Ship Detection Transformer in SAR Images Based on Key Scattering Points Feature Aggregation and Context Feature Refinement

In recent years, deep learning algorithms have demonstrated significant advancements in the field of ship detection using synthetic aperture radar (SAR). Nevertheless, two primary challenges persist in the task of SAR ship detection: first, owing to the unique imaging mechanism, targets in SAR image...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 17820 - 17836
Main Authors Yin, Yifei, Yang, Zhu, Shi, Hao, Meng, Fanyu, Li, Wei
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, deep learning algorithms have demonstrated significant advancements in the field of ship detection using synthetic aperture radar (SAR). Nevertheless, two primary challenges persist in the task of SAR ship detection: first, owing to the unique imaging mechanism, targets in SAR images are typically represented by scattering points, posing challenges for accurate feature extraction and leading to issues of inaccurate localization. Second, the detectors are susceptible to generating false alarms due to interference from the complex backgrounds of inshore scenes. In order to mitigate the issues mentioned above, a ship detection transformer based on key scattering points feature aggregation and context feature refinement is proposed. Specifically, considering that the ship targets exist in the form of scattering points in the SAR images, a key scattering points feature aggregation module is designed to mine and aggregate the key scattering points feature of ship targets. By this method, it is beneficial to generate more accurate feature representation for improving the localization performance of the detectors. Furthermore, to address the issue of excessive false alarms under complex background interference, a context feature refinement module is designed to augment the semantic representation and context information of feature maps. Extensive experiments are conducted on the two public datasets to substantiate the superiority of our proposed detector compared with other state-of-the-art methods.
AbstractList In recent years, deep learning algorithms have demonstrated significant advancements in the field of ship detection using synthetic aperture radar (SAR). Nevertheless, two primary challenges persist in the task of SAR ship detection: first, owing to the unique imaging mechanism, targets in SAR images are typically represented by scattering points, posing challenges for accurate feature extraction and leading to issues of inaccurate localization. Second, the detectors are susceptible to generating false alarms due to interference from the complex backgrounds of inshore scenes. In order to mitigate the issues mentioned above, a ship detection transformer based on key scattering points feature aggregation and context feature refinement is proposed. Specifically, considering that the ship targets exist in the form of scattering points in the SAR images, a key scattering points feature aggregation module is designed to mine and aggregate the key scattering points feature of ship targets. By this method, it is beneficial to generate more accurate feature representation for improving the localization performance of the detectors. Furthermore, to address the issue of excessive false alarms under complex background interference, a context feature refinement module is designed to augment the semantic representation and context information of feature maps. Extensive experiments are conducted on the two public datasets to substantiate the superiority of our proposed detector compared with other state-of-the-art methods.
Author Li, Wei
Meng, Fanyu
Yang, Zhu
Shi, Hao
Yin, Yifei
Author_xml – sequence: 1
  givenname: Yifei
  orcidid: 0009-0002-3281-5557
  surname: Yin
  fullname: Yin, Yifei
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Zhu
  orcidid: 0000-0001-9640-7443
  surname: Yang
  fullname: Yang, Zhu
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Hao
  orcidid: 0000-0002-2013-6592
  surname: Shi
  fullname: Shi, Hao
  email: shihao@bit.edu.cn
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Fanyu
  orcidid: 0009-0005-3606-3745
  surname: Meng
  fullname: Meng, Fanyu
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Wei
  orcidid: 0000-0001-7015-7335
  surname: Li
  fullname: Li, Wei
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
BookMark eNpFkU1v1DAQQC1UJLaFXwAH_4Fs7fgjznFZKCxUAm2WszWxx8FV16lsI1F-fdNuVU4jzcx7l3dOztKckJD3nK05Z_3lt-Gw2Q_rlrVqLZRhnexekVXLFW-4EuqMrHgv-oZLJt-Q81JuGNNt14sV-Tf8jnf0E1Z0Nc6JHjKkEuZ8xExjosNmT3dHmLDQj1DQ0-XlO97TwUGtmGOa6M85plroFUL9k5FupinjBE8ySJ5u51Txb3257zHEhEdM9S15HeC24LvneUF-XX0-bL821z--7Lab68a10nSN6xQXIHUwCoQchZNBCKbl2DIPPrSSiQChd1J7PRoOJnjkRhg_uhH8wlyQ3cnrZ7ixdzkeId_bGaJ9Wsx5spBrdLdoldeuHzkzThupuBwZE3zU7eLywmi2uMTJ5fJcSsbw4uPMPqawpxT2MYV9TrFQH05URMT_BGei14aLB7rniLE
CODEN IJSTHZ
Cites_doi 10.1109/JSTARS.2017.2692820
10.1109/ACCESS.2020.3005861
10.1109/CVPR52688.2022.01325
10.1109/TGRS.2021.3128060
10.3390/rs14081908
10.1109/LGRS.2024.3461212
10.1007/978-3-030-01264-9_45
10.1109/ICCV48922.2021.00360
10.1109/TAP.1986.1143771
10.3390/rs14205247
10.1109/LGRS.2016.2618604
10.3390/rs13183690
10.1109/EURAD.2005.1605556
10.1109/TGRS.2024.3515150
10.1109/ICCV.2019.00667
10.1109/CVPR52729.2023.00721
10.1109/TGRS.2020.3005151
10.1109/MSPEC.1967.5217220
10.1016/j.cpc.2007.11.005
10.1109/TGRS.2022.3141125
10.1109/CVPR.2017.690
10.1109/JSTARS.2017.2755672
10.1109/JSTARS.2024.3435989
10.1007/s11760-018-1408-4
10.1109/CVPR52729.2023.00297
10.1109/JSTARS.2025.3533140
10.1109/TGRS.2024.3454308
10.1109/TGRS.2024.3419893
10.1109/TGRS.2019.2899337
10.1109/ICCV.2019.00972
10.1109/TGRS.2022.3141407
10.1109/TGRS.2021.3130117
10.1016/j.patcog.2020.107787
10.1109/JSTARS.2024.3461723
10.3390/rs14061488
10.12000/JR22007
10.1109/CVPR.2019.00091
10.1109/TGRS.2021.3095386
10.1109/TGRS.2020.2997200
10.1109/CVPR.2009.5206848
10.1109/ICCV.2015.169
10.1109/7.135446
10.3390/rs11070765
10.1109/TGRS.2021.3108585
10.1109/TGRS.2020.2987907
10.1109/JSTARS.2024.3514898
10.1109/TGRS.2024.3394405
10.1109/CVPR.2016.90
10.1109/TGRS.2021.3130899
10.1109/CVPR.2014.81
10.1109/ICCV.2017.322
10.1007/s11432-017-9405-6
10.1109/ICCV48922.2021.00363
10.1109/TGRS.2024.3451399
10.1609/aaai.v36i3.20158
10.1109/TGRS.2023.3267495
10.1109/TGRS.2022.3202495
10.1007/978-3-030-58452-8_13
10.1109/cvpr42600.2020.00978
10.l007/978-3-319-46448-0_2
10.1109/ICCV.2017.324
10.1109/ICCSIT.2010.5563693
10.3390/rs9080860
10.3390/rs14092238
10.1109/CVPR.2018.00745
10.1016/j.isprsjprs.2024.12.011
10.1109/JSTARS.2024.3524402
10.1109/tpami.2016.2577031
10.1109/TGRS.2022.3146027
10.1109/CVPR.2016.91
10.1109/JSTARS.2024.3358058
10.1109/CVPR52729.2023.01780
10.1109/TGRS.2023.3249349
10.1109/LGRS.2022.3192559
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/JSTARS.2025.3580747
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 17836
ExternalDocumentID oai_doaj_org_article_5d6c9b108c684514b0031b62dbcd3860
10_1109_JSTARS_2025_3580747
11039681
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFA0715204
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c2487-c7513a46f85a34b3c4f33064b20dadf2403faf9c46d6b81a8fde1838dbcbad5a3
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Wed Aug 27 01:09:43 EDT 2025
Thu Jul 31 00:28:00 EDT 2025
Wed Aug 27 02:13:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2487-c7513a46f85a34b3c4f33064b20dadf2403faf9c46d6b81a8fde1838dbcbad5a3
ORCID 0000-0001-9640-7443
0009-0002-3281-5557
0000-0002-2013-6592
0000-0001-7015-7335
0009-0005-3606-3745
OpenAccessLink https://doaj.org/article/5d6c9b108c684514b0031b62dbcd3860
PageCount 17
ParticipantIDs crossref_primary_10_1109_JSTARS_2025_3580747
ieee_primary_11039681
doaj_primary_oai_doaj_org_article_5d6c9b108c684514b0031b62dbcd3860
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Zhang (ref45) 2023
ref51
ref50
Jocher (ref34) 2024
Chen (ref42) 2024
ref46
Jocher (ref33) 2023
ref48
ref47
ref41
Loshchilov (ref80) 2019
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref79
ref78
ref37
ref31
ref75
ref30
ref74
ref77
ref32
ref76
ref2
Zhu (ref44) 2021
ref1
ref39
ref38
Tian (ref35) 2025
Ge (ref36) 2021
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
Kong (ref83) 2019; 29
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref15
  doi: 10.1109/JSTARS.2017.2692820
– ident: ref77
  doi: 10.1109/ACCESS.2020.3005861
– ident: ref43
  doi: 10.1109/CVPR52688.2022.01325
– ident: ref54
  doi: 10.1109/TGRS.2021.3128060
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2019
  ident: ref80
  article-title: Decoupled weight decay regularization
– ident: ref53
  doi: 10.3390/rs14081908
– ident: ref64
  doi: 10.1109/LGRS.2024.3461212
– ident: ref37
  doi: 10.1007/978-3-030-01264-9_45
– ident: ref38
  doi: 10.1109/ICCV48922.2021.00360
– ident: ref2
  doi: 10.1109/TAP.1986.1143771
– ident: ref63
  doi: 10.3390/rs14205247
– ident: ref68
  doi: 10.1109/LGRS.2016.2618604
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2023
  ident: ref45
  article-title: DINO: DETR with improved denoising anchor boxes for end-to-end object detection
– ident: ref76
  doi: 10.3390/rs13183690
– ident: ref1
  doi: 10.1109/EURAD.2005.1605556
– ident: ref66
  doi: 10.1109/TGRS.2024.3515150
– ident: ref22
  doi: 10.1109/ICCV.2019.00667
– ident: ref32
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref55
  doi: 10.1109/TGRS.2020.3005151
– ident: ref73
  doi: 10.1109/MSPEC.1967.5217220
– ident: ref72
  doi: 10.1016/j.cpc.2007.11.005
– ident: ref3
  doi: 10.1109/TGRS.2022.3141125
– year: 2024
  ident: ref42
  article-title: LW-DETR: A transformer replacement to YOLO for real-time detection
– ident: ref23
  doi: 10.1109/CVPR.2017.690
– ident: ref48
  doi: 10.1109/JSTARS.2017.2755672
– ident: ref60
  doi: 10.1109/JSTARS.2024.3435989
– ident: ref14
  doi: 10.1007/s11760-018-1408-4
– ident: ref46
  doi: 10.1109/CVPR52729.2023.00297
– ident: ref50
  doi: 10.1109/JSTARS.2025.3533140
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref44
  article-title: Deformable DETR: Deformable transformers for end-to-end object detection
– ident: ref12
  doi: 10.1109/TGRS.2024.3454308
– ident: ref49
  doi: 10.1109/TGRS.2024.3419893
– year: 2025
  ident: ref35
  article-title: Yolov12: Attention-centric real-time object detectors
– ident: ref16
  doi: 10.1109/TGRS.2019.2899337
– ident: ref21
  doi: 10.1109/ICCV.2019.00972
– ident: ref57
  doi: 10.1109/TGRS.2022.3141407
– ident: ref9
  doi: 10.1109/TGRS.2021.3130117
– ident: ref27
  doi: 10.1016/j.patcog.2020.107787
– ident: ref65
  doi: 10.1109/JSTARS.2024.3461723
– year: 2024
  ident: ref34
  article-title: Ultralytics yolo11
– year: 2023
  ident: ref33
  article-title: Ultralytics YOLOv8
– ident: ref62
  doi: 10.3390/rs14061488
– ident: ref47
  doi: 10.12000/JR22007
– ident: ref82
  doi: 10.1109/CVPR.2019.00091
– volume: 29
  start-page: 7389
  year: 2019
  ident: ref83
  article-title: Foveabox: Beyond anchor-based object detector
  publication-title: Comput. Vis. Pattern Recognit.
– ident: ref7
  doi: 10.1109/TGRS.2021.3095386
– ident: ref52
  doi: 10.1109/TGRS.2020.2997200
– ident: ref79
  doi: 10.1109/CVPR.2009.5206848
– ident: ref20
  doi: 10.1109/ICCV.2015.169
– ident: ref13
  doi: 10.1109/7.135446
– ident: ref78
  doi: 10.3390/rs11070765
– ident: ref4
  doi: 10.1109/TGRS.2021.3108585
– ident: ref6
  doi: 10.1109/TGRS.2020.2987907
– ident: ref51
  doi: 10.1109/JSTARS.2024.3514898
– ident: ref17
  doi: 10.1109/TGRS.2024.3394405
– ident: ref74
  doi: 10.1109/CVPR.2016.90
– ident: ref5
  doi: 10.1109/TGRS.2021.3130899
– ident: ref29
  doi: 10.1109/CVPR.2014.81
– year: 2021
  ident: ref36
  article-title: YOLOX: Exceeding YOLO series in 2021
– ident: ref67
  doi: 10.1109/ICCV.2017.322
– ident: ref8
  doi: 10.1007/s11432-017-9405-6
– ident: ref40
  doi: 10.1109/ICCV48922.2021.00363
– ident: ref58
  doi: 10.1109/TGRS.2024.3451399
– ident: ref39
  doi: 10.1609/aaai.v36i3.20158
– ident: ref71
  doi: 10.1109/TGRS.2023.3267495
– ident: ref56
  doi: 10.1109/TGRS.2022.3202495
– ident: ref25
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref81
  doi: 10.1109/cvpr42600.2020.00978
– ident: ref30
  doi: 10.l007/978-3-319-46448-0_2
– ident: ref24
  doi: 10.1109/ICCV.2017.324
– ident: ref69
  doi: 10.1109/ICCSIT.2010.5563693
– ident: ref26
  doi: 10.3390/rs9080860
– ident: ref10
  doi: 10.3390/rs14092238
– ident: ref75
  doi: 10.1109/CVPR.2018.00745
– ident: ref18
  doi: 10.1016/j.isprsjprs.2024.12.011
– ident: ref59
  doi: 10.1109/JSTARS.2024.3524402
– ident: ref19
  doi: 10.1109/tpami.2016.2577031
– ident: ref28
  doi: 10.1109/TGRS.2022.3146027
– ident: ref31
  doi: 10.1109/CVPR.2016.91
– ident: ref11
  doi: 10.1109/JSTARS.2024.3358058
– ident: ref41
  doi: 10.1109/CVPR52729.2023.01780
– ident: ref70
  doi: 10.1109/TGRS.2023.3249349
– ident: ref61
  doi: 10.1109/LGRS.2022.3192559
SSID ssj0062793
Score 2.374329
Snippet In recent years, deep learning algorithms have demonstrated significant advancements in the field of ship detection using synthetic aperture radar (SAR)....
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 17820
SubjectTerms Accuracy
Detection transformer
Detectors
Feature extraction
Marine vehicles
Radar polarimetry
Remote sensing
Scattering
scattering points
Semantics
ship detection
Synthetic aperture radar
synthetic aperture radar (SAR)
Transformers
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELboSpV64VGoWF7ygWOzJI7jtY8LlKeKql2QuEV-wqpqFi1ZieXXM-NkaUFC6iWKEkcZ5XPG39iebwjZZyo42y98wi2DQ5BZolzGk77WgSmjJDOY7_zzSpzd8Ivb4rZNVo-5MN77uPnM9_A0ruW7iZ3hVNlBhuuWAhOtP0Hk1iRrLdyuYP2osAuERCWoGdNKDGWpOoA-PhiOIBhkRQ-X_fpYTOWfYSiq9b8prxJHl5MVcrWwq9lU8rs3q03PPr-TbPxvw1fJcssz6aDpGGtkyVdfyefTWMd3vk6eR_fjB3rs67gTq6LXC_7qp3Rc0dFgSM__gKt5pIcwzDkKTS79nI5slOOE4Y7-moyr-pEihZxNPR3cQeB-F2GmunI0ql491a_3hz4An0UzN8jNyY_ro7OkLcOQWAbhTAJQZrnmIshC59zklocc4xbDUqddQEG_oIOyXDhhZKZlcB4chXTGGu3gmW-kU00qv0lo4MoBZRE5kynXuZSY6KpD4cBdp06KLvm-QKV8aNQ2yhilpKpsQCwRxLIFsUsOEbnXpiiVHS_Axy_bP68snLDKZKm0QnKgh9GPGcHAPJdLkXbJBgL2930tVlsfXN8mX9CGZhpmh3Tq6czvAjGpzV7skC9P6N7n
  priority: 102
  providerName: IEEE
Title Ship Detection Transformer in SAR Images Based on Key Scattering Points Feature Aggregation and Context Feature Refinement
URI https://ieeexplore.ieee.org/document/11039681
https://doaj.org/article/5d6c9b108c684514b0031b62dbcd3860
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQEhIL4iiiHJUHRgKJ47j22ALlEgi1VOoW-YQOBNSmEuXX8-ykUCYWlgyJnVjfc_y-5-N7CB0T4YxuZzaimsDF8SQSJqFRW0pHhBKcKH_e-f6BXQ_p7SgbLaX68nvCKnngCrizzDAtVBJzzTgF7x66oWLEKG1SzkK0Dj5vEUxVYzAj7SC3C-xERF5AptYbSmJxBh2-0x9AZEiyU78G2PaZVZZ8UpDu_5VrJbia3ibaqDki7lRt20IrtthGa1chB-98B30OXsbv-MKWYRdVgZ8W3NNO8LjAg04f37zCMDHFXXBRBkOROzvHAx2kNMFV4ce3cVFOsad_s4nFnWcIup-DibAsDA6KVR_l9_O-dcBF_TRiAw17l0_n11GdQiHSBEKRCMyQpJIyxzOZUpVq6lIfcygSG2mcF-Nz0glNmWGKJ5I7Y-En54Cukgbq7KLV4q2wewg7KgzQDZYSHlOZcu4PqUqXGRhqY8NZE50sQMzfK6WMPEQYscgrzHOPeV5j3kRdD_R3US9zHW6A8fPa-Plfxm-ihjfTz_f8wjbjyf5_vPwArfsGV_Mth2i1nMzsETCQUrVCZ2uFw4JfJ3bVGQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYQE9petjGY1o0NP-xxKYnjuPZjgbHyq0JtkXiL_JNViBSVVBr89dw5KRtIk3iJosRRTvmcu-9s32dCvjMVnO0VPuGWwSHILFEu40lP68CUUZIZrHc-HYrBOT-6KC7aYvVYC-O9j4vPfBdP41y-m9kFDpXtZDhvKbDQ-hUE_iJryrWWjlewXtTYBUqiElSNaUWGslTtQC_vj8aQDrKiixN_PdxO5Z9AFPX6n2ywEuPLwTsyXFrWLCu56i5q07X3z0QbX2z6e_K2ZZq033SNdbLiqw9k7Vfcyfdug9yPf09v6L6v41qsik6WDNbP6bSi4_6IHl6Ds7mluxDoHIUmx_6Ojm0U5ISAR89m06q-pUgiF3NP-5eQul9GoKmuHI26V3_qx_sjH4DRopmb5Pzg52RvkLQbMSSWQUKTAJhZrrkIstA5N7nlIcfMxbDUaRdQ0i_ooCwXThiZaRmcB1chnbFGO3jmI1mtZpX_RGjgygFpETmTKde5lFjqqkPhwGGnTooO-bFEpbxp9DbKmKekqmxALBHEsgWxQ3YRucemKJYdL8DHL9t_ryycsMpkqbRCciCI0ZMZwcA8l0uRdsgmAvb3fS1Wn_9zfZu8HkxOT8qTw-HxF_IG7WkGZbbIaj1f-K9AU2rzLXbOBxn54jA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ship+Detection+Transformer+in+SAR+Images+Based+on+Key+Scattering+Points+Feature+Aggregation+and+Context+Feature+Refinement&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Yin%2C+Yifei&rft.au=Yang%2C+Zhu&rft.au=Shi%2C+Hao&rft.au=Meng%2C+Fanyu&rft.date=2025&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=18&rft.spage=17820&rft.epage=17836&rft_id=info:doi/10.1109%2FJSTARS.2025.3580747&rft.externalDocID=11039681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon