reinforcement learning (RL)
Videos
Title Accelerating Mobile Edge Generation (MEG) by Constrained Learning
URI https://ieeexplore.ieee.org/document/10955724
https://www.proquest.com/docview/3217773602
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4nfTg58TplBw8qNBa2yRtj2NsDmE7bbBbab52EDqZ3UH_el-SDocieCkpJCG8X5L3kfcBcKtikcvYmpeULAOqeBkIwTh-MmkMNZmJbLzzZMrHc_qyYIsmWN3FwmitnfOZDm3TveWrldxYUxme8JyxNKYtaKHm5oO1vg0qKJrzjDYvl9j1cTYYTFEDjFloc4jn1pVwh_e4Yiq_bmDHVkZHMN0uyHuTvIabWoTy80euxn-v-BgOGwGT9P2OOIE9XZ3CwU7awTPo96VEbmOxr5ZkshJ4M5ChWmrik1BbrMjdZPh8T8QHsSU9XSEJrUiTjXXZgfloOBuMg6aUQiBjmtVBioiUWokskxzpjzjIEmUvJkqVoMCnkcunUhiutKG2RbMyyiXXErU5maPCfQ7talXpCyCU06c00jxG7keVSXBmpHbChEHREn-78LAlcvHmM2YUTtOI8sIiUlhEigaRLnQs0XY6enp1obfFpWgO1XuRoPqUpgmP4ss_hl3Bvp3du3L1oF2vN_oahYZa3LjN8gWyKb-v
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBZxGFAh4YACklTWwnGauqpUCTqZW6RfGrA1KKIB3g13NOUlGBkFgiR7IT6z7b9_A9AK6VJyLpWfOSkplDFc8cIRjHRyiNoSY0ro13jhM-mtKnGZvVweplLIzWunQ-0x3bLO_y1UIurakMd3jEWODRTdhCxs-6VbjWt0kFhXMe0vruEjvfT_r9BHVAj3VsFvHIOhOucZ-ynMqvM7hkLMN9SFZTqvxJXjrLQnTk549sjf-e8wHs1SIm6VVr4hA2dH4Eu2uJB4-h15MS-Y1FP5-TeCHwbCADNdekSkNt0SI38eDhlogPYot6lqUktCJ1PtZ5E6bDwaQ_cupiCo70aFg4AWKSaSXCUHJEAJGQGUpfTGTKR5FPI58PpDBcaUNti4aZG0muJepzMkKV-wQa-SLXp0Aop93A1dxD_keV8fHLSG2fCYPCJb624G5F5PS1ypmRlrqGG6UWkdQiktaItKBpibbWsaJXC9orXNJ6W72nPipQQeBz1zv7Y9gVbI8m8TgdPybP57Bj_1Q5drWhUbwt9QWKEIW4LBfOF-Gcwvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Mobile+Edge+Generation+%28MEG%29+by+Constrained+Learning&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Xu%2C+Xiaoxia&rft.au=Liu%2C+Yuanwei&rft.au=Mu%2C+Xidong&rft.au=Xing%2C+Hong&rft.date=2025-06-01&rft.pub=IEEE&rft.eissn=2332-7731&rft.volume=11&rft.issue=3&rft.spage=1854&rft.epage=1869&rft_id=info:doi/10.1109%2FTCCN.2025.3558975&rft.externalDocID=10955724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon