Hyperledger Fabric Graph Isomorphism Network for Conflict Transactions Detection in Multi-Version Concurrency Control
Multi-Version Concurrency Control (MVCC) is a critical mechanism in blockchain systems such as Hyperledger Fabric. MVCC is crucial for managing concurrent transactions ensuring integrity through versioning and timestamp techniques. Enhancing MVCC is essential due to the significant overhead involved...
Saved in:
Published in | IEEE access Vol. 13; pp. 131314 - 131333 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-Version Concurrency Control (MVCC) is a critical mechanism in blockchain systems such as Hyperledger Fabric. MVCC is crucial for managing concurrent transactions ensuring integrity through versioning and timestamp techniques. Enhancing MVCC is essential due to the significant overhead involved in maintaining multiple versions of data and resolving conflict transactions, particularly in enterprise blockchain applications where data integrity and system reliability are of utmost importance. Conflict transactions are the predominant cause of transaction failures in Hyperledger Fabric where multiple transactions attempt to update data items based on outdated data versions. This study introduces the Hyperledger Fabric-based Modified Graph Isomorphism Network (HFGIN). Employing advanced graph neural networks, HFGIN utilizes node and edge data representations within a graph-based framework, which significantly increases the efficiency of detecting MVCC conflicts. The proposed model aims to detect conflict transactions at an earlier stage in Hyperledger Fabric blockchain systems. Evaluation results indicate that HFGIN substantially outperforms baseline models such as the Graph Convolutional Network (GCN) and Graph Isomorphism Network (GIN). HFGIN achieves a test accuracy of 82.20%, demonstrating a 14.67% improvement over GCN and a 4.12% improvement over GIN. Moreover, HFGIN records a precision of 86.06%, marking an 8.97% enhancement over GCN and 9.46% over GIN. It also shows a recall of 79.56%, which is 17.03% higher than GCN and 1.39% greater than GIN, besides an F1 score improvement of 23.37% over GCN and 5.27% over GIN. HFGIN also demonstrates computational efficiency with low inference latency and minimal resource usage and maintains scalability when tested under larger transaction loads. The model achieves these improvements while maintaining computational efficiency and system scalability by applying inference selectively and enabling parallel execution of non-conflicting transactions. The enhancements contribute to detection rate increase of conflict transactions over GCN and GIN in an earlier stage, demonstrating the model's potential to transform MVCC conflict management in high-demand blockchain environments such as banking operations. |
---|---|
AbstractList | Multi-Version Concurrency Control (MVCC) is a critical mechanism in blockchain systems such as Hyperledger Fabric. MVCC is crucial for managing concurrent transactions ensuring integrity through versioning and timestamp techniques. Enhancing MVCC is essential due to the significant overhead involved in maintaining multiple versions of data and resolving conflict transactions, particularly in enterprise blockchain applications where data integrity and system reliability are of utmost importance. Conflict transactions are the predominant cause of transaction failures in Hyperledger Fabric where multiple transactions attempt to update data items based on outdated data versions. This study introduces the Hyperledger Fabric-based Modified Graph Isomorphism Network (HFGIN). Employing advanced graph neural networks, HFGIN utilizes node and edge data representations within a graph-based framework, which significantly increases the efficiency of detecting MVCC conflicts. The proposed model aims to detect conflict transactions at an earlier stage in Hyperledger Fabric blockchain systems. Evaluation results indicate that HFGIN substantially outperforms baseline models such as the Graph Convolutional Network (GCN) and Graph Isomorphism Network (GIN). HFGIN achieves a test accuracy of 82.20%, demonstrating a 14.67% improvement over GCN and a 4.12% improvement over GIN. Moreover, HFGIN records a precision of 86.06%, marking an 8.97% enhancement over GCN and 9.46% over GIN. It also shows a recall of 79.56%, which is 17.03% higher than GCN and 1.39% greater than GIN, besides an F1 score improvement of 23.37% over GCN and 5.27% over GIN. HFGIN also demonstrates computational efficiency with low inference latency and minimal resource usage and maintains scalability when tested under larger transaction loads. The model achieves these improvements while maintaining computational efficiency and system scalability by applying inference selectively and enabling parallel execution of non-conflicting transactions. The enhancements contribute to detection rate increase of conflict transactions over GCN and GIN in an earlier stage, demonstrating the model's potential to transform MVCC conflict management in high-demand blockchain environments such as banking operations. |
Author | Alzahrani, Fawaz Budiarto, Rahmat Yazid Idris, Mohd Fo'Ad Rohani, Mohd |
Author_xml | – sequence: 1 givenname: Fawaz orcidid: 0009-0005-6661-1167 surname: Alzahrani fullname: Alzahrani, Fawaz email: mohammad.a@graduate.utm.my organization: Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia – sequence: 2 givenname: Mohd orcidid: 0000-0001-7702-6610 surname: Yazid Idris fullname: Yazid Idris, Mohd organization: Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia – sequence: 3 givenname: Mohd surname: Fo'Ad Rohani fullname: Fo'Ad Rohani, Mohd organization: Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia – sequence: 4 givenname: Rahmat orcidid: 0000-0002-6374-4731 surname: Budiarto fullname: Budiarto, Rahmat organization: Faculty of Computing and Information, Al Baha University, Al Aqiq, Saudi Arabia |
BookMark | eNpNkclOwzAURS0EEuMXwMI_kOIhjuMlClAqMSwYtpbjPoMhjavnVKh_T0oR4M27utI9XpxDstunHgg55WzCOTPnF01z9fg4EUyoiVS14ZXaIQeCV6aQSla7__I-Ocn5nY2vHiulD8jqZr0E7GD-CkivXYvR0ym65Rud5bRIuHyLeUHvYfhM-EFDQtqkPnTRD_QJXZ-dH2LqM72EAb4jjT29W3VDLF4A86YYB36FCL1fb_KAqTsme8F1GU5-7hF5vr56am6K24fprLm4Lbwoa1U46VmQPLTatyEYCEqzVolKOwFKlqwWjEnVMm9qZkrBtQo8eFnKuvWOOy6PyGzLnSf3bpcYFw7XNrlov4uEr9bhEH0HNihW1TxoobQuRSlqY3g7fsm182xe-ZEltyyPKWeE8MvjzG5E2K0IuxFhf0SMq7PtKgLA34IzbYxm8gvXbYeV |
CODEN | IAECCG |
Cites_doi | 10.1109/ACCESS.2023.3291618 10.48550/ARXIV.1609.02907 10.1007/s11227-022-04762-3 10.1007/978-3-030-34223-4_3 10.1145/3318464.3389693 10.1145/3547300 10.3390/math12081133 10.1145/3361525.3361540 10.1007/978-981-97-0862-8_17 10.1007/978-981-99-3626-7_131 10.1109/JIOT.2021.3050244 10.1109/Blockchain.2019.00017 10.1109/MASCOTS.2018.00034 10.1007/978-3-030-65745-1_8 10.1016/j.bcra.2021.100012 10.1145/3448016.3452823 10.1007/s12083-022-01401-9 10.1109/TNSE.2022.3166655 10.1109/DSA52907.2021.00031 10.3390/info14020117 10.1109/ICDCS47774.2020.00159 10.1007/978-981-16-7993-3_1 10.1145/1376616.1376690 10.1007/s11280-020-00844-5 10.1007/978-3-030-96772-7_25 10.1109/CNS59707.2023.10288697 10.1007/s00607-023-01177-7 10.1109/ICKG52313.2021.00020 10.1007/s00450-019-00411-y 10.1145/3299869.3319883 10.1109/ICDCS54860.2022.00033 10.1016/j.bcra.2021.100026 10.1109/ICBC48266.2020.9169478 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/ACCESS.2025.3589165 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 131333 |
ExternalDocumentID | oai_doaj_org_article_f50681f7257742428991b9ef17ac0d6c 10_1109_ACCESS_2025_3589165 11079970 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c2485-a3c0f31fb7cbff9ef570b5267a2e5340820035b0c980942175f1fc3438bca1a13 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:27:03 EDT 2025 Thu Aug 07 05:48:06 EDT 2025 Wed Aug 27 01:45:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2485-a3c0f31fb7cbff9ef570b5267a2e5340820035b0c980942175f1fc3438bca1a13 |
ORCID | 0000-0001-7702-6610 0000-0002-6374-4731 0009-0005-6661-1167 |
OpenAccessLink | https://doaj.org/article/f50681f7257742428991b9ef17ac0d6c |
PageCount | 20 |
ParticipantIDs | ieee_primary_11079970 doaj_primary_oai_doaj_org_article_f50681f7257742428991b9ef17ac0d6c crossref_primary_10_1109_ACCESS_2025_3589165 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref19 Thakkar (ref16) 2020 ref18 Leman (ref37) 1968; 2 Faber (ref30) 2021 Trabelsi (ref9) 2023 Nakamoto (ref38) 2023 ref24 ref23 ref25 ref20 ref22 Mitra (ref26) 2023 ref21 Xu (ref31) 2018 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref5 doi: 10.1109/ACCESS.2023.3291618 – ident: ref32 doi: 10.48550/ARXIV.1609.02907 – ident: ref13 doi: 10.1007/s11227-022-04762-3 – ident: ref11 doi: 10.1007/978-3-030-34223-4_3 – ident: ref22 doi: 10.1145/3318464.3389693 – ident: ref14 doi: 10.1145/3547300 – ident: ref27 doi: 10.3390/math12081133 – ident: ref7 doi: 10.1145/3361525.3361540 – ident: ref12 doi: 10.1007/978-981-97-0862-8_17 – ident: ref17 doi: 10.1007/978-981-99-3626-7_131 – ident: ref20 doi: 10.1109/JIOT.2021.3050244 – ident: ref24 doi: 10.1109/Blockchain.2019.00017 – volume-title: Bitcoin: A Peer-to-Peer Electronic Cash System year: 2023 ident: ref38 – ident: ref3 doi: 10.1109/MASCOTS.2018.00034 – ident: ref35 doi: 10.1007/978-3-030-65745-1_8 – ident: ref6 doi: 10.1016/j.bcra.2021.100012 – ident: ref8 doi: 10.1145/3448016.3452823 – ident: ref10 doi: 10.1007/s12083-022-01401-9 – ident: ref36 doi: 10.1109/TNSE.2022.3166655 – volume: 2 start-page: 12 issue: 9 year: 1968 ident: ref37 article-title: A reduction of a graph to a canonical form and an algebra arising during this reduction publication-title: Nauchno-Technicheskaya Informatsiya – ident: ref23 doi: 10.1109/DSA52907.2021.00031 – ident: ref18 doi: 10.3390/info14020117 – ident: ref29 doi: 10.1109/ICDCS47774.2020.00159 – ident: ref33 doi: 10.1007/978-981-16-7993-3_1 – ident: ref39 doi: 10.1145/1376616.1376690 – ident: ref1 doi: 10.1007/s11280-020-00844-5 – ident: ref4 doi: 10.1007/978-3-030-96772-7_25 – volume-title: arxiv.2103.06857 year: 2021 ident: ref30 article-title: Should graph Neural Networks use features, edges, or both? – ident: ref19 doi: 10.1109/CNS59707.2023.10288697 – ident: ref28 doi: 10.1007/s00607-023-01177-7 – volume-title: TimeFabric: Trusted Time for Hyperledger Fabric year: 2023 ident: ref26 – ident: ref34 doi: 10.1109/ICKG52313.2021.00020 – ident: ref2 doi: 10.1007/s00450-019-00411-y – volume-title: arxiv.2003.05113 year: 2020 ident: ref16 article-title: Scaling Hyperledger Fabric using pipelined execution and sparse peers – volume-title: arxiv.2301.06181 year: 2023 ident: ref9 article-title: Early detection for multiversion concurrency control conflicts in hyperledger fabric – volume-title: arxiv.1810.00826 year: 2018 ident: ref31 article-title: How powerful are graph neural networks? – ident: ref21 doi: 10.1145/3299869.3319883 – ident: ref15 doi: 10.1109/ICDCS54860.2022.00033 – ident: ref40 doi: 10.1016/j.bcra.2021.100026 – ident: ref25 doi: 10.1109/ICBC48266.2020.9169478 |
SSID | ssj0000816957 |
Score | 2.3339386 |
Snippet | Multi-Version Concurrency Control (MVCC) is a critical mechanism in blockchain systems such as Hyperledger Fabric. MVCC is crucial for managing concurrent... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 131314 |
SubjectTerms | Blockchains Complexity theory Concurrency control convolutional neural networks Data integrity deep learning Distributed ledger Fabrics graph neural networks graph theory hyperledger machine learning Proposals Reliability Scalability System performance |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygveWAkJY7rJB5LoRSGTq3EFtmOLSFEivoY4Ndz57gPkJDYLCtRbJ_ju-989x0h13FipeDIcFkqGXV0mkfKWmiBtnCgn5NY-yjfYToYd55fxEtIVve5MNZaH3xm29j0d_nlxCzQVXaLWEXKDBD6NiC3Ollr5VDBChJSZIFZiMXyttvrwSQAAyaizbF6HmqQDe3jSfp_VFXxSqW_T4bL4dSxJG_txVy3zdcvpsZ_j_eA7AXzknbr_XBItmx1RHY3SAePyWIA0HPq_WhT2lcaDkL6iLTV9Gk2eZ_Aur_O3umwDg-nYNPSXkgdoaN1cfEZvbdzH8ZV0deK-jzeKDjf8AXjeZ_MJ7YxFr5Jxv2HUW8QheILkUGWs0hxEzvOnM6Mdk5aJzIQW5JmKrGCY5lqvITUsZE5IEQANsIxZ3iH59oophg_IY1qUtlTQstEMyvz1AjH4bzgmpeOGVWC5ZYxJUWL3CyFUnzUHBuFxyaxLGoZFijDIsiwRe5QcKtHkSDbd8DaF-F_K5yI05y5DE4kAP8dhJVMwyxYpkxcpqZFmiiv9feCqM7-6D8nOziG2vlyQRrz6cJegjky11d-G34D8undWQ priority: 102 providerName: IEEE |
Title | Hyperledger Fabric Graph Isomorphism Network for Conflict Transactions Detection in Multi-Version Concurrency Control |
URI | https://ieeexplore.ieee.org/document/11079970 https://doaj.org/article/f50681f7257742428991b9ef17ac0d6c |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKSx4YCbXjOInHEiiFoVMrdYtsx5Y6NEV9DPx77pxAy8TCZkV5ON85vvuc83eE3LPYKSlQ4bLSKkpMmkfaOWiBt_Dgn2NmQpbvOB1Nk_eZnO2V-sKcsEYeuAGu7yVLc-4zGFrA4hLkB9wo53mmLatSi7Mv-Lw9MhXm4JynSmatzBBnqj8oCngjIISxfBRYSg_dyZ4rCor9v0qsBA8zPCHHbWhIB02XTsmBq8_I0Z5g4DnZjoA2rsIa2IoOtYFJjL6i5DR9Wy8XS8Bsvl7QcZPaTSEepUW77YNOdoXB1_TZbUIKVk3nNQ17cKN24QwvsEGzyX5iG_PYu2Q6fJkUo6gtnBBZVCiLtLDMC-5NZo33AJbMAPI4zXTspMAS0_gD0TCrcmB3QEqk596KROTGaq65uCCdelm7S0Kr2HCn8tRKL-BbF0ZUnltdQdSVca1kjzx8Y1h-NPoYZeAVTJUN5CVCXraQ98gT4vxzKopbhwNg8rI1efmXyXuki1baPQ_6olTGrv7j5tfkEDvcrLLckM5mtXW3EHdszF0YYndhi-AX4PPTWg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOPItYnj7AjWzteB3HBw5ly7JLy562Um_BdmypQs1W-1BV_gt_hd_GjJNuCxLHStwsK4lj-7Pn4fE3AG95HoySxHBZW5MNXFFmNgQsobSIKJ9z7lKU77QYHw2-HKvjLfi5uQsTQkjBZ6FPxXSWX8_9mlxlu2SrGKN5F0N5EC7O0UJbfpjs43S-y_PRp9lwnHVJBDJPbF2ZlZ5HKaLT3sVoQlQam88LbfOgJKVbpsM0x70p0dJBBV1FEb0cyNJ5K6yQ-N1bcBsVDZW318M2LhzKWWGU7riMBDe7e8MhDhtanbnqS8rXRzLrmrxLaQH-yOOSxNjoAfy6HIA2euV7f71yff_jL27I_3aEHsL9ToFmey3iH8FWaB7DvWu0ik9gPUbjepE8hQs2sg63evaZiLnZZDk_nSOyTpanbNoGwDPU2tmwuxzDZlfp05dsP6xSoFrDThqWbipnnXuRXvCJ2cpfUJmi_Xfg6Eb6_RS2m3kTngGrcyeCKQuvosQdUTpZR-FtjbqpFtaoHry_BEF11rKIVMn64qZqMVMRZqoOMz34SEDZPEoU4KkC57rqdpQqKl6UImrcczWuLDKchcNeCG09rwvfgx3Cx1V7HTSe_6P-DdwZz74eVoeT6cELuEv_07qaXsL2arEOr1D5WrnXaQkw-HbTiPoNYgQ4-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperledger+Fabric+Graph+Isomorphism+Network+for+Conflict+Transactions+Detection+in+Multi-Version+Concurrency+Control&rft.jtitle=IEEE+access&rft.au=Alzahrani%2C+Fawaz&rft.au=Yazid+Idris%2C+Mohd&rft.au=Fo%E2%80%99Ad+Rohani%2C+Mohd&rft.au=Budiarto%2C+Rahmat&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=131314&rft.epage=131333&rft_id=info:doi/10.1109%2FACCESS.2025.3589165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3589165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |