Cubature Kalman Filtering for Nonlinear Systems With Energy Harvesting Sensors Under Probabilistic Quantization Effects

In this article, the problem of cubature Kalman filtering (CKF) is investigated for a class of nonlinear systems, which are equipped with energy harvesting sensors and subject to probabilistic quantizations. Due to the constraints of network bandwidth, measurement signals are quantized by a probabil...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 7; pp. 12143 - 12155
Main Authors Li, Jiaxing, Wang, Zidong, Hu, Jun, Caballero-Aguila, Raquel
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2025.3538584

Cover

Loading…
Abstract In this article, the problem of cubature Kalman filtering (CKF) is investigated for a class of nonlinear systems, which are equipped with energy harvesting sensors and subject to probabilistic quantizations. Due to the constraints of network bandwidth, measurement signals are quantized by a probabilistic quantization mechanism before they are transmitted through the communication network. Energy is harvested from the surrounding environment by sensors equipped with energy harvesters. The objective of this article is to design a novel cubature Kalman filter by taking into full account the effects of probabilistic quantizations and energy harvesting sensors based on the three-order spherical-radial cubature rule. By solving matrix difference equations, the upper bound of the filtering error covariance (FEC) is recursively computed and then minimized by constructing a proper filter gain. Moreover, the boundedness of the upper bound regarding the FEC is also discussed, and the monotonicity of the minimum upper bound in relation to the quantization level is further analyzed. The effectiveness of the proposed CKF algorithm is demonstrated through a simulation experiment focused on a target tracking scenario.
AbstractList In this article, the problem of cubature Kalman filtering (CKF) is investigated for a class of nonlinear systems, which are equipped with energy harvesting sensors and subject to probabilistic quantizations. Due to the constraints of network bandwidth, measurement signals are quantized by a probabilistic quantization mechanism before they are transmitted through the communication network. Energy is harvested from the surrounding environment by sensors equipped with energy harvesters. The objective of this article is to design a novel cubature Kalman filter by taking into full account the effects of probabilistic quantizations and energy harvesting sensors based on the three-order spherical-radial cubature rule. By solving matrix difference equations, the upper bound of the filtering error covariance (FEC) is recursively computed and then minimized by constructing a proper filter gain. Moreover, the boundedness of the upper bound regarding the FEC is also discussed, and the monotonicity of the minimum upper bound in relation to the quantization level is further analyzed. The effectiveness of the proposed CKF algorithm is demonstrated through a simulation experiment focused on a target tracking scenario.
Author Hu, Jun
Caballero-Aguila, Raquel
Li, Jiaxing
Wang, Zidong
Author_xml – sequence: 1
  givenname: Jiaxing
  orcidid: 0009-0004-2720-6065
  surname: Li
  fullname: Li, Jiaxing
  email: 1820900028@stu.hrbust.edu.cn
  organization: Department of Applied Mathematics and Heilongjiang Provincial Key Laboratory of Optimization Control and Intelligent Analysis for Complex Systems, Harbin University of Science and Technology, Harbin, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: Zidong.Wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-7852-5064
  surname: Hu
  fullname: Hu, Jun
  email: jhu@hrbust.edu.cn
  organization: Department of Applied Mathematics and the School of Automation, Harbin University of Science and Technology, Harbin, China
– sequence: 4
  givenname: Raquel
  orcidid: 0000-0001-7659-7649
  surname: Caballero-Aguila
  fullname: Caballero-Aguila, Raquel
  email: raguila@ujaen.es
  organization: Departamento de Estadística, Universidad de Jaén, Jaén, Spain
BookMark eNpNkE1LAzEQhoNUsH78AMFDwPPWZLNpskcp9Rs_qKK3kE1na8o2qUlWqb_eXdqDpxmY550ZnkM0cN4BQqeUjCgl5cXdbPo4yknOR4wzyWWxh4aUc5lRUchB3zOSFUx8HKDDGJeE0FJwMUQ_k7bSqQ2A73Wz0g5f2SZBsG6Bax_wo3eNdaADnm1iglXE7zZ94qmDsNjgGx2-IaYenoGLPkT85uYQ8HPwla5sY7uhwS-tdsn-6mS9w9O6BpPiMdqvdRPhZFeP0NvV9HVykz08Xd9OLh8ykxcyZSKXZi7GlRGmpgXnjEooxlyIkmsAXkhdkYpKY3INNUhOxkwCMYbnwEoznrMjdL7duw7-q-2eVUvfBtedVN0uzkRBGe0ouqVM8DEGqNU62JUOG0WJ6v2q3q_q_aqd3y5zts1YAPjHy1IwwtgfsDJ67w
CODEN ISJEAZ
Cites_doi 10.1016/j.ins.2019.10.053
10.1109/JAS.2019.1911651
10.1109/TSP.2015.2420536
10.1109/TFUZZ.2024.3354082
10.1109/JSEN.2022.3226747
10.1006/jmaa.1998.6252
10.1109/JAS.2021.1004350
10.1109/TAES.2019.2908292
10.1080/21642583.2024.2347885
10.1109/TSIPN.2023.3288301
10.1016/j.isatra.2021.12.040
10.1109/JSEN.2021.3127191
10.1016/j.amc.2021.126834
10.1016/j.automatica.2018.11.010
10.53941/ijndi.2023.100011
10.53941/ijndi0201007
10.1080/00207721.2023.2216274
10.1109/TSP.2017.2686375
10.1109/JSEN.2021.3055846
10.1080/00207721.2023.2293685
10.1016/j.automatica.2023.111100
10.1109/TAC.2019.2929817
10.1109/TNNLS.2015.2503772
10.1109/TSMC.2020.2964325
10.1109/TSMC.2020.3041121
10.1080/00207721.2022.2122905
10.1016/j.automatica.2013.01.012
10.1109/TIM.2023.3268445
10.1109/TII.2022.3176910
10.1016/j.ins.2023.02.035
10.1109/TAC.2017.2685460
10.1016/j.neucom.2021.10.066
10.1016/j.automatica.2019.03.029
10.1109/TCST.2022.3180942
10.1109/TSP.2018.2833811
10.1109/TAC.2009.2019800
10.1080/21642583.2022.2158959
10.1109/TAC.2022.3142133
10.1109/TAC.2021.3081256
10.1016/j.automatica.2022.110410
10.1080/21642583.2023.2247007
10.1109/JSEN.2021.3071978
10.1109/TAC.2016.2553128
10.1109/tcyb.2024.3448407
10.1109/TSMCA.2009.2034836
10.1109/TCYB.2017.2653242
10.1109/TCST.2022.3184467
10.1016/j.automatica.2019.108714
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3538584
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 12155
ExternalDocumentID 10_1109_JSEN_2025_3538584
10897303
Genre orig-research
GrantInformation_xml – fundername: MICIU/AEI/10.13039/501100011033 and ERDF/EU
  grantid: PID2021-124486NB-I00
– fundername: Alexander von Humboldt Foundation of Germany
– fundername: Natural Science Foundation of Heilongjiang Province of China
  grantid: ZD2022F003
– fundername: National Natural Science Foundation of China
  grantid: 12471416
– fundername: Royal Society of the U.K.
  funderid: 10.13039/501100000288
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c248t-728cd76bc7cf1455318e4657795aee548ab0b18cc2aefe850638e0cc52e39c6d3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Tue Jul 22 15:13:32 EDT 2025
Tue Jul 01 05:13:47 EDT 2025
Wed Aug 27 02:05:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-728cd76bc7cf1455318e4657795aee548ab0b18cc2aefe850638e0cc52e39c6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-2720-6065
0000-0002-9576-7401
0000-0002-7852-5064
0000-0001-7659-7649
PQID 3185374131
PQPubID 75733
PageCount 13
ParticipantIDs proquest_journals_3185374131
crossref_primary_10_1109_JSEN_2025_3538584
ieee_primary_10897303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref36
  doi: 10.1016/j.ins.2019.10.053
– ident: ref44
  doi: 10.1109/JAS.2019.1911651
– ident: ref14
  doi: 10.1109/TSP.2015.2420536
– ident: ref18
  doi: 10.1109/TFUZZ.2024.3354082
– ident: ref46
  doi: 10.1109/JSEN.2022.3226747
– ident: ref1
  doi: 10.1006/jmaa.1998.6252
– ident: ref6
  doi: 10.1109/JAS.2021.1004350
– ident: ref21
  doi: 10.1109/TAES.2019.2908292
– ident: ref13
  doi: 10.1080/21642583.2024.2347885
– ident: ref11
  doi: 10.1109/TSIPN.2023.3288301
– ident: ref35
  doi: 10.1016/j.isatra.2021.12.040
– ident: ref24
  doi: 10.1109/JSEN.2021.3127191
– ident: ref26
  doi: 10.1016/j.amc.2021.126834
– ident: ref31
  doi: 10.1016/j.automatica.2018.11.010
– ident: ref38
  doi: 10.53941/ijndi.2023.100011
– ident: ref40
  doi: 10.53941/ijndi0201007
– ident: ref43
  doi: 10.1080/00207721.2023.2216274
– ident: ref5
  doi: 10.1109/TSP.2017.2686375
– ident: ref28
  doi: 10.1109/JSEN.2021.3055846
– ident: ref47
  doi: 10.1080/00207721.2023.2293685
– ident: ref29
  doi: 10.1016/j.automatica.2023.111100
– ident: ref23
  doi: 10.1109/TAC.2019.2929817
– ident: ref42
  doi: 10.1109/TNNLS.2015.2503772
– ident: ref16
  doi: 10.1109/TSMC.2020.2964325
– ident: ref7
  doi: 10.1109/TSMC.2020.3041121
– ident: ref3
  doi: 10.1080/00207721.2022.2122905
– ident: ref37
  doi: 10.1016/j.automatica.2013.01.012
– ident: ref39
  doi: 10.1109/TIM.2023.3268445
– ident: ref25
  doi: 10.1109/TII.2022.3176910
– ident: ref27
  doi: 10.1016/j.ins.2023.02.035
– ident: ref12
  doi: 10.1109/TAC.2017.2685460
– ident: ref4
  doi: 10.1016/j.neucom.2021.10.066
– ident: ref34
  doi: 10.1016/j.automatica.2019.03.029
– ident: ref15
  doi: 10.1109/TCST.2022.3180942
– ident: ref33
  doi: 10.1109/TSP.2018.2833811
– ident: ref2
  doi: 10.1109/TAC.2009.2019800
– ident: ref10
  doi: 10.1080/21642583.2022.2158959
– ident: ref30
  doi: 10.1109/TAC.2022.3142133
– ident: ref48
  doi: 10.1109/TAC.2021.3081256
– ident: ref45
  doi: 10.1016/j.automatica.2022.110410
– ident: ref8
  doi: 10.1080/21642583.2023.2247007
– ident: ref9
  doi: 10.1109/JSEN.2021.3071978
– ident: ref19
  doi: 10.1109/TAC.2016.2553128
– ident: ref32
  doi: 10.1109/tcyb.2024.3448407
– ident: ref41
  doi: 10.1109/TSMCA.2009.2034836
– ident: ref17
  doi: 10.1109/TCYB.2017.2653242
– ident: ref20
  doi: 10.1109/TCST.2022.3184467
– ident: ref22
  doi: 10.1016/j.automatica.2019.108714
SSID ssj0019757
Score 2.4353342
Snippet In this article, the problem of cubature Kalman filtering (CKF) is investigated for a class of nonlinear systems, which are equipped with energy harvesting...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 12143
SubjectTerms Algorithms
Boundedness
cubature Kalman filtering (CKF)
Difference equations
Energy harvesting
energy harvesting sensors
Kalman filters
Measurement
monotonicity
Nonlinear systems
Probabilistic logic
probabilistic quantizations
Quantization (signal)
Sensor phenomena and characterization
Sensor systems
Sensors
Simulation
Tracking
Upper bound
Upper bounds
Vectors
Title Cubature Kalman Filtering for Nonlinear Systems With Energy Harvesting Sensors Under Probabilistic Quantization Effects
URI https://ieeexplore.ieee.org/document/10897303
https://www.proquest.com/docview/3185374131
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4BL4wH2BjTOmDyA0-T0qWxEyePCLVCTKs2AVrfIts9CwS0U5sIjV_PneMixjSJp-TBjix_5_Nd7u47gCOZYpmjtInHapqQ9isSYzUmzkt-em0Dxcb3cXF6qc4m-SQWq4daGEQMyWfY59cQy5_OXcu_yuiElxVJpFyHdfLcumKtp5BBpQOtJ53gNFFST2IIc5BWX8_Oh2NyBbO8L3MOhKm_LqHQVeUfVRzul9EOjFcr69JKbvptY_vu4QVp46uX_ha2o6UpjjvReAdrONuFrWf8g7uwGVugX_15D_cnrQ0kn-Kbub0zMzG65kA6jRNk14pxR6lhFiJynItf182VGIbSQcEdhpiugwafk188XyxFaKgkfixIX3D-LdNBi58t4RgLP0XHm7zcg8vR8OLkNIldGRKXqbJJdFa6qS6s084zyzkpBVRFrnWVG0RygIxN7aB0LjPokQnxZImpc3mGsnLFVH6Ajdl8hh9BGK8L5a0qBj5TJsutUs5XqST4kBvo9ODLCqb6d0e-UQenJa1qxrRmTOuIaQ_2eNufDex2vAcHK2TreD6XNdeMSzKm5ODTf6btwxv-epekcwAbzaLFQ7I_Gvs5yN0jGGLZNQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9lA4lLa0Yks_fOCElCUb23FyRNWuln5EoLZib5HtHatVyy7aTYTg1-NxvKgUIXFKDo5i5dnjmcy8NwBveYqFRG4Sh-U08dYvT7RRmFjH6eqUCRIbl1U-vhFnEzmJZPXAhUHEUHyGfboNufzp3Lb0q8zv8KL0K5I_gw1JbNyOrvU7aVCqIOzp93CaCK4mMYk5SMv3Z1fDygeDmexzSakw8ccxFPqq_GWMwwkzegnVam5dYcl9v21M3_58Itv435Pfhq3oa7IP3eLYgTWc7cKLRwqEu7AZm6Df_ngF309bE2Q-2bl--KpnbHRHqXQ_jnnPllWdqIZesKhyzr7cNbdsGMiDjHoMkWCHH3zlI-P5YslCSyX2aeEtBlXgkiA0-9x6JCP1k3XKycs9uBkNr0_HSezLkNhMFE2issJOVW6sso50zr1ZQJFLpUqpEX0IpE1qBoW1mUaHJInHC0ytlRny0uZTvg_rs_kMXwPTTuXCGZEPXCZ0Jo0Q1pUp9_AhtdDpwbsVTPW3Tn6jDmFLWtaEaU2Y1hHTHuzRZ380sPviPThcIVvHHbqsiTXOvTvFBwf_eOwENsfXlxf1xcfq_A08pzd1JTuHsN4sWjzy3khjjsMa_AWSzNx9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cubature+Kalman+Filtering+for+Nonlinear+Systems+With+Energy+Harvesting+Sensors+Under+Probabilistic+Quantization+Effects&rft.jtitle=IEEE+sensors+journal&rft.au=Li%2C+Jiaxing&rft.au=Wang%2C+Zidong&rft.au=Hu%2C+Jun&rft.au=Caballero-Aguila%2C+Raquel&rft.date=2025-04-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=7&rft.spage=12143&rft.epage=12155&rft_id=info:doi/10.1109%2FJSEN.2025.3538584&rft.externalDocID=10897303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon