Hyperledger Fabric Graph Isomorphism Network for Conflict Transactions Detection in Multi-Version Concurrency Control

Multi-Version Concurrency Control (MVCC) is a critical mechanism in blockchain systems such as Hyperledger Fabric. MVCC is crucial for managing concurrent transactions ensuring integrity through versioning and timestamp techniques. Enhancing MVCC is essential due to the significant overhead involved...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 131314 - 131333
Main Authors Alzahrani, Fawaz, Yazid Idris, Mohd, Fo'Ad Rohani, Mohd, Budiarto, Rahmat
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-Version Concurrency Control (MVCC) is a critical mechanism in blockchain systems such as Hyperledger Fabric. MVCC is crucial for managing concurrent transactions ensuring integrity through versioning and timestamp techniques. Enhancing MVCC is essential due to the significant overhead involved in maintaining multiple versions of data and resolving conflict transactions, particularly in enterprise blockchain applications where data integrity and system reliability are of utmost importance. Conflict transactions are the predominant cause of transaction failures in Hyperledger Fabric where multiple transactions attempt to update data items based on outdated data versions. This study introduces the Hyperledger Fabric-based Modified Graph Isomorphism Network (HFGIN). Employing advanced graph neural networks, HFGIN utilizes node and edge data representations within a graph-based framework, which significantly increases the efficiency of detecting MVCC conflicts. The proposed model aims to detect conflict transactions at an earlier stage in Hyperledger Fabric blockchain systems. Evaluation results indicate that HFGIN substantially outperforms baseline models such as the Graph Convolutional Network (GCN) and Graph Isomorphism Network (GIN). HFGIN achieves a test accuracy of 82.20%, demonstrating a 14.67% improvement over GCN and a 4.12% improvement over GIN. Moreover, HFGIN records a precision of 86.06%, marking an 8.97% enhancement over GCN and 9.46% over GIN. It also shows a recall of 79.56%, which is 17.03% higher than GCN and 1.39% greater than GIN, besides an F1 score improvement of 23.37% over GCN and 5.27% over GIN. HFGIN also demonstrates computational efficiency with low inference latency and minimal resource usage and maintains scalability when tested under larger transaction loads. The model achieves these improvements while maintaining computational efficiency and system scalability by applying inference selectively and enabling parallel execution of non-conflicting transactions. The enhancements contribute to detection rate increase of conflict transactions over GCN and GIN in an earlier stage, demonstrating the model's potential to transform MVCC conflict management in high-demand blockchain environments such as banking operations.
AbstractList Multi-Version Concurrency Control (MVCC) is a critical mechanism in blockchain systems such as Hyperledger Fabric. MVCC is crucial for managing concurrent transactions ensuring integrity through versioning and timestamp techniques. Enhancing MVCC is essential due to the significant overhead involved in maintaining multiple versions of data and resolving conflict transactions, particularly in enterprise blockchain applications where data integrity and system reliability are of utmost importance. Conflict transactions are the predominant cause of transaction failures in Hyperledger Fabric where multiple transactions attempt to update data items based on outdated data versions. This study introduces the Hyperledger Fabric-based Modified Graph Isomorphism Network (HFGIN). Employing advanced graph neural networks, HFGIN utilizes node and edge data representations within a graph-based framework, which significantly increases the efficiency of detecting MVCC conflicts. The proposed model aims to detect conflict transactions at an earlier stage in Hyperledger Fabric blockchain systems. Evaluation results indicate that HFGIN substantially outperforms baseline models such as the Graph Convolutional Network (GCN) and Graph Isomorphism Network (GIN). HFGIN achieves a test accuracy of 82.20%, demonstrating a 14.67% improvement over GCN and a 4.12% improvement over GIN. Moreover, HFGIN records a precision of 86.06%, marking an 8.97% enhancement over GCN and 9.46% over GIN. It also shows a recall of 79.56%, which is 17.03% higher than GCN and 1.39% greater than GIN, besides an F1 score improvement of 23.37% over GCN and 5.27% over GIN. HFGIN also demonstrates computational efficiency with low inference latency and minimal resource usage and maintains scalability when tested under larger transaction loads. The model achieves these improvements while maintaining computational efficiency and system scalability by applying inference selectively and enabling parallel execution of non-conflicting transactions. The enhancements contribute to detection rate increase of conflict transactions over GCN and GIN in an earlier stage, demonstrating the model's potential to transform MVCC conflict management in high-demand blockchain environments such as banking operations.
Author Alzahrani, Fawaz
Budiarto, Rahmat
Yazid Idris, Mohd
Fo'Ad Rohani, Mohd
Author_xml – sequence: 1
  givenname: Fawaz
  orcidid: 0009-0005-6661-1167
  surname: Alzahrani
  fullname: Alzahrani, Fawaz
  email: mohammad.a@graduate.utm.my
  organization: Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
– sequence: 2
  givenname: Mohd
  orcidid: 0000-0001-7702-6610
  surname: Yazid Idris
  fullname: Yazid Idris, Mohd
  organization: Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
– sequence: 3
  givenname: Mohd
  surname: Fo'Ad Rohani
  fullname: Fo'Ad Rohani, Mohd
  organization: Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
– sequence: 4
  givenname: Rahmat
  orcidid: 0000-0002-6374-4731
  surname: Budiarto
  fullname: Budiarto, Rahmat
  organization: Faculty of Computing and Information, Al Baha University, Al Aqiq, Saudi Arabia
BookMark eNpNkclOwzAURS0EEuMXwMI_kOIhjuMlClAqMSwYtpbjPoMhjavnVKh_T0oR4M27utI9XpxDstunHgg55WzCOTPnF01z9fg4EUyoiVS14ZXaIQeCV6aQSla7__I-Ocn5nY2vHiulD8jqZr0E7GD-CkivXYvR0ym65Rud5bRIuHyLeUHvYfhM-EFDQtqkPnTRD_QJXZ-dH2LqM72EAb4jjT29W3VDLF4A86YYB36FCL1fb_KAqTsme8F1GU5-7hF5vr56am6K24fprLm4Lbwoa1U46VmQPLTatyEYCEqzVolKOwFKlqwWjEnVMm9qZkrBtQo8eFnKuvWOOy6PyGzLnSf3bpcYFw7XNrlov4uEr9bhEH0HNihW1TxoobQuRSlqY3g7fsm182xe-ZEltyyPKWeE8MvjzG5E2K0IuxFhf0SMq7PtKgLA34IzbYxm8gvXbYeV
CODEN IAECCG
Cites_doi 10.1109/ACCESS.2023.3291618
10.48550/ARXIV.1609.02907
10.1007/s11227-022-04762-3
10.1007/978-3-030-34223-4_3
10.1145/3318464.3389693
10.1145/3547300
10.3390/math12081133
10.1145/3361525.3361540
10.1007/978-981-97-0862-8_17
10.1007/978-981-99-3626-7_131
10.1109/JIOT.2021.3050244
10.1109/Blockchain.2019.00017
10.1109/MASCOTS.2018.00034
10.1007/978-3-030-65745-1_8
10.1016/j.bcra.2021.100012
10.1145/3448016.3452823
10.1007/s12083-022-01401-9
10.1109/TNSE.2022.3166655
10.1109/DSA52907.2021.00031
10.3390/info14020117
10.1109/ICDCS47774.2020.00159
10.1007/978-981-16-7993-3_1
10.1145/1376616.1376690
10.1007/s11280-020-00844-5
10.1007/978-3-030-96772-7_25
10.1109/CNS59707.2023.10288697
10.1007/s00607-023-01177-7
10.1109/ICKG52313.2021.00020
10.1007/s00450-019-00411-y
10.1145/3299869.3319883
10.1109/ICDCS54860.2022.00033
10.1016/j.bcra.2021.100026
10.1109/ICBC48266.2020.9169478
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2025.3589165
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 131333
ExternalDocumentID oai_doaj_org_article_f50681f7257742428991b9ef17ac0d6c
10_1109_ACCESS_2025_3589165
11079970
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c2485-a3c0f31fb7cbff9ef570b5267a2e5340820035b0c980942175f1fc3438bca1a13
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:27:03 EDT 2025
Thu Aug 07 05:48:06 EDT 2025
Wed Aug 27 01:45:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2485-a3c0f31fb7cbff9ef570b5267a2e5340820035b0c980942175f1fc3438bca1a13
ORCID 0000-0001-7702-6610
0000-0002-6374-4731
0009-0005-6661-1167
OpenAccessLink https://doaj.org/article/f50681f7257742428991b9ef17ac0d6c
PageCount 20
ParticipantIDs ieee_primary_11079970
doaj_primary_oai_doaj_org_article_f50681f7257742428991b9ef17ac0d6c
crossref_primary_10_1109_ACCESS_2025_3589165
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref19
Thakkar (ref16) 2020
ref18
Leman (ref37) 1968; 2
Faber (ref30) 2021
Trabelsi (ref9) 2023
Nakamoto (ref38) 2023
ref24
ref23
ref25
ref20
ref22
Mitra (ref26) 2023
ref21
Xu (ref31) 2018
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.1109/ACCESS.2023.3291618
– ident: ref32
  doi: 10.48550/ARXIV.1609.02907
– ident: ref13
  doi: 10.1007/s11227-022-04762-3
– ident: ref11
  doi: 10.1007/978-3-030-34223-4_3
– ident: ref22
  doi: 10.1145/3318464.3389693
– ident: ref14
  doi: 10.1145/3547300
– ident: ref27
  doi: 10.3390/math12081133
– ident: ref7
  doi: 10.1145/3361525.3361540
– ident: ref12
  doi: 10.1007/978-981-97-0862-8_17
– ident: ref17
  doi: 10.1007/978-981-99-3626-7_131
– ident: ref20
  doi: 10.1109/JIOT.2021.3050244
– ident: ref24
  doi: 10.1109/Blockchain.2019.00017
– volume-title: Bitcoin: A Peer-to-Peer Electronic Cash System
  year: 2023
  ident: ref38
– ident: ref3
  doi: 10.1109/MASCOTS.2018.00034
– ident: ref35
  doi: 10.1007/978-3-030-65745-1_8
– ident: ref6
  doi: 10.1016/j.bcra.2021.100012
– ident: ref8
  doi: 10.1145/3448016.3452823
– ident: ref10
  doi: 10.1007/s12083-022-01401-9
– ident: ref36
  doi: 10.1109/TNSE.2022.3166655
– volume: 2
  start-page: 12
  issue: 9
  year: 1968
  ident: ref37
  article-title: A reduction of a graph to a canonical form and an algebra arising during this reduction
  publication-title: Nauchno-Technicheskaya Informatsiya
– ident: ref23
  doi: 10.1109/DSA52907.2021.00031
– ident: ref18
  doi: 10.3390/info14020117
– ident: ref29
  doi: 10.1109/ICDCS47774.2020.00159
– ident: ref33
  doi: 10.1007/978-981-16-7993-3_1
– ident: ref39
  doi: 10.1145/1376616.1376690
– ident: ref1
  doi: 10.1007/s11280-020-00844-5
– ident: ref4
  doi: 10.1007/978-3-030-96772-7_25
– volume-title: arxiv.2103.06857
  year: 2021
  ident: ref30
  article-title: Should graph Neural Networks use features, edges, or both?
– ident: ref19
  doi: 10.1109/CNS59707.2023.10288697
– ident: ref28
  doi: 10.1007/s00607-023-01177-7
– volume-title: TimeFabric: Trusted Time for Hyperledger Fabric
  year: 2023
  ident: ref26
– ident: ref34
  doi: 10.1109/ICKG52313.2021.00020
– ident: ref2
  doi: 10.1007/s00450-019-00411-y
– volume-title: arxiv.2003.05113
  year: 2020
  ident: ref16
  article-title: Scaling Hyperledger Fabric using pipelined execution and sparse peers
– volume-title: arxiv.2301.06181
  year: 2023
  ident: ref9
  article-title: Early detection for multiversion concurrency control conflicts in hyperledger fabric
– volume-title: arxiv.1810.00826
  year: 2018
  ident: ref31
  article-title: How powerful are graph neural networks?
– ident: ref21
  doi: 10.1145/3299869.3319883
– ident: ref15
  doi: 10.1109/ICDCS54860.2022.00033
– ident: ref40
  doi: 10.1016/j.bcra.2021.100026
– ident: ref25
  doi: 10.1109/ICBC48266.2020.9169478
SSID ssj0000816957
Score 2.3339386
Snippet Multi-Version Concurrency Control (MVCC) is a critical mechanism in blockchain systems such as Hyperledger Fabric. MVCC is crucial for managing concurrent...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 131314
SubjectTerms Blockchains
Complexity theory
Concurrency control
convolutional neural networks
Data integrity
deep learning
Distributed ledger
Fabrics
graph neural networks
graph theory
hyperledger
machine learning
Proposals
Reliability
Scalability
System performance
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygveWAkJY7rJB5LoRSGTq3EFtmOLSFEivoY4Ndz57gPkJDYLCtRbJ_ju-989x0h13FipeDIcFkqGXV0mkfKWmiBtnCgn5NY-yjfYToYd55fxEtIVve5MNZaH3xm29j0d_nlxCzQVXaLWEXKDBD6NiC3Ollr5VDBChJSZIFZiMXyttvrwSQAAyaizbF6HmqQDe3jSfp_VFXxSqW_T4bL4dSxJG_txVy3zdcvpsZ_j_eA7AXzknbr_XBItmx1RHY3SAePyWIA0HPq_WhT2lcaDkL6iLTV9Gk2eZ_Aur_O3umwDg-nYNPSXkgdoaN1cfEZvbdzH8ZV0deK-jzeKDjf8AXjeZ_MJ7YxFr5Jxv2HUW8QheILkUGWs0hxEzvOnM6Mdk5aJzIQW5JmKrGCY5lqvITUsZE5IEQANsIxZ3iH59oophg_IY1qUtlTQstEMyvz1AjH4bzgmpeOGVWC5ZYxJUWL3CyFUnzUHBuFxyaxLGoZFijDIsiwRe5QcKtHkSDbd8DaF-F_K5yI05y5DE4kAP8dhJVMwyxYpkxcpqZFmiiv9feCqM7-6D8nOziG2vlyQRrz6cJegjky11d-G34D8undWQ
  priority: 102
  providerName: IEEE
Title Hyperledger Fabric Graph Isomorphism Network for Conflict Transactions Detection in Multi-Version Concurrency Control
URI https://ieeexplore.ieee.org/document/11079970
https://doaj.org/article/f50681f7257742428991b9ef17ac0d6c
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKSx4YCbXjOInHEiiFoVMrdYtsx5Y6NEV9DPx77pxAy8TCZkV5ON85vvuc83eE3LPYKSlQ4bLSKkpMmkfaOWiBt_Dgn2NmQpbvOB1Nk_eZnO2V-sKcsEYeuAGu7yVLc-4zGFrA4hLkB9wo53mmLatSi7Mv-Lw9MhXm4JynSmatzBBnqj8oCngjIISxfBRYSg_dyZ4rCor9v0qsBA8zPCHHbWhIB02XTsmBq8_I0Z5g4DnZjoA2rsIa2IoOtYFJjL6i5DR9Wy8XS8Bsvl7QcZPaTSEepUW77YNOdoXB1_TZbUIKVk3nNQ17cKN24QwvsEGzyX5iG_PYu2Q6fJkUo6gtnBBZVCiLtLDMC-5NZo33AJbMAPI4zXTspMAS0_gD0TCrcmB3QEqk596KROTGaq65uCCdelm7S0Kr2HCn8tRKL-BbF0ZUnltdQdSVca1kjzx8Y1h-NPoYZeAVTJUN5CVCXraQ98gT4vxzKopbhwNg8rI1efmXyXuki1baPQ_6olTGrv7j5tfkEDvcrLLckM5mtXW3EHdszF0YYndhi-AX4PPTWg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOPItYnj7AjWzteB3HBw5ly7JLy562Um_BdmypQs1W-1BV_gt_hd_GjJNuCxLHStwsK4lj-7Pn4fE3AG95HoySxHBZW5MNXFFmNgQsobSIKJ9z7lKU77QYHw2-HKvjLfi5uQsTQkjBZ6FPxXSWX8_9mlxlu2SrGKN5F0N5EC7O0UJbfpjs43S-y_PRp9lwnHVJBDJPbF2ZlZ5HKaLT3sVoQlQam88LbfOgJKVbpsM0x70p0dJBBV1FEb0cyNJ5K6yQ-N1bcBsVDZW318M2LhzKWWGU7riMBDe7e8MhDhtanbnqS8rXRzLrmrxLaQH-yOOSxNjoAfy6HIA2euV7f71yff_jL27I_3aEHsL9ToFmey3iH8FWaB7DvWu0ik9gPUbjepE8hQs2sg63evaZiLnZZDk_nSOyTpanbNoGwDPU2tmwuxzDZlfp05dsP6xSoFrDThqWbipnnXuRXvCJ2cpfUJmi_Xfg6Eb6_RS2m3kTngGrcyeCKQuvosQdUTpZR-FtjbqpFtaoHry_BEF11rKIVMn64qZqMVMRZqoOMz34SEDZPEoU4KkC57rqdpQqKl6UImrcczWuLDKchcNeCG09rwvfgx3Cx1V7HTSe_6P-DdwZz74eVoeT6cELuEv_07qaXsL2arEOr1D5WrnXaQkw-HbTiPoNYgQ4-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperledger+Fabric+Graph+Isomorphism+Network+for+Conflict+Transactions+Detection+in+Multi-Version+Concurrency+Control&rft.jtitle=IEEE+access&rft.au=Alzahrani%2C+Fawaz&rft.au=Yazid+Idris%2C+Mohd&rft.au=Fo%E2%80%99Ad+Rohani%2C+Mohd&rft.au=Budiarto%2C+Rahmat&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=131314&rft.epage=131333&rft_id=info:doi/10.1109%2FACCESS.2025.3589165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3589165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon