Cubature Kalman Filtering for Nonlinear Systems With Energy Harvesting Sensors Under Probabilistic Quantization Effects
In this article, the problem of cubature Kalman filtering (CKF) is investigated for a class of nonlinear systems, which are equipped with energy harvesting sensors and subject to probabilistic quantizations. Due to the constraints of network bandwidth, measurement signals are quantized by a probabil...
Saved in:
Published in | IEEE sensors journal Vol. 25; no. 7; pp. 12143 - 12155 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2025.3538584 |
Cover
Loading…
Abstract | In this article, the problem of cubature Kalman filtering (CKF) is investigated for a class of nonlinear systems, which are equipped with energy harvesting sensors and subject to probabilistic quantizations. Due to the constraints of network bandwidth, measurement signals are quantized by a probabilistic quantization mechanism before they are transmitted through the communication network. Energy is harvested from the surrounding environment by sensors equipped with energy harvesters. The objective of this article is to design a novel cubature Kalman filter by taking into full account the effects of probabilistic quantizations and energy harvesting sensors based on the three-order spherical-radial cubature rule. By solving matrix difference equations, the upper bound of the filtering error covariance (FEC) is recursively computed and then minimized by constructing a proper filter gain. Moreover, the boundedness of the upper bound regarding the FEC is also discussed, and the monotonicity of the minimum upper bound in relation to the quantization level is further analyzed. The effectiveness of the proposed CKF algorithm is demonstrated through a simulation experiment focused on a target tracking scenario. |
---|---|
AbstractList | In this article, the problem of cubature Kalman filtering (CKF) is investigated for a class of nonlinear systems, which are equipped with energy harvesting sensors and subject to probabilistic quantizations. Due to the constraints of network bandwidth, measurement signals are quantized by a probabilistic quantization mechanism before they are transmitted through the communication network. Energy is harvested from the surrounding environment by sensors equipped with energy harvesters. The objective of this article is to design a novel cubature Kalman filter by taking into full account the effects of probabilistic quantizations and energy harvesting sensors based on the three-order spherical-radial cubature rule. By solving matrix difference equations, the upper bound of the filtering error covariance (FEC) is recursively computed and then minimized by constructing a proper filter gain. Moreover, the boundedness of the upper bound regarding the FEC is also discussed, and the monotonicity of the minimum upper bound in relation to the quantization level is further analyzed. The effectiveness of the proposed CKF algorithm is demonstrated through a simulation experiment focused on a target tracking scenario. |
Author | Hu, Jun Caballero-Aguila, Raquel Li, Jiaxing Wang, Zidong |
Author_xml | – sequence: 1 givenname: Jiaxing orcidid: 0009-0004-2720-6065 surname: Li fullname: Li, Jiaxing email: 1820900028@stu.hrbust.edu.cn organization: Department of Applied Mathematics and Heilongjiang Provincial Key Laboratory of Optimization Control and Intelligent Analysis for Complex Systems, Harbin University of Science and Technology, Harbin, China – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong email: Zidong.Wang@brunel.ac.uk organization: Department of Computer Science, Brunel University London, Uxbridge, U.K – sequence: 3 givenname: Jun orcidid: 0000-0002-7852-5064 surname: Hu fullname: Hu, Jun email: jhu@hrbust.edu.cn organization: Department of Applied Mathematics and the School of Automation, Harbin University of Science and Technology, Harbin, China – sequence: 4 givenname: Raquel orcidid: 0000-0001-7659-7649 surname: Caballero-Aguila fullname: Caballero-Aguila, Raquel email: raguila@ujaen.es organization: Departamento de Estadística, Universidad de Jaén, Jaén, Spain |
BookMark | eNpNkE1LAzEQhoNUsH78AMFDwPPWZLNpskcp9Rs_qKK3kE1na8o2qUlWqb_eXdqDpxmY550ZnkM0cN4BQqeUjCgl5cXdbPo4yknOR4wzyWWxh4aUc5lRUchB3zOSFUx8HKDDGJeE0FJwMUQ_k7bSqQ2A73Wz0g5f2SZBsG6Bax_wo3eNdaADnm1iglXE7zZ94qmDsNjgGx2-IaYenoGLPkT85uYQ8HPwla5sY7uhwS-tdsn-6mS9w9O6BpPiMdqvdRPhZFeP0NvV9HVykz08Xd9OLh8ykxcyZSKXZi7GlRGmpgXnjEooxlyIkmsAXkhdkYpKY3INNUhOxkwCMYbnwEoznrMjdL7duw7-q-2eVUvfBtedVN0uzkRBGe0ouqVM8DEGqNU62JUOG0WJ6v2q3q_q_aqd3y5zts1YAPjHy1IwwtgfsDJ67w |
CODEN | ISJEAZ |
Cites_doi | 10.1016/j.ins.2019.10.053 10.1109/JAS.2019.1911651 10.1109/TSP.2015.2420536 10.1109/TFUZZ.2024.3354082 10.1109/JSEN.2022.3226747 10.1006/jmaa.1998.6252 10.1109/JAS.2021.1004350 10.1109/TAES.2019.2908292 10.1080/21642583.2024.2347885 10.1109/TSIPN.2023.3288301 10.1016/j.isatra.2021.12.040 10.1109/JSEN.2021.3127191 10.1016/j.amc.2021.126834 10.1016/j.automatica.2018.11.010 10.53941/ijndi.2023.100011 10.53941/ijndi0201007 10.1080/00207721.2023.2216274 10.1109/TSP.2017.2686375 10.1109/JSEN.2021.3055846 10.1080/00207721.2023.2293685 10.1016/j.automatica.2023.111100 10.1109/TAC.2019.2929817 10.1109/TNNLS.2015.2503772 10.1109/TSMC.2020.2964325 10.1109/TSMC.2020.3041121 10.1080/00207721.2022.2122905 10.1016/j.automatica.2013.01.012 10.1109/TIM.2023.3268445 10.1109/TII.2022.3176910 10.1016/j.ins.2023.02.035 10.1109/TAC.2017.2685460 10.1016/j.neucom.2021.10.066 10.1016/j.automatica.2019.03.029 10.1109/TCST.2022.3180942 10.1109/TSP.2018.2833811 10.1109/TAC.2009.2019800 10.1080/21642583.2022.2158959 10.1109/TAC.2022.3142133 10.1109/TAC.2021.3081256 10.1016/j.automatica.2022.110410 10.1080/21642583.2023.2247007 10.1109/JSEN.2021.3071978 10.1109/TAC.2016.2553128 10.1109/tcyb.2024.3448407 10.1109/TSMCA.2009.2034836 10.1109/TCYB.2017.2653242 10.1109/TCST.2022.3184467 10.1016/j.automatica.2019.108714 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2025.3538584 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 12155 |
ExternalDocumentID | 10_1109_JSEN_2025_3538584 10897303 |
Genre | orig-research |
GrantInformation_xml | – fundername: MICIU/AEI/10.13039/501100011033 and ERDF/EU grantid: PID2021-124486NB-I00 – fundername: Alexander von Humboldt Foundation of Germany – fundername: Natural Science Foundation of Heilongjiang Province of China grantid: ZD2022F003 – fundername: National Natural Science Foundation of China grantid: 12471416 – fundername: Royal Society of the U.K. funderid: 10.13039/501100000288 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c248t-728cd76bc7cf1455318e4657795aee548ab0b18cc2aefe850638e0cc52e39c6d3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Tue Jul 22 15:13:32 EDT 2025 Tue Jul 01 05:13:47 EDT 2025 Wed Aug 27 02:05:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c248t-728cd76bc7cf1455318e4657795aee548ab0b18cc2aefe850638e0cc52e39c6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-2720-6065 0000-0002-9576-7401 0000-0002-7852-5064 0000-0001-7659-7649 |
PQID | 3185374131 |
PQPubID | 75733 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3185374131 crossref_primary_10_1109_JSEN_2025_3538584 ieee_primary_10897303 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref36 doi: 10.1016/j.ins.2019.10.053 – ident: ref44 doi: 10.1109/JAS.2019.1911651 – ident: ref14 doi: 10.1109/TSP.2015.2420536 – ident: ref18 doi: 10.1109/TFUZZ.2024.3354082 – ident: ref46 doi: 10.1109/JSEN.2022.3226747 – ident: ref1 doi: 10.1006/jmaa.1998.6252 – ident: ref6 doi: 10.1109/JAS.2021.1004350 – ident: ref21 doi: 10.1109/TAES.2019.2908292 – ident: ref13 doi: 10.1080/21642583.2024.2347885 – ident: ref11 doi: 10.1109/TSIPN.2023.3288301 – ident: ref35 doi: 10.1016/j.isatra.2021.12.040 – ident: ref24 doi: 10.1109/JSEN.2021.3127191 – ident: ref26 doi: 10.1016/j.amc.2021.126834 – ident: ref31 doi: 10.1016/j.automatica.2018.11.010 – ident: ref38 doi: 10.53941/ijndi.2023.100011 – ident: ref40 doi: 10.53941/ijndi0201007 – ident: ref43 doi: 10.1080/00207721.2023.2216274 – ident: ref5 doi: 10.1109/TSP.2017.2686375 – ident: ref28 doi: 10.1109/JSEN.2021.3055846 – ident: ref47 doi: 10.1080/00207721.2023.2293685 – ident: ref29 doi: 10.1016/j.automatica.2023.111100 – ident: ref23 doi: 10.1109/TAC.2019.2929817 – ident: ref42 doi: 10.1109/TNNLS.2015.2503772 – ident: ref16 doi: 10.1109/TSMC.2020.2964325 – ident: ref7 doi: 10.1109/TSMC.2020.3041121 – ident: ref3 doi: 10.1080/00207721.2022.2122905 – ident: ref37 doi: 10.1016/j.automatica.2013.01.012 – ident: ref39 doi: 10.1109/TIM.2023.3268445 – ident: ref25 doi: 10.1109/TII.2022.3176910 – ident: ref27 doi: 10.1016/j.ins.2023.02.035 – ident: ref12 doi: 10.1109/TAC.2017.2685460 – ident: ref4 doi: 10.1016/j.neucom.2021.10.066 – ident: ref34 doi: 10.1016/j.automatica.2019.03.029 – ident: ref15 doi: 10.1109/TCST.2022.3180942 – ident: ref33 doi: 10.1109/TSP.2018.2833811 – ident: ref2 doi: 10.1109/TAC.2009.2019800 – ident: ref10 doi: 10.1080/21642583.2022.2158959 – ident: ref30 doi: 10.1109/TAC.2022.3142133 – ident: ref48 doi: 10.1109/TAC.2021.3081256 – ident: ref45 doi: 10.1016/j.automatica.2022.110410 – ident: ref8 doi: 10.1080/21642583.2023.2247007 – ident: ref9 doi: 10.1109/JSEN.2021.3071978 – ident: ref19 doi: 10.1109/TAC.2016.2553128 – ident: ref32 doi: 10.1109/tcyb.2024.3448407 – ident: ref41 doi: 10.1109/TSMCA.2009.2034836 – ident: ref17 doi: 10.1109/TCYB.2017.2653242 – ident: ref20 doi: 10.1109/TCST.2022.3184467 – ident: ref22 doi: 10.1016/j.automatica.2019.108714 |
SSID | ssj0019757 |
Score | 2.4353342 |
Snippet | In this article, the problem of cubature Kalman filtering (CKF) is investigated for a class of nonlinear systems, which are equipped with energy harvesting... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 12143 |
SubjectTerms | Algorithms Boundedness cubature Kalman filtering (CKF) Difference equations Energy harvesting energy harvesting sensors Kalman filters Measurement monotonicity Nonlinear systems Probabilistic logic probabilistic quantizations Quantization (signal) Sensor phenomena and characterization Sensor systems Sensors Simulation Tracking Upper bound Upper bounds Vectors |
Title | Cubature Kalman Filtering for Nonlinear Systems With Energy Harvesting Sensors Under Probabilistic Quantization Effects |
URI | https://ieeexplore.ieee.org/document/10897303 https://www.proquest.com/docview/3185374131 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4BL4wH2BjTOmDyA0-T0qWxEyePCLVCTKs2AVrfIts9CwS0U5sIjV_PneMixjSJp-TBjix_5_Nd7u47gCOZYpmjtInHapqQ9isSYzUmzkt-em0Dxcb3cXF6qc4m-SQWq4daGEQMyWfY59cQy5_OXcu_yuiElxVJpFyHdfLcumKtp5BBpQOtJ53gNFFST2IIc5BWX8_Oh2NyBbO8L3MOhKm_LqHQVeUfVRzul9EOjFcr69JKbvptY_vu4QVp46uX_ha2o6UpjjvReAdrONuFrWf8g7uwGVugX_15D_cnrQ0kn-Kbub0zMzG65kA6jRNk14pxR6lhFiJynItf182VGIbSQcEdhpiugwafk188XyxFaKgkfixIX3D-LdNBi58t4RgLP0XHm7zcg8vR8OLkNIldGRKXqbJJdFa6qS6s084zyzkpBVRFrnWVG0RygIxN7aB0LjPokQnxZImpc3mGsnLFVH6Ajdl8hh9BGK8L5a0qBj5TJsutUs5XqST4kBvo9ODLCqb6d0e-UQenJa1qxrRmTOuIaQ_2eNufDex2vAcHK2TreD6XNdeMSzKm5ODTf6btwxv-epekcwAbzaLFQ7I_Gvs5yN0jGGLZNQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9lA4lLa0Yks_fOCElCUb23FyRNWuln5EoLZib5HtHatVyy7aTYTg1-NxvKgUIXFKDo5i5dnjmcy8NwBveYqFRG4Sh-U08dYvT7RRmFjH6eqUCRIbl1U-vhFnEzmJZPXAhUHEUHyGfboNufzp3Lb0q8zv8KL0K5I_gw1JbNyOrvU7aVCqIOzp93CaCK4mMYk5SMv3Z1fDygeDmexzSakw8ccxFPqq_GWMwwkzegnVam5dYcl9v21M3_58Itv435Pfhq3oa7IP3eLYgTWc7cKLRwqEu7AZm6Df_ngF309bE2Q-2bl--KpnbHRHqXQ_jnnPllWdqIZesKhyzr7cNbdsGMiDjHoMkWCHH3zlI-P5YslCSyX2aeEtBlXgkiA0-9x6JCP1k3XKycs9uBkNr0_HSezLkNhMFE2issJOVW6sso50zr1ZQJFLpUqpEX0IpE1qBoW1mUaHJInHC0ytlRny0uZTvg_rs_kMXwPTTuXCGZEPXCZ0Jo0Q1pUp9_AhtdDpwbsVTPW3Tn6jDmFLWtaEaU2Y1hHTHuzRZ380sPviPThcIVvHHbqsiTXOvTvFBwf_eOwENsfXlxf1xcfq_A08pzd1JTuHsN4sWjzy3khjjsMa_AWSzNx9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cubature+Kalman+Filtering+for+Nonlinear+Systems+With+Energy+Harvesting+Sensors+Under+Probabilistic+Quantization+Effects&rft.jtitle=IEEE+sensors+journal&rft.au=Li%2C+Jiaxing&rft.au=Wang%2C+Zidong&rft.au=Hu%2C+Jun&rft.au=Caballero-Aguila%2C+Raquel&rft.date=2025-04-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=7&rft.spage=12143&rft.epage=12155&rft_id=info:doi/10.1109%2FJSEN.2025.3538584&rft.externalDocID=10897303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |