Improving Sub-Industry GDP Estimation With SDGSAT-1 Multispectral Nighttime Light and Thermal Infrared Data: Effectiveness and Potential
Accurate and timely estimation of gross domestic product (GDP) is essential for evaluating economic development. Nighttime light (NTL) data effectively estimate subindustry GDP, yet previous studies relied on single panchromatic bands. Whether multispectral nighttime remote sensing data, detecting s...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 20279 - 20293 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate and timely estimation of gross domestic product (GDP) is essential for evaluating economic development. Nighttime light (NTL) data effectively estimate subindustry GDP, yet previous studies relied on single panchromatic bands. Whether multispectral nighttime remote sensing data, detecting spectral differences from economic activities, improves subindustry GDP estimates remains unverified. This article leverages multispectral NTL and thermal infrared data from the SDGSAT-1 satellite, combined with land cover data, to estimate subindustry GDP using machine learning models. We compare support vector machines, neural networks, and random forest (RF), identifying RF as the optimal model due to its lowest RMSE values (9.16, 171.06, and 180.51 for primary, secondary, and tertiary industries, respectively). Empirical results demonstrate that multispectral SDGSAT-1 data significantly outperforms its single panchromatic band counterpart, improving R 2 values for secondary and tertiary industries from 0.58 to 0.88 and 0.68 to 0.90, respectively. Compared to VIIRS NTL data, SDGSAT-1 further reduces spatial misdistribution over farmland and industrial zones, achieving a 7.7% R 2 improvement at smaller scale (industrial parks level). Key factors driving GDP estimation vary across industries: cropland area dominates for the primary industry; thermal infrared and red light intensity for the secondary industry; and blue light intensity for the tertiary industry. These findings validate the superiority of multispectral NTL data in subindustry GDP estimation and offer actionable insights for enhancing urban economic monitoring and policy formulation. |
---|---|
AbstractList | Accurate and timely estimation of gross domestic product (GDP) is essential for evaluating economic development. Nighttime light (NTL) data effectively estimate subindustry GDP, yet previous studies relied on single panchromatic bands. Whether multispectral nighttime remote sensing data, detecting spectral differences from economic activities, improves subindustry GDP estimates remains unverified. This article leverages multispectral NTL and thermal infrared data from the SDGSAT-1 satellite, combined with land cover data, to estimate subindustry GDP using machine learning models. We compare support vector machines, neural networks, and random forest (RF), identifying RF as the optimal model due to its lowest RMSE values (9.16, 171.06, and 180.51 for primary, secondary, and tertiary industries, respectively). Empirical results demonstrate that multispectral SDGSAT-1 data significantly outperforms its single panchromatic band counterpart, improving R 2 values for secondary and tertiary industries from 0.58 to 0.88 and 0.68 to 0.90, respectively. Compared to VIIRS NTL data, SDGSAT-1 further reduces spatial misdistribution over farmland and industrial zones, achieving a 7.7% R 2 improvement at smaller scale (industrial parks level). Key factors driving GDP estimation vary across industries: cropland area dominates for the primary industry; thermal infrared and red light intensity for the secondary industry; and blue light intensity for the tertiary industry. These findings validate the superiority of multispectral NTL data in subindustry GDP estimation and offer actionable insights for enhancing urban economic monitoring and policy formulation. Accurate and timely estimation of gross domestic product (GDP) is essential for evaluating economic development. Nighttime light (NTL) data effectively estimate subindustry GDP, yet previous studies relied on single panchromatic bands. Whether multispectral nighttime remote sensing data, detecting spectral differences from economic activities, improves subindustry GDP estimates remains unverified. This article leverages multispectral NTL and thermal infrared data from the SDGSAT-1 satellite, combined with land cover data, to estimate subindustry GDP using machine learning models. We compare support vector machines, neural networks, and random forest (RF), identifying RF as the optimal model due to its lowest RMSE values (9.16, 171.06, and 180.51 for primary, secondary, and tertiary industries, respectively). Empirical results demonstrate that multispectral SDGSAT-1 data significantly outperforms its single panchromatic band counterpart, improving R2 values for secondary and tertiary industries from 0.58 to 0.88 and 0.68 to 0.90, respectively. Compared to VIIRS NTL data, SDGSAT-1 further reduces spatial misdistribution over farmland and industrial zones, achieving a 7.7% R2 improvement at smaller scale (industrial parks level). Key factors driving GDP estimation vary across industries: cropland area dominates for the primary industry; thermal infrared and red light intensity for the secondary industry; and blue light intensity for the tertiary industry. These findings validate the superiority of multispectral NTL data in subindustry GDP estimation and offer actionable insights for enhancing urban economic monitoring and policy formulation. |
Author | Chen, Zuoqi Dong, Linxin Xiong, Jing Gong, Wenkang Ni, Jingwen Huang, Yan Zhang, Lingxian Wang, Congxiao Yu, Bailang |
Author_xml | – sequence: 1 givenname: Lingxian surname: Zhang fullname: Zhang, Lingxian email: 51253901050@stu.ecnu.edu.cn organization: Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China – sequence: 2 givenname: Zuoqi orcidid: 0000-0002-3654-9658 surname: Chen fullname: Chen, Zuoqi email: zqchen@fzu.edu.cn organization: Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, National and Local Joint Engineering Research Center of Satellite Geospatial Information Technology, Academy of Digital China, Fuzhou University, Fuzhou, China – sequence: 3 givenname: Wenkang surname: Gong fullname: Gong, Wenkang email: 52213901020@stu.ecnu.edu.cn organization: Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China – sequence: 4 givenname: Congxiao orcidid: 0009-0000-6882-1380 surname: Wang fullname: Wang, Congxiao email: cxwang@geo.ecnu.edu.cn organization: Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China – sequence: 5 givenname: Jing surname: Xiong fullname: Xiong, Jing email: bearnear@sjtu.edu.cn organization: China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai, China – sequence: 6 givenname: Linxin orcidid: 0000-0002-4962-2420 surname: Dong fullname: Dong, Linxin email: dong_linxin@163.com organization: Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China – sequence: 7 givenname: Jingwen orcidid: 0009-0000-0405-4346 surname: Ni fullname: Ni, Jingwen email: jingwen_ni@foxmail.com organization: Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China – sequence: 8 givenname: Yan orcidid: 0000-0001-6314-1802 surname: Huang fullname: Huang, Yan email: yhuang@geo.ecnu.edu.cn organization: Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China – sequence: 9 givenname: Bailang orcidid: 0000-0001-5628-0003 surname: Yu fullname: Yu, Bailang email: blyu@geo.ecnu.edu.cn organization: Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China |
BookMark | eNpFUd1u0zAYtdCQ6AZPABd-gRT_xgl31VpKpgITKeLScuwvrac0qWx30t6Ax567TvDdfH_nHOnoXKOrcRoBoY-UzCkl9ee7drv41c4ZYXLOZS1VKd6gGaOSFlRyeYVmtOZ1QQUR79B1jA-ElEzVfIb-NodjmB79uMPtqSua0Z1iCk94vbzHq5j8wSQ_jfiPT3vcLtftYltQ_P00JB-PYFMwA_7hd_uUkYA35wmb0eHtHsIh_5qxDyaAw0uTzBe86vtM8o8wQowvwPspwZi8Gd6jt70ZInx47Tfo99fV9vZbsfm5bm4Xm8IyUYnCyM7UrubCuryWlJZEUMVVB6zuhapkNq24kBKsc8Cs4k6JCkzXg7Okk_wGNRddN5kHfQzZYXjSk_H65TCFnTYheTuAZkLJruyhKisQtmcVk7bq6o5U1pSCVVmLX7RsmGIM0P_To0Sfg9GXYPQ5GP0aTGZ9urA8APxn5GJKSP4Mh7iM7A |
CODEN | IJSTHZ |
Cites_doi | 10.1016/j.resourpol.2020.101940 10.1016/j.asr.2019.09.035 10.1117/12.2674217 10.3390/rs6021705 10.1016/j.jag.2023.103313 10.1007/s11222-016-9646-1 10.1016/j.cageo.2009.01.009 10.3390/su8020108 10.1257/aer.102.2.994 10.1016/j.eneco.2019.01.004 10.1177/2399808320951580 10.1016/j.envpol.2021.118383 10.1080/15481603.2013.823732 10.3390/rs16050768 10.3390/rs15082120 10.1016/j.xinn.2023.100419 10.5194/essd-10-847-2018 10.1016/j.apenergy.2023.122355 10.1038/scientificamerican0778-86 10.1038/s41597-022-01300-x 10.1016/j.scib.2019.12.007 10.1080/01431161.2012.684076 10.1016/j.energy.2022.123576 10.1007/s12076-024-00375-x 10.1016/j.rse.2021.112557 10.1080/2150704x.2014.905728 10.1016/j.fecs.2023.100144 10.1016/j.rse.2013.03.001 10.1016/j.jag.2019.04.017 10.1016/j.gloenvcha.2015.06.004 10.1016/j.infgeo.2025.100018 10.1016/j.rse.2019.111443 10.1080/01431161.2016.1217440 10.3390/rs11171971 10.1016/j.jag.2024.103812 10.1109/jstars.2019.2916323 10.3390/ijerph19138048 10.1016/j.apenergy.2016.10.032 10.1080/09720502.2018.1498307 10.1016/j.rse.2017.01.006 10.1016/j.scs.2023.105125 10.3390/rs15030716 10.1016/j.scib.2022.12.014 10.1016/j.worlddev.2014.08.017 10.1016/j.jclepro.2022.130602 10.1016/j.rse.2024.114137 10.1639/0044-7447(2000)029[0157:ntiaat]2.0.co;2 10.3390/rs16020417 10.3390/app14062450 10.1080/014311697218485 10.1016/j.rse.2017.01.005 10.1016/j.rse.2024.114079 10.1016/j.jclepro.2024.141205 10.1016/j.ress.2020.107312 10.3390/ijgi12030123 10.1109/jstars.2022.3149028 10.1080/19475683.2019.1570336 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/JSTARS.2025.3595764 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 20293 |
ExternalDocumentID | oai_doaj_org_article_2475b6fe868e4cf2825c8b9b08ca6428 10_1109_JSTARS_2025_3595764 11112745 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42371332 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION |
ID | FETCH-LOGICAL-c2484-a5ba9d934cd4846116041737be29f478521573455ecdde2c73d748eabfedc0b53 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:28:20 EDT 2025 Wed Aug 27 16:30:25 EDT 2025 Wed Aug 27 07:36:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2484-a5ba9d934cd4846116041737be29f478521573455ecdde2c73d748eabfedc0b53 |
ORCID | 0000-0002-3654-9658 0000-0002-4962-2420 0009-0000-6882-1380 0000-0001-5628-0003 0009-0000-0405-4346 0000-0001-6314-1802 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11112745 |
PageCount | 15 |
ParticipantIDs | ieee_primary_11112745 doaj_primary_oai_doaj_org_article_2475b6fe868e4cf2825c8b9b08ca6428 crossref_primary_10_1109_JSTARS_2025_3595764 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Zanaga (ref46) 2022 ref51 ref50 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref57 doi: 10.1016/j.resourpol.2020.101940 – ident: ref36 doi: 10.1016/j.asr.2019.09.035 – ident: ref48 doi: 10.1117/12.2674217 – ident: ref53 doi: 10.3390/rs6021705 – ident: ref30 doi: 10.1016/j.jag.2023.103313 – ident: ref50 doi: 10.1007/s11222-016-9646-1 – ident: ref15 doi: 10.1016/j.cageo.2009.01.009 – ident: ref34 doi: 10.3390/su8020108 – ident: ref3 doi: 10.1257/aer.102.2.994 – ident: ref6 doi: 10.1016/j.eneco.2019.01.004 – ident: ref52 doi: 10.1177/2399808320951580 – ident: ref54 doi: 10.1016/j.envpol.2021.118383 – volume-title: ESA WorldCover 10 m 2021 v200 year: 2022 ident: ref46 – ident: ref22 doi: 10.1080/15481603.2013.823732 – ident: ref4 doi: 10.1016/j.resourpol.2020.101940 – ident: ref37 doi: 10.3390/rs16050768 – ident: ref40 doi: 10.3390/rs15082120 – ident: ref41 doi: 10.1016/j.xinn.2023.100419 – ident: ref2 doi: 10.5194/essd-10-847-2018 – ident: ref39 doi: 10.1016/j.apenergy.2023.122355 – ident: ref13 doi: 10.1038/scientificamerican0778-86 – ident: ref11 doi: 10.1038/s41597-022-01300-x – ident: ref47 doi: 10.1016/j.scib.2019.12.007 – ident: ref5 doi: 10.1080/01431161.2012.684076 – ident: ref56 doi: 10.1016/j.energy.2022.123576 – ident: ref26 doi: 10.1007/s12076-024-00375-x – ident: ref59 doi: 10.1016/j.rse.2021.112557 – ident: ref25 doi: 10.1080/2150704x.2014.905728 – ident: ref42 doi: 10.1016/j.fecs.2023.100144 – ident: ref19 doi: 10.1016/j.rse.2013.03.001 – ident: ref23 doi: 10.1016/j.jag.2019.04.017 – ident: ref1 doi: 10.1016/j.gloenvcha.2015.06.004 – ident: ref45 doi: 10.1016/j.infgeo.2025.100018 – ident: ref32 doi: 10.1016/j.rse.2019.111443 – ident: ref35 doi: 10.1080/01431161.2016.1217440 – ident: ref14 doi: 10.3390/rs11171971 – ident: ref28 doi: 10.1016/j.jag.2024.103812 – ident: ref58 doi: 10.1109/jstars.2019.2916323 – ident: ref55 doi: 10.3390/ijerph19138048 – ident: ref17 doi: 10.1016/j.apenergy.2016.10.032 – ident: ref7 doi: 10.1080/09720502.2018.1498307 – ident: ref16 doi: 10.1016/j.rse.2017.01.006 – ident: ref51 doi: 10.1016/j.scs.2023.105125 – ident: ref12 doi: 10.3390/rs15030716 – ident: ref38 doi: 10.1016/j.scib.2022.12.014 – ident: ref33 doi: 10.1016/j.worlddev.2014.08.017 – ident: ref8 doi: 10.1016/j.jclepro.2022.130602 – ident: ref31 doi: 10.1016/j.rse.2024.114137 – ident: ref20 doi: 10.1639/0044-7447(2000)029[0157:ntiaat]2.0.co;2 – ident: ref27 doi: 10.3390/rs16020417 – ident: ref44 doi: 10.3390/app14062450 – ident: ref21 doi: 10.1080/014311697218485 – ident: ref10 doi: 10.1016/j.rse.2017.01.005 – ident: ref43 doi: 10.1016/j.rse.2024.114079 – ident: ref9 doi: 10.1016/j.jclepro.2024.141205 – ident: ref49 doi: 10.1016/j.ress.2020.107312 – ident: ref29 doi: 10.3390/ijgi12030123 – ident: ref18 doi: 10.1109/jstars.2022.3149028 – ident: ref24 doi: 10.1080/19475683.2019.1570336 |
SSID | ssj0062793 |
Score | 2.3744678 |
Snippet | Accurate and timely estimation of gross domestic product (GDP) is essential for evaluating economic development. Nighttime light (NTL) data effectively... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 20279 |
SubjectTerms | Accuracy Economic indicators Estimation Feature extraction Industries Land surface Nighttime light (NL) remote sensing nighttime thermal infrared Remote sensing Satellite broadcasting SDGSAT-1 imagery Socioeconomics subindustry gross domestic product (GDP) estimation Urban areas |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEC2LWCiVDxwxjWM7jrltu-0uCK1WbCt6i_wUSFWKVuHQf8DPZsZOX6deyCmJHMeaGc_DmvmGkA_aYfli5KyWNjBpLGdWBMFgczjjeJuCywmyq2Z5Ib9eqssHrb4wJ6zAAxfCHdVSK9ek2DZtlD5hqaVvYZqq9RZ9Z9S-YPNug6mig5taZ7hd8E4MQwCZEW-IV-YIBH72fQORYa0-YVWqbuQjm5Sh-x_1Wsmm5uwleTH6iHRW1rZHnsV-n-wucg_em1fk791BAIVtz8bmGzd0MV_TU9ixpRiR_vg1_KSb-WIzO2ec5kLbXFa5halXGJJjW3n6De-o7QMFgQElfUW_9GmLWel0bgf7mRZ441En5oHr6wFTjOzVhFycnZ6fLNnYUIH5WraSWeWsCUZIH-Cx4bypJNdCu1ibJHULplxpIZWKHrRe7bUIWrbRuhSDr5wSr8lOf93HN4QmLqOUxlcJIQ2DsTEkGwR8WAUrmjQlH29J2v0uuBldjjcq0xUOdMiBbuTAlBwj2e-GIuh1fgGi0I2i0D0lClMyQabd_w8uCLrV2_8x-TvyHBdcTl8OyM6w_RPfgz8yuMMsev8AawfaRQ priority: 102 providerName: Directory of Open Access Journals |
Title | Improving Sub-Industry GDP Estimation With SDGSAT-1 Multispectral Nighttime Light and Thermal Infrared Data: Effectiveness and Potential |
URI | https://ieeexplore.ieee.org/document/11112745 https://doaj.org/article/2475b6fe868e4cf2825c8b9b08ca6428 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJSQuPItYHpUPHPE2ju045raw7RaEVhXbit4iPwWiyqJV9lB-AT-bGcdbVCQkbk7kJJbm4Rlnvm8Iea0dwhcjZ7W0gUljObMiCAbG4YzjbQouF8gum9ML-fFSXRawesbCxBhz8Vmc4jD_yw9rv8WjsiM0b8ii1B7Zg8xtBGvt3G5T68ywCwGJYcgZUyiGeGWOQMdnn1eQDNZqikBU3chb21Bm67_VXiXvLicPyHK3rrGo5Pt0O7ip__kXZeN_L_whuV_iTDobFeMRuRP7x-TuIvfxvX5Cft0cJlBwHaw08Limi_kZPQarHwGN9Mu34StdzRer2TnjNIN1MzRzA69eYlqPrenpJxxR2wcKSgeO_op-6NMGK9vp3A72LR0pkotfzRPP1gOWKdmrA3Jxcnz-_pSVpgzM17KVzCpnTTBC-gCXDedNJbkW2sXaJKlbCAeUFlKp6MFz1l6LoGUbrUsx-Mop8ZTs9-s-PiM0cRmlNL5KSIsYjI0h2SDgwSpY0aQJebOTUfdj5N7ocs5SmW4UaYci7YpIJ-QdyvFmKhJn5xsgiq7YYVdLrVyTYtu0UfqEyF3fglZWrbeYik3IAYrvz_eK5J7_4_4Lcg_XMB7KvCT7w2YbX0GYMrjDnN4fZiX9DTqX5U4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCMGFZyuW8vCBI97GsRPH3LbddrewrCp2K3qL_BSIKotW2UP5BfxsZpxsqyIhcXMiJ7H0jcceZ75vCHmnLNIXA2e5NJ5JbTgzwgsGk8Nqy6vobUqQnZfTc_nxorjoyeqJCxNCSMlnYYjN9C_fr9wGj8oOcHpDFFXcJfdg4S94R9faOt4yV0ljF7YkmqFqTC8yxDN9AFY--rKAcDAvhkhFVaW8tRAlvf5bBVbS-nLymMy3I-vSSn4MN60dul9_iTb-99CfkEf9TpOOOtN4Su6E5hm5P0mVfK-ek9_XxwkUnAfrS3hc0cn4jB7DvO8ojfTr9_YbXYwni9GScZrouomcuYZXzzGwx-L0dIYtahpPwezA1V_S0yauMbedjk1rPtBOJLn3rKnj2arFRCVzuUvOT46XR1PWl2VgLpeVZKawRnstpPNwWXJeZpIroWzIdZSqgg1BoQTgExz4ztwp4ZWsgrExeJfZQuyRnWbVhBeERi6DlNplEYURvTbBR-MFPJh5I8o4IO-3GNU_O_WNOkUtma47SGuEtO4hHZBDxPG6K0pnpxsARd3PxDqXqrBlDFVZBekicnddBXaZVc5gMDYguwjfzfd65F7-4_5b8mC6_DyrZ6fzT_vkIY6nO6J5RXba9Sa8hk1La98kU_0D7afnog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Sub-Industry+GDP+Estimation+With+SDGSAT-1+Multispectral+Nighttime+Light+and+Thermal+Infrared+Data%3A+Effectiveness+and+Potential&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Zhang%2C+Lingxian&rft.au=Chen%2C+Zuoqi&rft.au=Gong%2C+Wenkang&rft.au=Wang%2C+Congxiao&rft.date=2025&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=18&rft.spage=20279&rft.epage=20293&rft_id=info:doi/10.1109%2FJSTARS.2025.3595764&rft.externalDocID=11112745 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |