Observer-based fast nonlinear MPC for multi-DOF maglev positioning system: Theory and experiment

This paper presents an observer-based fast nonlinear model predictive control (NMPC) scheme for translation control of magnetically levitated (maglev) positioning system subject to input saturation. The motivation lies in the improvement of transient characteristics and control performance for posit...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 114; p. 104860
Main Authors Zhang, Kaiyang, Xu, Fengqiu, Xu, Xianze
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an observer-based fast nonlinear model predictive control (NMPC) scheme for translation control of magnetically levitated (maglev) positioning system subject to input saturation. The motivation lies in the improvement of transient characteristics and control performance for positioning systems. The nonlinear dynamical translation model of the maglev positioning system is derived that does not affect the rotation dynamics with special current conditions. The disturbance estimation, obtained by nonlinear disturbance observer, is introduced in the state receding prediction to compensate the errors caused by disturbances and uncertainties. To reduce the computational burden, the stability of the proposed NMPC is established without using any stability-related terminal costs or constraints, and only the short prediction horizon is required for real-time feasibility. The online optimization algorithm underlying the NMPC scheme takes the process constraints into account, and solves the optimal control problem using a parallel structure at each iteration. Comparative experiments are carried out on the positioner to validate the proposed controller has the outperformance in transient/steady-state trajectory tracking, frequency characteristics and robustness against disturbances. The proposed scheme also provides a guidance for the application of NMPC in industrial mechatronic system with fast dynamics. •Observer-based fast nonlinear MPC design is developed for maglev positioner.•Reasonable prediction horizon is analyzed to guarantee the stability of NMPC.•Disturbance effects are compensated by disturbance observer for offset-free tracking.•Real-time implementation of NMPC is based on a parallel Newton-type method.
AbstractList This paper presents an observer-based fast nonlinear model predictive control (NMPC) scheme for translation control of magnetically levitated (maglev) positioning system subject to input saturation. The motivation lies in the improvement of transient characteristics and control performance for positioning systems. The nonlinear dynamical translation model of the maglev positioning system is derived that does not affect the rotation dynamics with special current conditions. The disturbance estimation, obtained by nonlinear disturbance observer, is introduced in the state receding prediction to compensate the errors caused by disturbances and uncertainties. To reduce the computational burden, the stability of the proposed NMPC is established without using any stability-related terminal costs or constraints, and only the short prediction horizon is required for real-time feasibility. The online optimization algorithm underlying the NMPC scheme takes the process constraints into account, and solves the optimal control problem using a parallel structure at each iteration. Comparative experiments are carried out on the positioner to validate the proposed controller has the outperformance in transient/steady-state trajectory tracking, frequency characteristics and robustness against disturbances. The proposed scheme also provides a guidance for the application of NMPC in industrial mechatronic system with fast dynamics. •Observer-based fast nonlinear MPC design is developed for maglev positioner.•Reasonable prediction horizon is analyzed to guarantee the stability of NMPC.•Disturbance effects are compensated by disturbance observer for offset-free tracking.•Real-time implementation of NMPC is based on a parallel Newton-type method.
ArticleNumber 104860
Author Zhang, Kaiyang
Xu, Xianze
Xu, Fengqiu
Author_xml – sequence: 1
  givenname: Kaiyang
  orcidid: 0000-0002-4256-0079
  surname: Zhang
  fullname: Zhang, Kaiyang
  email: kyzhang@whu.edu.cn
– sequence: 2
  givenname: Fengqiu
  orcidid: 0000-0002-5718-0853
  surname: Xu
  fullname: Xu, Fengqiu
  email: hncxu@whu.edu.cn
– sequence: 3
  givenname: Xianze
  orcidid: 0000-0003-4604-6445
  surname: Xu
  fullname: Xu, Xianze
  email: xuxianze@whu.edu.cn
BookMark eNqNkM1OwzAQhC0EEuXnHfwCKXaSOjYHJCgUkEDlUM5mY2-Kq8SpbFPRtydVkZC4wGmlWc3szndCDn3vkRDK2ZgzLi5WYzMIfrkOYMY5y_kgl1KwAzLisioyoQp1SEZMiSpjQvBjchLjig1WpfiIvM3riGGDIashoqUNxESHE63zCIE-v0xp0wfafbTJZbfzGe1g2eKGrvvokuu980satzFhd0kX79iHLQVvKX6uMbgOfTojRw20Ec-_5yl5nd0tpg_Z0_z-cXr9lJm8lCnjKBpryxoMyFpJAUqoasJKK0GCLepKVshACMirsgAxrGwObKLEhAljjCpOydU-14Q-xoCNNi7B7sUUwLWaM73jpVf6h5fe8dJ7XkOA_BWwHhpA2P7HerO34lBw4zDoaBx6g9YFNEnb3v0d8gUwg49g
CitedBy_id crossref_primary_10_1007_s11768_024_00232_8
crossref_primary_10_1049_elp2_12213
crossref_primary_10_3390_s24020538
crossref_primary_10_1007_s11071_022_08011_3
crossref_primary_10_1016_j_conengprac_2023_105731
crossref_primary_10_1038_s41598_024_76067_9
crossref_primary_10_1109_TIE_2022_3231284
crossref_primary_10_1007_s40435_022_00971_z
crossref_primary_10_1080_03081079_2023_2206130
crossref_primary_10_3390_act14010033
crossref_primary_10_1016_j_conengprac_2021_104990
crossref_primary_10_1016_j_ymssp_2025_112314
crossref_primary_10_1049_cth2_12310
crossref_primary_10_1109_TIE_2022_3199864
crossref_primary_10_1016_j_isatra_2023_05_010
Cites_doi 10.1016/j.automatica.2016.11.047
10.1016/j.jfranklin.2014.03.006
10.1109/TFUZZ.2016.2574907
10.1109/TCST.2019.2896539
10.1109/TMECH.2017.2769160
10.1109/ACCESS.2020.3001044
10.1109/TII.2019.2890951
10.1109/TCST.2019.2939248
10.1016/j.conengprac.2017.01.001
10.1016/j.conengprac.2017.10.010
10.1016/j.oceaneng.2010.04.007
10.1016/j.conengprac.2013.04.009
10.1016/j.jfranklin.2015.06.014
10.1109/TIE.2019.2949519
10.1016/j.jprocont.2013.10.016
10.1109/TCST.2016.2636027
10.1109/TCST.2019.2932654
10.1109/TAC.2014.2336358
10.1109/28.738999
10.1109/TAC.2016.2553143
10.1109/TMECH.2017.2758603
10.1109/TIE.2015.2450736
10.1109/TMECH.2017.2771340
10.1109/ACCESS.2020.2999621
10.1016/j.automatica.2012.12.003
10.3390/act7020017
10.1109/TCST.2018.2789440
10.1016/j.automatica.2019.108560
10.1002/rnc.1758
10.1109/TCST.2009.2017934
10.1109/TIE.2018.2821633
10.1109/TAC.2018.2800789
10.1109/TIE.2011.2146222
10.1109/TIE.2016.2598811
10.1016/j.jprocont.2019.04.006
10.1109/TMECH.2016.2558202
10.1109/TCST.2017.2748059
10.1109/TIE.2016.2538743
10.1016/j.automatica.2011.06.015
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2021.104860
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
ExternalDocumentID 10_1016_j_conengprac_2021_104860
S0967066121001374
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c248t-1e6fdd4baca8b986a9697504d8a8ad3b787e0a66a2743a6750d2a0596506ccc93
IEDL.DBID .~1
ISSN 0967-0661
IngestDate Tue Jul 01 00:39:06 EDT 2025
Thu Apr 24 23:09:28 EDT 2025
Fri Feb 23 02:47:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Real-time optimization
Magnetically levitated positioning system
Nonlinear model predictive control
Motion control
Nonlinear disturbance observer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-1e6fdd4baca8b986a9697504d8a8ad3b787e0a66a2743a6750d2a0596506ccc93
ORCID 0000-0002-5718-0853
0000-0003-4604-6445
0000-0002-4256-0079
ParticipantIDs crossref_citationtrail_10_1016_j_conengprac_2021_104860
crossref_primary_10_1016_j_conengprac_2021_104860
elsevier_sciencedirect_doi_10_1016_j_conengprac_2021_104860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Control engineering practice
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Luo, Han, Luo, Qiao (b4) 2020; 8
Shen, Shi, Buckham (b29) 2019; 27
Lars (b19) 2013; 49
Ntouskas, Sarimveis, Sopasakis (b22) 2018; 71
Klaučo, Kalúz, Kvasnica (b16) 2017; 60
Zhou, Deng, Duan (b38) 2018; 23
Sun, Xia, Dai, Liu, Ma (b30) 2017; 22
Ou, Hu, Zhu, Zhang, Zhu (b23) 2020
Do (b8) 2010; 37
Zhu, Teo, Pang (b40) 2017; 64
Chen, Tsai, Fu (b5) 2019; 66
Zhou, Zhu, Qin, Zheng (b39) 2020; 8
Bächle, Hentzelt, Graichen (b2) 2013; 21
Ding, Pan (b7) 2017; 25
Qin, Peng, Ruan, Wu, Gao (b26) 2014; 24
Park, Kim, Sugie (b24) 2011; 47
Zhang, Wu, Cao, Lu, Gao (b37) 2018; 26
Wang, Boyd (b32) 2010; 18
Torrisi, Grammatico, Cortinovis, Mercangöz, Morari, Smith (b31) 2017; 25
Chen, Fang, Sun (b3) 2016; 21
Mayne, Kerrigan, Wyk, Falugi (b20) 2011; 21
Köhler, Müller, Allgöwer (b17) 2019; 64
Qin, Peng, Zhou, Zeng, Wu (b27) 2015; 352
Yang, Zheng (b34) 2014; 61
Hu, Wang, Zhu, Zhang, Liu (b14) 2016; 63
Kim, Trumper, Lang (b15) 1998; 34
Heshmati-Alamdari, Karras, Marantos, Kyriakopoulos (b13) 2020; 28
La, Andreas, Bock (b18) 2017; 78
Poletkin, Asadollahbaik, Kampmann, Korvink (b25) 2018; 7
Yang, Zheng, Li, Xu (b36) 2019; 80
Deng, Ohtsuka (b6) 2019; 109
Feng, Sun, Zhang, Zheng, Liu, Li (b10) 2020; 28
He, Huang, Chen (b12) 2014; 351
Abbas, Tóth, Meskin, Mohammadpour, Hanema (b1) 2016; 61
Yang, Zheng, Li, Wu, Cheng (b35) 2015; 62
Zhu, Teo, Pang (b41) 2019; 15
Fleming, Kouvaritakis, Cannon (b11) 2015; 60
Rovers, Jansen, Compter, Lomonova (b28) 2012; 59
Xu, Lu, Zheng, Xu (b33) 2020; 67
Dunham, Hencey, Girard, Kolmanovsky (b9) 2020; 28
Nguyen, Kim (b21) 2017; 22
Ding (10.1016/j.conengprac.2021.104860_b7) 2017; 25
Park (10.1016/j.conengprac.2021.104860_b24) 2011; 47
Yang (10.1016/j.conengprac.2021.104860_b36) 2019; 80
Sun (10.1016/j.conengprac.2021.104860_b30) 2017; 22
Chen (10.1016/j.conengprac.2021.104860_b3) 2016; 21
Köhler (10.1016/j.conengprac.2021.104860_b17) 2019; 64
Mayne (10.1016/j.conengprac.2021.104860_b20) 2011; 21
Qin (10.1016/j.conengprac.2021.104860_b26) 2014; 24
Klaučo (10.1016/j.conengprac.2021.104860_b16) 2017; 60
He (10.1016/j.conengprac.2021.104860_b12) 2014; 351
Bächle (10.1016/j.conengprac.2021.104860_b2) 2013; 21
Lars (10.1016/j.conengprac.2021.104860_b19) 2013; 49
Poletkin (10.1016/j.conengprac.2021.104860_b25) 2018; 7
Abbas (10.1016/j.conengprac.2021.104860_b1) 2016; 61
Kim (10.1016/j.conengprac.2021.104860_b15) 1998; 34
Chen (10.1016/j.conengprac.2021.104860_b5) 2019; 66
Zhou (10.1016/j.conengprac.2021.104860_b39) 2020; 8
Zhu (10.1016/j.conengprac.2021.104860_b40) 2017; 64
Hu (10.1016/j.conengprac.2021.104860_b14) 2016; 63
Xu (10.1016/j.conengprac.2021.104860_b33) 2020; 67
Deng (10.1016/j.conengprac.2021.104860_b6) 2019; 109
Dunham (10.1016/j.conengprac.2021.104860_b9) 2020; 28
Torrisi (10.1016/j.conengprac.2021.104860_b31) 2017; 25
Wang (10.1016/j.conengprac.2021.104860_b32) 2010; 18
Yang (10.1016/j.conengprac.2021.104860_b35) 2015; 62
Heshmati-Alamdari (10.1016/j.conengprac.2021.104860_b13) 2020; 28
Qin (10.1016/j.conengprac.2021.104860_b27) 2015; 352
Zhu (10.1016/j.conengprac.2021.104860_b41) 2019; 15
Rovers (10.1016/j.conengprac.2021.104860_b28) 2012; 59
Do (10.1016/j.conengprac.2021.104860_b8) 2010; 37
Ou (10.1016/j.conengprac.2021.104860_b23) 2020
Zhang (10.1016/j.conengprac.2021.104860_b37) 2018; 26
Fleming (10.1016/j.conengprac.2021.104860_b11) 2015; 60
Shen (10.1016/j.conengprac.2021.104860_b29) 2019; 27
Yang (10.1016/j.conengprac.2021.104860_b34) 2014; 61
Zhou (10.1016/j.conengprac.2021.104860_b38) 2018; 23
La (10.1016/j.conengprac.2021.104860_b18) 2017; 78
Chen (10.1016/j.conengprac.2021.104860_b4) 2020; 8
Feng (10.1016/j.conengprac.2021.104860_b10) 2020; 28
Nguyen (10.1016/j.conengprac.2021.104860_b21) 2017; 22
Ntouskas (10.1016/j.conengprac.2021.104860_b22) 2018; 71
References_xml – volume: 60
  start-page: 1087
  year: 2015
  end-page: 1092
  ident: b11
  article-title: Robust tube MPC for linear systems with multiplicative uncertainty
  publication-title: IEEE Transactions on Automatic Control
– volume: 25
  start-page: 653
  year: 2017
  end-page: 667
  ident: b7
  article-title: Dynamic output feedback-predictive control of a Takagi–Sugeno model with bounded disturbance
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 49
  start-page: 725
  year: 2013
  end-page: 734
  ident: b19
  article-title: Economic receding horizon control without terminal constraints
  publication-title: Automatica
– volume: 351
  start-page: 3405
  year: 2014
  end-page: 3423
  ident: b12
  article-title: Quasi-min–max MPC for constrained nonlinear systems with guaranteed input-to-state stability
  publication-title: Journal of the Franklin Institute
– volume: 63
  start-page: 5763
  year: 2016
  end-page: 5773
  ident: b14
  article-title: Performance-oriented precision LARC tracking motion control of a magnetically levitated planar motor with comparative experiments
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 21
  start-page: 1341
  year: 2011
  end-page: 1353
  ident: b20
  article-title: Tube-based robust nonlinear model predictive control
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 109
  year: 2019
  ident: b6
  article-title: A parallel Newton-type method for nonlinear model predictive control
  publication-title: Automatica
– volume: 25
  start-page: 1947
  year: 2017
  end-page: 1960
  ident: b31
  article-title: Model predictive approaches for active surge control in centrifugal compressors
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 62
  start-page: 5807
  year: 2015
  end-page: 5816
  ident: b35
  article-title: Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed systems via a disturbance observer
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 37
  start-page: 1111
  year: 2010
  end-page: 1119
  ident: b8
  article-title: Practical control of underactuated ships
  publication-title: Ocean Engineering
– volume: 64
  start-page: 440
  year: 2017
  end-page: 450
  ident: b40
  article-title: Design and modeling of a six-degree-of-freedom magnetically levitated positioner using square coils and 1-D halbach arrays
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 28
  start-page: 2352
  year: 2020
  end-page: 2363
  ident: b13
  article-title: A robust predictive control approach for underwater robotic vehicles
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 60
  start-page: 99
  year: 2017
  end-page: 105
  ident: b16
  article-title: Real-time implementation of an explicit MPC-based reference governor for control of a magnetic levitation system
  publication-title: Control Engineering Practice
– volume: 21
  start-page: 1250
  year: 2013
  end-page: 1258
  ident: b2
  article-title: Nonlinear model predictive control of a magnetic levitation system
  publication-title: Control Engineering Practice
– volume: 8
  start-page: 107124
  year: 2020
  end-page: 107133
  ident: b39
  article-title: An RBF-ARX model-based variable-gain feedback RMPC algorithm
  publication-title: IEEE Access
– volume: 15
  start-page: 4665
  year: 2019
  end-page: 4675
  ident: b41
  article-title: Flexure-based magnetically levitated dual-stage system for high-bandwidth positioning
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 71
  start-page: 26
  year: 2018
  end-page: 33
  ident: b22
  article-title: Model predictive control for offset-free reference tracking of fractional order systems
  publication-title: Control Engineering Practice
– volume: 67
  start-page: 8545
  year: 2020
  end-page: 8554
  ident: b33
  article-title: Motion control of a magnetic levitation actuator based on a wrench model considering yaw angle
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 80
  start-page: 103
  year: 2019
  end-page: 116
  ident: b36
  article-title: Economic model predictive control for achieving offset-free operation performance of industrial constrained systems
  publication-title: Journal of Process Control
– volume: 61
  start-page: 49
  year: 2014
  end-page: 53
  ident: b34
  article-title: Offset-free nonlinear MPC for mismatched disturbance attenuation with application to a static var compensator
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 26
  start-page: 2157
  year: 2018
  end-page: 2164
  ident: b37
  article-title: A systematic min–max optimization design of constrained model predictive tracking control for industrial processes against uncertainty
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 7
  year: 2018
  ident: b25
  article-title: Levitating micro-actuators: A review
  publication-title: Actuators
– volume: 28
  start-page: 2177
  year: 2020
  end-page: 2190
  ident: b9
  article-title: Distributed model predictive control for more electric aircraft subsystems operating at multiple time scales
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 21
  start-page: 2543
  year: 2016
  end-page: 2555
  ident: b3
  article-title: A swing constraint guaranteed MPC algorithm for underactuated overhead cranes
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 34
  start-page: 1254
  year: 1998
  end-page: 1262
  ident: b15
  article-title: Modeling and vector control of planar magnetic levitator
  publication-title: IEEE Transactions on Industry Applications
– volume: 8
  start-page: 107063
  year: 2020
  end-page: 107075
  ident: b4
  article-title: Model predictive control with integral compensation for motion control of robot manipulator in joint and task spaces
  publication-title: IEEE Access
– volume: 59
  start-page: 2157
  year: 2012
  end-page: 2166
  ident: b28
  article-title: Analysis method of the dynamic force and torque distribution in the magnet array of a commutated magnetically levitated planar actuator
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 47
  start-page: 2052
  year: 2011
  end-page: 2058
  ident: b24
  article-title: Output feedback model predictive control for LPV systems based on quasi-min–max algorithm
  publication-title: Automatica
– volume: 352
  start-page: 4309
  year: 2015
  end-page: 4338
  ident: b27
  article-title: Nonlinear modeling and control approach to magnetic levitation ball system using functional weight RBF network-based state-dependent ARX model
  publication-title: Journal of the Franklin Institute
– volume: 78
  start-page: 14
  year: 2017
  end-page: 19
  ident: b18
  article-title: Partial stability for nonlinear model predictive control
  publication-title: Automatica
– volume: 22
  start-page: 2576
  year: 2017
  end-page: 2587
  ident: b30
  article-title: Disturbance rejection MPC for tracking of wheeled mobile robot
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 27
  start-page: 1334
  year: 2019
  end-page: 1342
  ident: b29
  article-title: Path-following control of an AUV: A multiobjective model predictive control approach
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 23
  start-page: 389
  year: 2018
  end-page: 401
  ident: b38
  article-title: Hybrid fuzzy decoupling control for a precision maglev motion system
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 61
  start-page: 4183
  year: 2016
  end-page: 4188
  ident: b1
  article-title: A robust MPC for input-output LPV models
  publication-title: IEEE Transactions on Automatic Control
– volume: 22
  start-page: 2662
  year: 2017
  end-page: 2672
  ident: b21
  article-title: Two-phase lorentz coils and linear halbach array for multiaxis precision-positioning stages with magnetic levitation
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 24
  start-page: 93
  year: 2014
  end-page: 112
  ident: b26
  article-title: A modeling and control approach to magnetic levitation system based on state-dependent ARX model
  publication-title: Journal of Process Control
– volume: 66
  start-page: 4860
  year: 2019
  end-page: 4869
  ident: b5
  article-title: A novel design and control to improve positioning precision and robustness for a planar maglev system
  publication-title: IEEE Transactions on Industrial Electronics
– start-page: 1
  year: 2020
  ident: b23
  article-title: Intelligent feedforward compensation motion control of maglev planar motor with precise reference modification prediction
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 18
  start-page: 267
  year: 2010
  end-page: 278
  ident: b32
  article-title: Fast model predictive control using online optimization
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 28
  start-page: 1066
  year: 2020
  end-page: 1073
  ident: b10
  article-title: Tube-based discrete controller design for vehicle platoons subject to disturbances and saturation constraints
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 64
  start-page: 254
  year: 2019
  end-page: 269
  ident: b17
  article-title: Nonlinear reference tracking: An economic model predictive control perspective
  publication-title: IEEE Transactions on Automatic Control
– volume: 78
  start-page: 14
  year: 2017
  ident: 10.1016/j.conengprac.2021.104860_b18
  article-title: Partial stability for nonlinear model predictive control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.11.047
– volume: 351
  start-page: 3405
  issue: 6
  year: 2014
  ident: 10.1016/j.conengprac.2021.104860_b12
  article-title: Quasi-min–max MPC for constrained nonlinear systems with guaranteed input-to-state stability
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2014.03.006
– volume: 25
  start-page: 653
  issue: 3
  year: 2017
  ident: 10.1016/j.conengprac.2021.104860_b7
  article-title: Dynamic output feedback-predictive control of a Takagi–Sugeno model with bounded disturbance
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2016.2574907
– volume: 28
  start-page: 1066
  issue: 3
  year: 2020
  ident: 10.1016/j.conengprac.2021.104860_b10
  article-title: Tube-based discrete controller design for vehicle platoons subject to disturbances and saturation constraints
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2019.2896539
– volume: 22
  start-page: 2662
  issue: 6
  year: 2017
  ident: 10.1016/j.conengprac.2021.104860_b21
  article-title: Two-phase lorentz coils and linear halbach array for multiaxis precision-positioning stages with magnetic levitation
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2017.2769160
– volume: 8
  start-page: 107063
  year: 2020
  ident: 10.1016/j.conengprac.2021.104860_b4
  article-title: Model predictive control with integral compensation for motion control of robot manipulator in joint and task spaces
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001044
– volume: 61
  start-page: 49
  issue: 1
  year: 2014
  ident: 10.1016/j.conengprac.2021.104860_b34
  article-title: Offset-free nonlinear MPC for mismatched disturbance attenuation with application to a static var compensator
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 15
  start-page: 4665
  issue: 8
  year: 2019
  ident: 10.1016/j.conengprac.2021.104860_b41
  article-title: Flexure-based magnetically levitated dual-stage system for high-bandwidth positioning
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2890951
– volume: 28
  start-page: 2352
  issue: 6
  year: 2020
  ident: 10.1016/j.conengprac.2021.104860_b13
  article-title: A robust predictive control approach for underwater robotic vehicles
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2019.2939248
– volume: 60
  start-page: 99
  year: 2017
  ident: 10.1016/j.conengprac.2021.104860_b16
  article-title: Real-time implementation of an explicit MPC-based reference governor for control of a magnetic levitation system
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2017.01.001
– volume: 71
  start-page: 26
  year: 2018
  ident: 10.1016/j.conengprac.2021.104860_b22
  article-title: Model predictive control for offset-free reference tracking of fractional order systems
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2017.10.010
– volume: 37
  start-page: 1111
  issue: 13
  year: 2010
  ident: 10.1016/j.conengprac.2021.104860_b8
  article-title: Practical control of underactuated ships
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2010.04.007
– volume: 21
  start-page: 1250
  issue: 9
  year: 2013
  ident: 10.1016/j.conengprac.2021.104860_b2
  article-title: Nonlinear model predictive control of a magnetic levitation system
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2013.04.009
– volume: 352
  start-page: 4309
  issue: 10
  year: 2015
  ident: 10.1016/j.conengprac.2021.104860_b27
  article-title: Nonlinear modeling and control approach to magnetic levitation ball system using functional weight RBF network-based state-dependent ARX model
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2015.06.014
– volume: 67
  start-page: 8545
  issue: 10
  year: 2020
  ident: 10.1016/j.conengprac.2021.104860_b33
  article-title: Motion control of a magnetic levitation actuator based on a wrench model considering yaw angle
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2019.2949519
– volume: 24
  start-page: 93
  issue: 1
  year: 2014
  ident: 10.1016/j.conengprac.2021.104860_b26
  article-title: A modeling and control approach to magnetic levitation system based on state-dependent ARX model
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2013.10.016
– start-page: 1
  year: 2020
  ident: 10.1016/j.conengprac.2021.104860_b23
  article-title: Intelligent feedforward compensation motion control of maglev planar motor with precise reference modification prediction
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 25
  start-page: 1947
  issue: 6
  year: 2017
  ident: 10.1016/j.conengprac.2021.104860_b31
  article-title: Model predictive approaches for active surge control in centrifugal compressors
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2016.2636027
– volume: 28
  start-page: 2177
  issue: 6
  year: 2020
  ident: 10.1016/j.conengprac.2021.104860_b9
  article-title: Distributed model predictive control for more electric aircraft subsystems operating at multiple time scales
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2019.2932654
– volume: 60
  start-page: 1087
  issue: 4
  year: 2015
  ident: 10.1016/j.conengprac.2021.104860_b11
  article-title: Robust tube MPC for linear systems with multiplicative uncertainty
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2336358
– volume: 34
  start-page: 1254
  issue: 6
  year: 1998
  ident: 10.1016/j.conengprac.2021.104860_b15
  article-title: Modeling and vector control of planar magnetic levitator
  publication-title: IEEE Transactions on Industry Applications
  doi: 10.1109/28.738999
– volume: 61
  start-page: 4183
  issue: 12
  year: 2016
  ident: 10.1016/j.conengprac.2021.104860_b1
  article-title: A robust MPC for input-output LPV models
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2553143
– volume: 22
  start-page: 2576
  issue: 6
  year: 2017
  ident: 10.1016/j.conengprac.2021.104860_b30
  article-title: Disturbance rejection MPC for tracking of wheeled mobile robot
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2017.2758603
– volume: 62
  start-page: 5807
  issue: 9
  year: 2015
  ident: 10.1016/j.conengprac.2021.104860_b35
  article-title: Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed systems via a disturbance observer
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2015.2450736
– volume: 23
  start-page: 389
  issue: 1
  year: 2018
  ident: 10.1016/j.conengprac.2021.104860_b38
  article-title: Hybrid fuzzy decoupling control for a precision maglev motion system
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2017.2771340
– volume: 8
  start-page: 107124
  year: 2020
  ident: 10.1016/j.conengprac.2021.104860_b39
  article-title: An RBF-ARX model-based variable-gain feedback RMPC algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999621
– volume: 49
  start-page: 725
  issue: 3
  year: 2013
  ident: 10.1016/j.conengprac.2021.104860_b19
  article-title: Economic receding horizon control without terminal constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.12.003
– volume: 7
  issue: 2
  year: 2018
  ident: 10.1016/j.conengprac.2021.104860_b25
  article-title: Levitating micro-actuators: A review
  publication-title: Actuators
  doi: 10.3390/act7020017
– volume: 27
  start-page: 1334
  issue: 3
  year: 2019
  ident: 10.1016/j.conengprac.2021.104860_b29
  article-title: Path-following control of an AUV: A multiobjective model predictive control approach
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2018.2789440
– volume: 109
  year: 2019
  ident: 10.1016/j.conengprac.2021.104860_b6
  article-title: A parallel Newton-type method for nonlinear model predictive control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.108560
– volume: 21
  start-page: 1341
  issue: 11
  year: 2011
  ident: 10.1016/j.conengprac.2021.104860_b20
  article-title: Tube-based robust nonlinear model predictive control
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.1758
– volume: 18
  start-page: 267
  issue: 2
  year: 2010
  ident: 10.1016/j.conengprac.2021.104860_b32
  article-title: Fast model predictive control using online optimization
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2009.2017934
– volume: 66
  start-page: 4860
  issue: 6
  year: 2019
  ident: 10.1016/j.conengprac.2021.104860_b5
  article-title: A novel design and control to improve positioning precision and robustness for a planar maglev system
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2018.2821633
– volume: 64
  start-page: 254
  issue: 1
  year: 2019
  ident: 10.1016/j.conengprac.2021.104860_b17
  article-title: Nonlinear reference tracking: An economic model predictive control perspective
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2018.2800789
– volume: 59
  start-page: 2157
  issue: 5
  year: 2012
  ident: 10.1016/j.conengprac.2021.104860_b28
  article-title: Analysis method of the dynamic force and torque distribution in the magnet array of a commutated magnetically levitated planar actuator
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2011.2146222
– volume: 64
  start-page: 440
  issue: 1
  year: 2017
  ident: 10.1016/j.conengprac.2021.104860_b40
  article-title: Design and modeling of a six-degree-of-freedom magnetically levitated positioner using square coils and 1-D halbach arrays
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2016.2598811
– volume: 80
  start-page: 103
  year: 2019
  ident: 10.1016/j.conengprac.2021.104860_b36
  article-title: Economic model predictive control for achieving offset-free operation performance of industrial constrained systems
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2019.04.006
– volume: 21
  start-page: 2543
  issue: 5
  year: 2016
  ident: 10.1016/j.conengprac.2021.104860_b3
  article-title: A swing constraint guaranteed MPC algorithm for underactuated overhead cranes
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2016.2558202
– volume: 26
  start-page: 2157
  issue: 6
  year: 2018
  ident: 10.1016/j.conengprac.2021.104860_b37
  article-title: A systematic min–max optimization design of constrained model predictive tracking control for industrial processes against uncertainty
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2017.2748059
– volume: 63
  start-page: 5763
  issue: 9
  year: 2016
  ident: 10.1016/j.conengprac.2021.104860_b14
  article-title: Performance-oriented precision LARC tracking motion control of a magnetically levitated planar motor with comparative experiments
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2016.2538743
– volume: 47
  start-page: 2052
  issue: 9
  year: 2011
  ident: 10.1016/j.conengprac.2021.104860_b24
  article-title: Output feedback model predictive control for LPV systems based on quasi-min–max algorithm
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.06.015
SSID ssj0016991
Score 2.416137
Snippet This paper presents an observer-based fast nonlinear model predictive control (NMPC) scheme for translation control of magnetically levitated (maglev)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104860
SubjectTerms Magnetically levitated positioning system
Motion control
Nonlinear disturbance observer
Nonlinear model predictive control
Real-time optimization
Title Observer-based fast nonlinear MPC for multi-DOF maglev positioning system: Theory and experiment
URI https://dx.doi.org/10.1016/j.conengprac.2021.104860
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jc1js9noqVRLVdoKWugt7iulUkOp0aO_3Z1s0lYQFDwmZMLyZbIzk3zzDULnUZAKn9DUgWhsChTiOiIMpcMJU4r5UuhCTKc_oL0RuRuH4xrqVL0wQKss9367pxe7dXmmVaLZmk-nrUeTfEcmYIICFujmgSYoIRF4-cXnkubh0dhOzTMXQ7e9V7J5LMfLlJw6m0A_kqkUfQ9-eLJCrPKHELUWdro7aLvMF3HbLmkX1XS2h7bWVAT30fNQwKdVvXAgJCmc8rccZ1YCgy9w_6GDTWaKC-qgcz3s4lc-mekPXPG1zE2wFXS-xLZVH_NM4ZX2_wEadW-eOj2nHJzgSJ-w3PE0TZUigkvORMwoj2kMMu6KccZVIMxLql1OKTclacBNyeAqn8McntClUso4OER1s0x9hLBIZahTEaduGhODIfODgMYypDIEHZyogaIKq0SWquIw3GKWVPSxl2SFcgIoJxblBvKWlnOrrPEHm6vqcSTfvCQxAeBX6-N_WZ-gTTiy_LJTVM8X7_rMJCS5aBYe10Qb7dv73uALPS_hZg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8RnxuQevDX1st1s9EZSAvEyEhFvdVwkGCUH097vLtoCJiSZe206z-Xa7M9P95huAmyhIuY9J6hhvrBMU7Do8DIXDMJWS-oKrpZhOp0saA_w4DIcFqOW1MIZWme39dk9f7tbZlUqGZmU2HleedfAdaYdpFLCMbh7egpJRpwqLUKo2W43u6jCBxLZxnn7eFNx7GaHH0rx01qmmI1OSpJNF3zNnnnSpV_mDl9rwPPV92MtCRlS1ozqAgpoewu6GkOARvPS4-buq5o7xShKl7H2BplYFg81R56mGdHCKluxB575XR29sNFGfKKds6Zcgq-l8i2y1PmJTidby_8cwqD_0aw0n653gCB_TheMpkkqJOROM8pgSFpPYKLlLyiiTAdffqXIZIUxnpQHTWYMrfWZa8YQuEULEwQkU9TDVKSCeilClPE7dNMYaQ-oHAYlFSERopHCiMkQ5VonIhMVNf4tJkjPIXpM1yolBObEol8FbWc6suMYfbO7y6Ui-LZRE-4Bfrc_-ZX0N241-p520m93WOeyYO5ZudgHFxfxDXer4ZMGvsvX3Bfse5Bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observer-based+fast+nonlinear+MPC+for+multi-DOF+maglev+positioning+system%3A+Theory+and+experiment&rft.jtitle=Control+engineering+practice&rft.au=Zhang%2C+Kaiyang&rft.au=Xu%2C+Fengqiu&rft.au=Xu%2C+Xianze&rft.date=2021-09-01&rft.issn=0967-0661&rft.volume=114&rft.spage=104860&rft_id=info:doi/10.1016%2Fj.conengprac.2021.104860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2021_104860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon