Observer-based fast nonlinear MPC for multi-DOF maglev positioning system: Theory and experiment
This paper presents an observer-based fast nonlinear model predictive control (NMPC) scheme for translation control of magnetically levitated (maglev) positioning system subject to input saturation. The motivation lies in the improvement of transient characteristics and control performance for posit...
Saved in:
Published in | Control engineering practice Vol. 114; p. 104860 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an observer-based fast nonlinear model predictive control (NMPC) scheme for translation control of magnetically levitated (maglev) positioning system subject to input saturation. The motivation lies in the improvement of transient characteristics and control performance for positioning systems. The nonlinear dynamical translation model of the maglev positioning system is derived that does not affect the rotation dynamics with special current conditions. The disturbance estimation, obtained by nonlinear disturbance observer, is introduced in the state receding prediction to compensate the errors caused by disturbances and uncertainties. To reduce the computational burden, the stability of the proposed NMPC is established without using any stability-related terminal costs or constraints, and only the short prediction horizon is required for real-time feasibility. The online optimization algorithm underlying the NMPC scheme takes the process constraints into account, and solves the optimal control problem using a parallel structure at each iteration. Comparative experiments are carried out on the positioner to validate the proposed controller has the outperformance in transient/steady-state trajectory tracking, frequency characteristics and robustness against disturbances. The proposed scheme also provides a guidance for the application of NMPC in industrial mechatronic system with fast dynamics.
•Observer-based fast nonlinear MPC design is developed for maglev positioner.•Reasonable prediction horizon is analyzed to guarantee the stability of NMPC.•Disturbance effects are compensated by disturbance observer for offset-free tracking.•Real-time implementation of NMPC is based on a parallel Newton-type method. |
---|---|
AbstractList | This paper presents an observer-based fast nonlinear model predictive control (NMPC) scheme for translation control of magnetically levitated (maglev) positioning system subject to input saturation. The motivation lies in the improvement of transient characteristics and control performance for positioning systems. The nonlinear dynamical translation model of the maglev positioning system is derived that does not affect the rotation dynamics with special current conditions. The disturbance estimation, obtained by nonlinear disturbance observer, is introduced in the state receding prediction to compensate the errors caused by disturbances and uncertainties. To reduce the computational burden, the stability of the proposed NMPC is established without using any stability-related terminal costs or constraints, and only the short prediction horizon is required for real-time feasibility. The online optimization algorithm underlying the NMPC scheme takes the process constraints into account, and solves the optimal control problem using a parallel structure at each iteration. Comparative experiments are carried out on the positioner to validate the proposed controller has the outperformance in transient/steady-state trajectory tracking, frequency characteristics and robustness against disturbances. The proposed scheme also provides a guidance for the application of NMPC in industrial mechatronic system with fast dynamics.
•Observer-based fast nonlinear MPC design is developed for maglev positioner.•Reasonable prediction horizon is analyzed to guarantee the stability of NMPC.•Disturbance effects are compensated by disturbance observer for offset-free tracking.•Real-time implementation of NMPC is based on a parallel Newton-type method. |
ArticleNumber | 104860 |
Author | Zhang, Kaiyang Xu, Xianze Xu, Fengqiu |
Author_xml | – sequence: 1 givenname: Kaiyang orcidid: 0000-0002-4256-0079 surname: Zhang fullname: Zhang, Kaiyang email: kyzhang@whu.edu.cn – sequence: 2 givenname: Fengqiu orcidid: 0000-0002-5718-0853 surname: Xu fullname: Xu, Fengqiu email: hncxu@whu.edu.cn – sequence: 3 givenname: Xianze orcidid: 0000-0003-4604-6445 surname: Xu fullname: Xu, Xianze email: xuxianze@whu.edu.cn |
BookMark | eNqNkM1OwzAQhC0EEuXnHfwCKXaSOjYHJCgUkEDlUM5mY2-Kq8SpbFPRtydVkZC4wGmlWc3szndCDn3vkRDK2ZgzLi5WYzMIfrkOYMY5y_kgl1KwAzLisioyoQp1SEZMiSpjQvBjchLjig1WpfiIvM3riGGDIashoqUNxESHE63zCIE-v0xp0wfafbTJZbfzGe1g2eKGrvvokuu980satzFhd0kX79iHLQVvKX6uMbgOfTojRw20Ec-_5yl5nd0tpg_Z0_z-cXr9lJm8lCnjKBpryxoMyFpJAUqoasJKK0GCLepKVshACMirsgAxrGwObKLEhAljjCpOydU-14Q-xoCNNi7B7sUUwLWaM73jpVf6h5fe8dJ7XkOA_BWwHhpA2P7HerO34lBw4zDoaBx6g9YFNEnb3v0d8gUwg49g |
CitedBy_id | crossref_primary_10_1007_s11768_024_00232_8 crossref_primary_10_1049_elp2_12213 crossref_primary_10_3390_s24020538 crossref_primary_10_1007_s11071_022_08011_3 crossref_primary_10_1016_j_conengprac_2023_105731 crossref_primary_10_1038_s41598_024_76067_9 crossref_primary_10_1109_TIE_2022_3231284 crossref_primary_10_1007_s40435_022_00971_z crossref_primary_10_1080_03081079_2023_2206130 crossref_primary_10_3390_act14010033 crossref_primary_10_1016_j_conengprac_2021_104990 crossref_primary_10_1016_j_ymssp_2025_112314 crossref_primary_10_1049_cth2_12310 crossref_primary_10_1109_TIE_2022_3199864 crossref_primary_10_1016_j_isatra_2023_05_010 |
Cites_doi | 10.1016/j.automatica.2016.11.047 10.1016/j.jfranklin.2014.03.006 10.1109/TFUZZ.2016.2574907 10.1109/TCST.2019.2896539 10.1109/TMECH.2017.2769160 10.1109/ACCESS.2020.3001044 10.1109/TII.2019.2890951 10.1109/TCST.2019.2939248 10.1016/j.conengprac.2017.01.001 10.1016/j.conengprac.2017.10.010 10.1016/j.oceaneng.2010.04.007 10.1016/j.conengprac.2013.04.009 10.1016/j.jfranklin.2015.06.014 10.1109/TIE.2019.2949519 10.1016/j.jprocont.2013.10.016 10.1109/TCST.2016.2636027 10.1109/TCST.2019.2932654 10.1109/TAC.2014.2336358 10.1109/28.738999 10.1109/TAC.2016.2553143 10.1109/TMECH.2017.2758603 10.1109/TIE.2015.2450736 10.1109/TMECH.2017.2771340 10.1109/ACCESS.2020.2999621 10.1016/j.automatica.2012.12.003 10.3390/act7020017 10.1109/TCST.2018.2789440 10.1016/j.automatica.2019.108560 10.1002/rnc.1758 10.1109/TCST.2009.2017934 10.1109/TIE.2018.2821633 10.1109/TAC.2018.2800789 10.1109/TIE.2011.2146222 10.1109/TIE.2016.2598811 10.1016/j.jprocont.2019.04.006 10.1109/TMECH.2016.2558202 10.1109/TCST.2017.2748059 10.1109/TIE.2016.2538743 10.1016/j.automatica.2011.06.015 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conengprac.2021.104860 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-6939 |
ExternalDocumentID | 10_1016_j_conengprac_2021_104860 S0967066121001374 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c248t-1e6fdd4baca8b986a9697504d8a8ad3b787e0a66a2743a6750d2a0596506ccc93 |
IEDL.DBID | .~1 |
ISSN | 0967-0661 |
IngestDate | Tue Jul 01 00:39:06 EDT 2025 Thu Apr 24 23:09:28 EDT 2025 Fri Feb 23 02:47:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Real-time optimization Magnetically levitated positioning system Nonlinear model predictive control Motion control Nonlinear disturbance observer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c248t-1e6fdd4baca8b986a9697504d8a8ad3b787e0a66a2743a6750d2a0596506ccc93 |
ORCID | 0000-0002-5718-0853 0000-0003-4604-6445 0000-0002-4256-0079 |
ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2021_104860 crossref_primary_10_1016_j_conengprac_2021_104860 elsevier_sciencedirect_doi_10_1016_j_conengprac_2021_104860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Control engineering practice |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Luo, Han, Luo, Qiao (b4) 2020; 8 Shen, Shi, Buckham (b29) 2019; 27 Lars (b19) 2013; 49 Ntouskas, Sarimveis, Sopasakis (b22) 2018; 71 Klaučo, Kalúz, Kvasnica (b16) 2017; 60 Zhou, Deng, Duan (b38) 2018; 23 Sun, Xia, Dai, Liu, Ma (b30) 2017; 22 Ou, Hu, Zhu, Zhang, Zhu (b23) 2020 Do (b8) 2010; 37 Zhu, Teo, Pang (b40) 2017; 64 Chen, Tsai, Fu (b5) 2019; 66 Zhou, Zhu, Qin, Zheng (b39) 2020; 8 Bächle, Hentzelt, Graichen (b2) 2013; 21 Ding, Pan (b7) 2017; 25 Qin, Peng, Ruan, Wu, Gao (b26) 2014; 24 Park, Kim, Sugie (b24) 2011; 47 Zhang, Wu, Cao, Lu, Gao (b37) 2018; 26 Wang, Boyd (b32) 2010; 18 Torrisi, Grammatico, Cortinovis, Mercangöz, Morari, Smith (b31) 2017; 25 Chen, Fang, Sun (b3) 2016; 21 Mayne, Kerrigan, Wyk, Falugi (b20) 2011; 21 Köhler, Müller, Allgöwer (b17) 2019; 64 Qin, Peng, Zhou, Zeng, Wu (b27) 2015; 352 Yang, Zheng (b34) 2014; 61 Hu, Wang, Zhu, Zhang, Liu (b14) 2016; 63 Kim, Trumper, Lang (b15) 1998; 34 Heshmati-Alamdari, Karras, Marantos, Kyriakopoulos (b13) 2020; 28 La, Andreas, Bock (b18) 2017; 78 Poletkin, Asadollahbaik, Kampmann, Korvink (b25) 2018; 7 Yang, Zheng, Li, Xu (b36) 2019; 80 Deng, Ohtsuka (b6) 2019; 109 Feng, Sun, Zhang, Zheng, Liu, Li (b10) 2020; 28 He, Huang, Chen (b12) 2014; 351 Abbas, Tóth, Meskin, Mohammadpour, Hanema (b1) 2016; 61 Yang, Zheng, Li, Wu, Cheng (b35) 2015; 62 Zhu, Teo, Pang (b41) 2019; 15 Fleming, Kouvaritakis, Cannon (b11) 2015; 60 Rovers, Jansen, Compter, Lomonova (b28) 2012; 59 Xu, Lu, Zheng, Xu (b33) 2020; 67 Dunham, Hencey, Girard, Kolmanovsky (b9) 2020; 28 Nguyen, Kim (b21) 2017; 22 Ding (10.1016/j.conengprac.2021.104860_b7) 2017; 25 Park (10.1016/j.conengprac.2021.104860_b24) 2011; 47 Yang (10.1016/j.conengprac.2021.104860_b36) 2019; 80 Sun (10.1016/j.conengprac.2021.104860_b30) 2017; 22 Chen (10.1016/j.conengprac.2021.104860_b3) 2016; 21 Köhler (10.1016/j.conengprac.2021.104860_b17) 2019; 64 Mayne (10.1016/j.conengprac.2021.104860_b20) 2011; 21 Qin (10.1016/j.conengprac.2021.104860_b26) 2014; 24 Klaučo (10.1016/j.conengprac.2021.104860_b16) 2017; 60 He (10.1016/j.conengprac.2021.104860_b12) 2014; 351 Bächle (10.1016/j.conengprac.2021.104860_b2) 2013; 21 Lars (10.1016/j.conengprac.2021.104860_b19) 2013; 49 Poletkin (10.1016/j.conengprac.2021.104860_b25) 2018; 7 Abbas (10.1016/j.conengprac.2021.104860_b1) 2016; 61 Kim (10.1016/j.conengprac.2021.104860_b15) 1998; 34 Chen (10.1016/j.conengprac.2021.104860_b5) 2019; 66 Zhou (10.1016/j.conengprac.2021.104860_b39) 2020; 8 Zhu (10.1016/j.conengprac.2021.104860_b40) 2017; 64 Hu (10.1016/j.conengprac.2021.104860_b14) 2016; 63 Xu (10.1016/j.conengprac.2021.104860_b33) 2020; 67 Deng (10.1016/j.conengprac.2021.104860_b6) 2019; 109 Dunham (10.1016/j.conengprac.2021.104860_b9) 2020; 28 Torrisi (10.1016/j.conengprac.2021.104860_b31) 2017; 25 Wang (10.1016/j.conengprac.2021.104860_b32) 2010; 18 Yang (10.1016/j.conengprac.2021.104860_b35) 2015; 62 Heshmati-Alamdari (10.1016/j.conengprac.2021.104860_b13) 2020; 28 Qin (10.1016/j.conengprac.2021.104860_b27) 2015; 352 Zhu (10.1016/j.conengprac.2021.104860_b41) 2019; 15 Rovers (10.1016/j.conengprac.2021.104860_b28) 2012; 59 Do (10.1016/j.conengprac.2021.104860_b8) 2010; 37 Ou (10.1016/j.conengprac.2021.104860_b23) 2020 Zhang (10.1016/j.conengprac.2021.104860_b37) 2018; 26 Fleming (10.1016/j.conengprac.2021.104860_b11) 2015; 60 Shen (10.1016/j.conengprac.2021.104860_b29) 2019; 27 Yang (10.1016/j.conengprac.2021.104860_b34) 2014; 61 Zhou (10.1016/j.conengprac.2021.104860_b38) 2018; 23 La (10.1016/j.conengprac.2021.104860_b18) 2017; 78 Chen (10.1016/j.conengprac.2021.104860_b4) 2020; 8 Feng (10.1016/j.conengprac.2021.104860_b10) 2020; 28 Nguyen (10.1016/j.conengprac.2021.104860_b21) 2017; 22 Ntouskas (10.1016/j.conengprac.2021.104860_b22) 2018; 71 |
References_xml | – volume: 60 start-page: 1087 year: 2015 end-page: 1092 ident: b11 article-title: Robust tube MPC for linear systems with multiplicative uncertainty publication-title: IEEE Transactions on Automatic Control – volume: 25 start-page: 653 year: 2017 end-page: 667 ident: b7 article-title: Dynamic output feedback-predictive control of a Takagi–Sugeno model with bounded disturbance publication-title: IEEE Transactions on Fuzzy Systems – volume: 49 start-page: 725 year: 2013 end-page: 734 ident: b19 article-title: Economic receding horizon control without terminal constraints publication-title: Automatica – volume: 351 start-page: 3405 year: 2014 end-page: 3423 ident: b12 article-title: Quasi-min–max MPC for constrained nonlinear systems with guaranteed input-to-state stability publication-title: Journal of the Franklin Institute – volume: 63 start-page: 5763 year: 2016 end-page: 5773 ident: b14 article-title: Performance-oriented precision LARC tracking motion control of a magnetically levitated planar motor with comparative experiments publication-title: IEEE Transactions on Industrial Electronics – volume: 21 start-page: 1341 year: 2011 end-page: 1353 ident: b20 article-title: Tube-based robust nonlinear model predictive control publication-title: International Journal of Robust and Nonlinear Control – volume: 109 year: 2019 ident: b6 article-title: A parallel Newton-type method for nonlinear model predictive control publication-title: Automatica – volume: 25 start-page: 1947 year: 2017 end-page: 1960 ident: b31 article-title: Model predictive approaches for active surge control in centrifugal compressors publication-title: IEEE Transactions on Control Systems Technology – volume: 62 start-page: 5807 year: 2015 end-page: 5816 ident: b35 article-title: Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed systems via a disturbance observer publication-title: IEEE Transactions on Industrial Electronics – volume: 37 start-page: 1111 year: 2010 end-page: 1119 ident: b8 article-title: Practical control of underactuated ships publication-title: Ocean Engineering – volume: 64 start-page: 440 year: 2017 end-page: 450 ident: b40 article-title: Design and modeling of a six-degree-of-freedom magnetically levitated positioner using square coils and 1-D halbach arrays publication-title: IEEE Transactions on Industrial Electronics – volume: 28 start-page: 2352 year: 2020 end-page: 2363 ident: b13 article-title: A robust predictive control approach for underwater robotic vehicles publication-title: IEEE Transactions on Control Systems Technology – volume: 60 start-page: 99 year: 2017 end-page: 105 ident: b16 article-title: Real-time implementation of an explicit MPC-based reference governor for control of a magnetic levitation system publication-title: Control Engineering Practice – volume: 21 start-page: 1250 year: 2013 end-page: 1258 ident: b2 article-title: Nonlinear model predictive control of a magnetic levitation system publication-title: Control Engineering Practice – volume: 8 start-page: 107124 year: 2020 end-page: 107133 ident: b39 article-title: An RBF-ARX model-based variable-gain feedback RMPC algorithm publication-title: IEEE Access – volume: 15 start-page: 4665 year: 2019 end-page: 4675 ident: b41 article-title: Flexure-based magnetically levitated dual-stage system for high-bandwidth positioning publication-title: IEEE Transactions on Industrial Informatics – volume: 71 start-page: 26 year: 2018 end-page: 33 ident: b22 article-title: Model predictive control for offset-free reference tracking of fractional order systems publication-title: Control Engineering Practice – volume: 67 start-page: 8545 year: 2020 end-page: 8554 ident: b33 article-title: Motion control of a magnetic levitation actuator based on a wrench model considering yaw angle publication-title: IEEE Transactions on Industrial Electronics – volume: 80 start-page: 103 year: 2019 end-page: 116 ident: b36 article-title: Economic model predictive control for achieving offset-free operation performance of industrial constrained systems publication-title: Journal of Process Control – volume: 61 start-page: 49 year: 2014 end-page: 53 ident: b34 article-title: Offset-free nonlinear MPC for mismatched disturbance attenuation with application to a static var compensator publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 26 start-page: 2157 year: 2018 end-page: 2164 ident: b37 article-title: A systematic min–max optimization design of constrained model predictive tracking control for industrial processes against uncertainty publication-title: IEEE Transactions on Control Systems Technology – volume: 7 year: 2018 ident: b25 article-title: Levitating micro-actuators: A review publication-title: Actuators – volume: 28 start-page: 2177 year: 2020 end-page: 2190 ident: b9 article-title: Distributed model predictive control for more electric aircraft subsystems operating at multiple time scales publication-title: IEEE Transactions on Control Systems Technology – volume: 21 start-page: 2543 year: 2016 end-page: 2555 ident: b3 article-title: A swing constraint guaranteed MPC algorithm for underactuated overhead cranes publication-title: IEEE/ASME Transactions on Mechatronics – volume: 34 start-page: 1254 year: 1998 end-page: 1262 ident: b15 article-title: Modeling and vector control of planar magnetic levitator publication-title: IEEE Transactions on Industry Applications – volume: 8 start-page: 107063 year: 2020 end-page: 107075 ident: b4 article-title: Model predictive control with integral compensation for motion control of robot manipulator in joint and task spaces publication-title: IEEE Access – volume: 59 start-page: 2157 year: 2012 end-page: 2166 ident: b28 article-title: Analysis method of the dynamic force and torque distribution in the magnet array of a commutated magnetically levitated planar actuator publication-title: IEEE Transactions on Industrial Electronics – volume: 47 start-page: 2052 year: 2011 end-page: 2058 ident: b24 article-title: Output feedback model predictive control for LPV systems based on quasi-min–max algorithm publication-title: Automatica – volume: 352 start-page: 4309 year: 2015 end-page: 4338 ident: b27 article-title: Nonlinear modeling and control approach to magnetic levitation ball system using functional weight RBF network-based state-dependent ARX model publication-title: Journal of the Franklin Institute – volume: 78 start-page: 14 year: 2017 end-page: 19 ident: b18 article-title: Partial stability for nonlinear model predictive control publication-title: Automatica – volume: 22 start-page: 2576 year: 2017 end-page: 2587 ident: b30 article-title: Disturbance rejection MPC for tracking of wheeled mobile robot publication-title: IEEE/ASME Transactions on Mechatronics – volume: 27 start-page: 1334 year: 2019 end-page: 1342 ident: b29 article-title: Path-following control of an AUV: A multiobjective model predictive control approach publication-title: IEEE Transactions on Control Systems Technology – volume: 23 start-page: 389 year: 2018 end-page: 401 ident: b38 article-title: Hybrid fuzzy decoupling control for a precision maglev motion system publication-title: IEEE/ASME Transactions on Mechatronics – volume: 61 start-page: 4183 year: 2016 end-page: 4188 ident: b1 article-title: A robust MPC for input-output LPV models publication-title: IEEE Transactions on Automatic Control – volume: 22 start-page: 2662 year: 2017 end-page: 2672 ident: b21 article-title: Two-phase lorentz coils and linear halbach array for multiaxis precision-positioning stages with magnetic levitation publication-title: IEEE/ASME Transactions on Mechatronics – volume: 24 start-page: 93 year: 2014 end-page: 112 ident: b26 article-title: A modeling and control approach to magnetic levitation system based on state-dependent ARX model publication-title: Journal of Process Control – volume: 66 start-page: 4860 year: 2019 end-page: 4869 ident: b5 article-title: A novel design and control to improve positioning precision and robustness for a planar maglev system publication-title: IEEE Transactions on Industrial Electronics – start-page: 1 year: 2020 ident: b23 article-title: Intelligent feedforward compensation motion control of maglev planar motor with precise reference modification prediction publication-title: IEEE Transactions on Industrial Electronics – volume: 18 start-page: 267 year: 2010 end-page: 278 ident: b32 article-title: Fast model predictive control using online optimization publication-title: IEEE Transactions on Control Systems Technology – volume: 28 start-page: 1066 year: 2020 end-page: 1073 ident: b10 article-title: Tube-based discrete controller design for vehicle platoons subject to disturbances and saturation constraints publication-title: IEEE Transactions on Control Systems Technology – volume: 64 start-page: 254 year: 2019 end-page: 269 ident: b17 article-title: Nonlinear reference tracking: An economic model predictive control perspective publication-title: IEEE Transactions on Automatic Control – volume: 78 start-page: 14 year: 2017 ident: 10.1016/j.conengprac.2021.104860_b18 article-title: Partial stability for nonlinear model predictive control publication-title: Automatica doi: 10.1016/j.automatica.2016.11.047 – volume: 351 start-page: 3405 issue: 6 year: 2014 ident: 10.1016/j.conengprac.2021.104860_b12 article-title: Quasi-min–max MPC for constrained nonlinear systems with guaranteed input-to-state stability publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2014.03.006 – volume: 25 start-page: 653 issue: 3 year: 2017 ident: 10.1016/j.conengprac.2021.104860_b7 article-title: Dynamic output feedback-predictive control of a Takagi–Sugeno model with bounded disturbance publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2016.2574907 – volume: 28 start-page: 1066 issue: 3 year: 2020 ident: 10.1016/j.conengprac.2021.104860_b10 article-title: Tube-based discrete controller design for vehicle platoons subject to disturbances and saturation constraints publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2019.2896539 – volume: 22 start-page: 2662 issue: 6 year: 2017 ident: 10.1016/j.conengprac.2021.104860_b21 article-title: Two-phase lorentz coils and linear halbach array for multiaxis precision-positioning stages with magnetic levitation publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2017.2769160 – volume: 8 start-page: 107063 year: 2020 ident: 10.1016/j.conengprac.2021.104860_b4 article-title: Model predictive control with integral compensation for motion control of robot manipulator in joint and task spaces publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001044 – volume: 61 start-page: 49 issue: 1 year: 2014 ident: 10.1016/j.conengprac.2021.104860_b34 article-title: Offset-free nonlinear MPC for mismatched disturbance attenuation with application to a static var compensator publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 15 start-page: 4665 issue: 8 year: 2019 ident: 10.1016/j.conengprac.2021.104860_b41 article-title: Flexure-based magnetically levitated dual-stage system for high-bandwidth positioning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2890951 – volume: 28 start-page: 2352 issue: 6 year: 2020 ident: 10.1016/j.conengprac.2021.104860_b13 article-title: A robust predictive control approach for underwater robotic vehicles publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2019.2939248 – volume: 60 start-page: 99 year: 2017 ident: 10.1016/j.conengprac.2021.104860_b16 article-title: Real-time implementation of an explicit MPC-based reference governor for control of a magnetic levitation system publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2017.01.001 – volume: 71 start-page: 26 year: 2018 ident: 10.1016/j.conengprac.2021.104860_b22 article-title: Model predictive control for offset-free reference tracking of fractional order systems publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2017.10.010 – volume: 37 start-page: 1111 issue: 13 year: 2010 ident: 10.1016/j.conengprac.2021.104860_b8 article-title: Practical control of underactuated ships publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2010.04.007 – volume: 21 start-page: 1250 issue: 9 year: 2013 ident: 10.1016/j.conengprac.2021.104860_b2 article-title: Nonlinear model predictive control of a magnetic levitation system publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2013.04.009 – volume: 352 start-page: 4309 issue: 10 year: 2015 ident: 10.1016/j.conengprac.2021.104860_b27 article-title: Nonlinear modeling and control approach to magnetic levitation ball system using functional weight RBF network-based state-dependent ARX model publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2015.06.014 – volume: 67 start-page: 8545 issue: 10 year: 2020 ident: 10.1016/j.conengprac.2021.104860_b33 article-title: Motion control of a magnetic levitation actuator based on a wrench model considering yaw angle publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2019.2949519 – volume: 24 start-page: 93 issue: 1 year: 2014 ident: 10.1016/j.conengprac.2021.104860_b26 article-title: A modeling and control approach to magnetic levitation system based on state-dependent ARX model publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2013.10.016 – start-page: 1 year: 2020 ident: 10.1016/j.conengprac.2021.104860_b23 article-title: Intelligent feedforward compensation motion control of maglev planar motor with precise reference modification prediction publication-title: IEEE Transactions on Industrial Electronics – volume: 25 start-page: 1947 issue: 6 year: 2017 ident: 10.1016/j.conengprac.2021.104860_b31 article-title: Model predictive approaches for active surge control in centrifugal compressors publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2016.2636027 – volume: 28 start-page: 2177 issue: 6 year: 2020 ident: 10.1016/j.conengprac.2021.104860_b9 article-title: Distributed model predictive control for more electric aircraft subsystems operating at multiple time scales publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2019.2932654 – volume: 60 start-page: 1087 issue: 4 year: 2015 ident: 10.1016/j.conengprac.2021.104860_b11 article-title: Robust tube MPC for linear systems with multiplicative uncertainty publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2014.2336358 – volume: 34 start-page: 1254 issue: 6 year: 1998 ident: 10.1016/j.conengprac.2021.104860_b15 article-title: Modeling and vector control of planar magnetic levitator publication-title: IEEE Transactions on Industry Applications doi: 10.1109/28.738999 – volume: 61 start-page: 4183 issue: 12 year: 2016 ident: 10.1016/j.conengprac.2021.104860_b1 article-title: A robust MPC for input-output LPV models publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2553143 – volume: 22 start-page: 2576 issue: 6 year: 2017 ident: 10.1016/j.conengprac.2021.104860_b30 article-title: Disturbance rejection MPC for tracking of wheeled mobile robot publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2017.2758603 – volume: 62 start-page: 5807 issue: 9 year: 2015 ident: 10.1016/j.conengprac.2021.104860_b35 article-title: Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed systems via a disturbance observer publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2015.2450736 – volume: 23 start-page: 389 issue: 1 year: 2018 ident: 10.1016/j.conengprac.2021.104860_b38 article-title: Hybrid fuzzy decoupling control for a precision maglev motion system publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2017.2771340 – volume: 8 start-page: 107124 year: 2020 ident: 10.1016/j.conengprac.2021.104860_b39 article-title: An RBF-ARX model-based variable-gain feedback RMPC algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2999621 – volume: 49 start-page: 725 issue: 3 year: 2013 ident: 10.1016/j.conengprac.2021.104860_b19 article-title: Economic receding horizon control without terminal constraints publication-title: Automatica doi: 10.1016/j.automatica.2012.12.003 – volume: 7 issue: 2 year: 2018 ident: 10.1016/j.conengprac.2021.104860_b25 article-title: Levitating micro-actuators: A review publication-title: Actuators doi: 10.3390/act7020017 – volume: 27 start-page: 1334 issue: 3 year: 2019 ident: 10.1016/j.conengprac.2021.104860_b29 article-title: Path-following control of an AUV: A multiobjective model predictive control approach publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2018.2789440 – volume: 109 year: 2019 ident: 10.1016/j.conengprac.2021.104860_b6 article-title: A parallel Newton-type method for nonlinear model predictive control publication-title: Automatica doi: 10.1016/j.automatica.2019.108560 – volume: 21 start-page: 1341 issue: 11 year: 2011 ident: 10.1016/j.conengprac.2021.104860_b20 article-title: Tube-based robust nonlinear model predictive control publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.1758 – volume: 18 start-page: 267 issue: 2 year: 2010 ident: 10.1016/j.conengprac.2021.104860_b32 article-title: Fast model predictive control using online optimization publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2009.2017934 – volume: 66 start-page: 4860 issue: 6 year: 2019 ident: 10.1016/j.conengprac.2021.104860_b5 article-title: A novel design and control to improve positioning precision and robustness for a planar maglev system publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2821633 – volume: 64 start-page: 254 issue: 1 year: 2019 ident: 10.1016/j.conengprac.2021.104860_b17 article-title: Nonlinear reference tracking: An economic model predictive control perspective publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2018.2800789 – volume: 59 start-page: 2157 issue: 5 year: 2012 ident: 10.1016/j.conengprac.2021.104860_b28 article-title: Analysis method of the dynamic force and torque distribution in the magnet array of a commutated magnetically levitated planar actuator publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2011.2146222 – volume: 64 start-page: 440 issue: 1 year: 2017 ident: 10.1016/j.conengprac.2021.104860_b40 article-title: Design and modeling of a six-degree-of-freedom magnetically levitated positioner using square coils and 1-D halbach arrays publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2598811 – volume: 80 start-page: 103 year: 2019 ident: 10.1016/j.conengprac.2021.104860_b36 article-title: Economic model predictive control for achieving offset-free operation performance of industrial constrained systems publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2019.04.006 – volume: 21 start-page: 2543 issue: 5 year: 2016 ident: 10.1016/j.conengprac.2021.104860_b3 article-title: A swing constraint guaranteed MPC algorithm for underactuated overhead cranes publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2016.2558202 – volume: 26 start-page: 2157 issue: 6 year: 2018 ident: 10.1016/j.conengprac.2021.104860_b37 article-title: A systematic min–max optimization design of constrained model predictive tracking control for industrial processes against uncertainty publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2017.2748059 – volume: 63 start-page: 5763 issue: 9 year: 2016 ident: 10.1016/j.conengprac.2021.104860_b14 article-title: Performance-oriented precision LARC tracking motion control of a magnetically levitated planar motor with comparative experiments publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2538743 – volume: 47 start-page: 2052 issue: 9 year: 2011 ident: 10.1016/j.conengprac.2021.104860_b24 article-title: Output feedback model predictive control for LPV systems based on quasi-min–max algorithm publication-title: Automatica doi: 10.1016/j.automatica.2011.06.015 |
SSID | ssj0016991 |
Score | 2.416137 |
Snippet | This paper presents an observer-based fast nonlinear model predictive control (NMPC) scheme for translation control of magnetically levitated (maglev)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104860 |
SubjectTerms | Magnetically levitated positioning system Motion control Nonlinear disturbance observer Nonlinear model predictive control Real-time optimization |
Title | Observer-based fast nonlinear MPC for multi-DOF maglev positioning system: Theory and experiment |
URI | https://dx.doi.org/10.1016/j.conengprac.2021.104860 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jc1js9noqVRLVdoKWugt7iulUkOp0aO_3Z1s0lYQFDwmZMLyZbIzk3zzDULnUZAKn9DUgWhsChTiOiIMpcMJU4r5UuhCTKc_oL0RuRuH4xrqVL0wQKss9367pxe7dXmmVaLZmk-nrUeTfEcmYIICFujmgSYoIRF4-cXnkubh0dhOzTMXQ7e9V7J5LMfLlJw6m0A_kqkUfQ9-eLJCrPKHELUWdro7aLvMF3HbLmkX1XS2h7bWVAT30fNQwKdVvXAgJCmc8rccZ1YCgy9w_6GDTWaKC-qgcz3s4lc-mekPXPG1zE2wFXS-xLZVH_NM4ZX2_wEadW-eOj2nHJzgSJ-w3PE0TZUigkvORMwoj2kMMu6KccZVIMxLql1OKTclacBNyeAqn8McntClUso4OER1s0x9hLBIZahTEaduGhODIfODgMYypDIEHZyogaIKq0SWquIw3GKWVPSxl2SFcgIoJxblBvKWlnOrrPEHm6vqcSTfvCQxAeBX6-N_WZ-gTTiy_LJTVM8X7_rMJCS5aBYe10Qb7dv73uALPS_hZg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8RnxuQevDX1st1s9EZSAvEyEhFvdVwkGCUH097vLtoCJiSZe206z-Xa7M9P95huAmyhIuY9J6hhvrBMU7Do8DIXDMJWS-oKrpZhOp0saA_w4DIcFqOW1MIZWme39dk9f7tbZlUqGZmU2HleedfAdaYdpFLCMbh7egpJRpwqLUKo2W43u6jCBxLZxnn7eFNx7GaHH0rx01qmmI1OSpJNF3zNnnnSpV_mDl9rwPPV92MtCRlS1ozqAgpoewu6GkOARvPS4-buq5o7xShKl7H2BplYFg81R56mGdHCKluxB575XR29sNFGfKKds6Zcgq-l8i2y1PmJTidby_8cwqD_0aw0n653gCB_TheMpkkqJOROM8pgSFpPYKLlLyiiTAdffqXIZIUxnpQHTWYMrfWZa8YQuEULEwQkU9TDVKSCeilClPE7dNMYaQ-oHAYlFSERopHCiMkQ5VonIhMVNf4tJkjPIXpM1yolBObEol8FbWc6suMYfbO7y6Ui-LZRE-4Bfrc_-ZX0N241-p520m93WOeyYO5ZudgHFxfxDXer4ZMGvsvX3Bfse5Bc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observer-based+fast+nonlinear+MPC+for+multi-DOF+maglev+positioning+system%3A+Theory+and+experiment&rft.jtitle=Control+engineering+practice&rft.au=Zhang%2C+Kaiyang&rft.au=Xu%2C+Fengqiu&rft.au=Xu%2C+Xianze&rft.date=2021-09-01&rft.issn=0967-0661&rft.volume=114&rft.spage=104860&rft_id=info:doi/10.1016%2Fj.conengprac.2021.104860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2021_104860 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |