New predictive control algorithms based on Least Squares Support Vector Machines

Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function,...

Full description

Saved in:
Bibliographic Details
Published inJournal of Zhejiang University. A. Science Vol. 6; no. 5; pp. 440 - 446
Main Author 刘斌 苏宏业 褚健
Format Journal Article
LanguageEnglish
Published National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China 01.05.2005
School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China%National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China
Subjects
Online AccessGet full text
ISSN1673-565X
1862-1775
DOI10.1631/jzus.2005.A0440

Cover

Abstract Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms.
AbstractList Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms.
TP273; Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms.
Author 刘斌 苏宏业 褚健
AuthorAffiliation NationalLaboratoryofIndustrialControlTechnology,InstituteofAdvancedProcessControl,ZhejiangUniversity,Hangzhou310027,China
AuthorAffiliation_xml – name: National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China;School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China%National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China
Author_xml – sequence: 1
  fullname: 刘斌 苏宏业 褚健
BookMark eNp9kDlPAzEQhS0EEmdNa9FRbPC53pQIcUnhkDhEZ0283sRhsYO9ISG_Hi9QUaApZqR53xxvF2364C1Ch5QMaMnpyWy9SANGiBycEiHIBtqhVckKqpTczHWpeCFL-bKNdlOaZZkipdpB97d2iefR1s507sNiE3wXQ4uhnYTouulbwmNItsbB45GF1OGH9wVEm_DDYj4PscPP1nQh4hswU-dt2kdbDbTJHvzmPfR0cf54dlWM7i6vz05HhWGiEoVgQ1Y3hCneWFsbyaRqKmoqgCFhfMhMbguQpq6A2IbkhgAFTOQk65oTvoeOf-YuwTfgJ3oWFtHnjXo9q1ersba9FzmoyFr5ozUxpBRto43roHP9r-BaTYnuLdS9hbrH9LeFmTv5w82je4P4-Q9x9EtMg5-8u3zXGMxr41qrqaxoxbniX-GXgz0
CitedBy_id crossref_primary_10_1108_17563780810919140
crossref_primary_10_1016_j_apor_2018_03_001
crossref_primary_10_1002_rnc_1094
crossref_primary_10_1016_j_apor_2014_07_012
Cites_doi 10.1109/37.845037
10.1016/0005-1098(87)90087-2
10.1016/0165-0114(95)00118-2
10.1016/S1367-5788(03)00009-9
10.1023/A:1018628609742
ClassificationCodes TP273
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1631/jzus.2005.A0440
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1862-1775
EndPage 446
ExternalDocumentID zjdxxb_e200505014
10_1631_jzus_2005_A0440
15818337
GrantInformation_xml – fundername: 国家杰出青年科学基金; 高等学校优秀青年教师教学科研奖励计划
  funderid: (60025308); 高等学校优秀青年教师教学科研奖励计划
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
29L
29~
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
6NX
8RM
8UJ
92E
92I
92L
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AAKDD
AANZL
AARHV
AARTL
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADQRH
ADRFC
ADTIX
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AINHJ
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYLF
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
CCEZO
CDYEO
CEKLB
CHBEP
COF
CQIGP
CSCUP
CW9
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IPNFZ
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NQJWS
NU0
O9-
O9J
P9T
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNX
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGP
TR2
TSG
TUC
U2A
UG4
UGNYK
UNUBA
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~A9
~WA
-SC
-S~
AACDK
AAJBT
AAPKM
AASML
AATNV
AAYXX
AAYZH
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABQSL
ABTKH
ABWNU
ACAOD
ACDTI
ACPIV
ACSTC
ACZOJ
ADHKG
ADTPH
AEFQL
AEMSY
AESKC
AEVLU
AEZWR
AFBBN
AFDZB
AFHIU
AGQEE
AGQPQ
AGRTI
AHPBZ
AHWEU
AIGIU
AIXLP
AMXSW
AOCGG
ATHPR
AYFIA
BSONS
CAJEC
CITATION
DDRTE
DPUIP
IKXTQ
IWAJR
NPVJJ
Q--
SNPRN
SOHCF
U1G
U5M
4A8
PSX
ID FETCH-LOGICAL-c2484-4292df0273feedc5257f81c8aa902392c92d4a5cd8a0ef0c8a4a7a24a4a5dd303
ISSN 1673-565X
IngestDate Thu May 29 04:06:16 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Tue Jul 01 01:18:27 EDT 2025
Fri Nov 25 14:48:54 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Linear kernel function
Least Squares Support Vector Machines
RBF kernel function
Generalized predictive control
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2484-4292df0273feedc5257f81c8aa902392c92d4a5cd8a0ef0c8a4a7a24a4a5dd303
Notes TP273
33-1236/O4
PageCount 7
ParticipantIDs wanfang_journals_zjdxxb_e200505014
crossref_citationtrail_10_1631_jzus_2005_A0440
crossref_primary_10_1631_jzus_2005_A0440
chongqing_backfile_15818337
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-05-00
PublicationDateYYYYMMDD 2005-05-01
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-00
PublicationDecade 2000
PublicationTitle Journal of Zhejiang University. A. Science
PublicationTitleAlternate Journal of Zhejiang University Science
PublicationTitle_FL JOURNAL OF ZHEJIANG UNIVERSITY(SCIENCE)
PublicationYear 2005
Publisher National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China
School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China%National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China
Publisher_xml – name: School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China%National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China
– name: National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China
References D.W. Clarke (60050440_CR2) 1987; 23
J.A.K. Suykens (60050440_CR6) 1999; 9
J.H. Nie (60050440_CR3) 1996; 78
J.B. Rawlings (60050440_CR4) 2000; 20
60050440_CR5
C.J. Yang (60050440_CR8) 1997; 24
R. Babuška (60050440_CR1) 2003; 27
V. Vapnik (60050440_CR7) 1998
X.G. Zhang (60050440_CR9) 2000; 26
References_xml – volume: 20
  start-page: 38
  issue: 3
  year: 2000
  ident: 60050440_CR4
  publication-title: Control Systems Magazines, IEEE
  doi: 10.1109/37.845037
– ident: 60050440_CR5
– volume: 23
  start-page: 137
  issue: 2
  year: 1987
  ident: 60050440_CR2
  publication-title: Automatic
  doi: 10.1016/0005-1098(87)90087-2
– volume: 78
  start-page: 5
  year: 1996
  ident: 60050440_CR3
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(95)00118-2
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 60050440_CR7
– volume: 26
  start-page: 32
  issue: 1
  year: 2000
  ident: 60050440_CR9
  publication-title: ACTA AUTOMATICA SINICA
– volume: 27
  start-page: 73
  issue: 1
  year: 2003
  ident: 60050440_CR1
  publication-title: Annual Reviews in Control
  doi: 10.1016/S1367-5788(03)00009-9
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 60050440_CR6
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– volume: 24
  start-page: 9
  issue: 6
  year: 1997
  ident: 60050440_CR8
  publication-title: Mechanical & Electrical Engineering Magazine
SSID ssj0057067
Score 1.678022
Snippet Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares...
TP273; Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least...
SourceID wanfang
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 440
SubjectTerms RBF核心函数
最小支持向量装置
线性函数
自动控制系统
Title New predictive control algorithms based on Least Squares Support Vector Machines
URI http://lib.cqvip.com/qk/88140X/20055/15818337.html
https://d.wanfangdata.com.cn/periodical/zjdxxb-e200505014
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgExIviPEhygBZiIehyCUfdpI-dohpQjAhsaGKl8iJ43YfpNvaiNG_njvb-dig0uAlrZzmlPp-Pp_P598R8mYUyLRQYcRyKTB0o302ioKIaRlJlYNRlqZM5-eDeP-If5yISZcSZE6XLPNhsfrruZL_0Sq0gV7xlOw_aLYVCg3wHfQLV9AwXG-lY0xOPL_ErRaTANSkncuz6RzW_LMfCw8nKYUbAp-wRo_39aLG80Ye1vIEv9v7ZmL2WH1ohunvazzV77PyBFA07WVxDL3xsLELXZzdHmM4rluszKsp--Wyf9pcnWPpNvrrayEH0SX4OSsZJxEDT3BiJxHbBksjFiS2DEpjWuMegkTPTHJL0eRmXG6DkH8Y8zgyxnxVL2zsa-y3z_Vps29MZ22SIS5vQESGArDapsiMgLtkM0wS3NLfHO_t7h4087ZIfFNvuP1zjggKRLy78Q7IwzGDHrwA7-KaP3Pvp6w06KPnohw-JA-cxujYAmWL3CmrR2TLaWlBdxzF-NvH5Asgh3bIoQ45tEMONcih84oa5FCHHOqQQy1yaIOcJ-Ro78Ph-33mamuwIuQpZ1ilTGkkM9IwIAvkxNVpUKRSjvC4c1jAbS6ROUL6pfbhBpeJDDl8CKXA73lKNqp5VT4jNBUjnSLJe1wGPC-FzP1cRKESnOs0VPGAbLe9Bb5ZcYqMY1kgwFWMomRAhk3_ZYWjpcfqKGfZGv0NyE77wLllZFn_09dOIZkbtYtsdaKurvKsDE0NRz_gz28vb5vc74bDC7KxvKzLl-CTLvNXDky_AYYQjWw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+predictive+control+algorithms+based+on+Least+Squares+Support+Vector+Machines&rft.jtitle=Journal+of+Zhejiang+University.+A.+Science&rft.au=Bin%2C+Liu&rft.au=Hong-ye%2C+Su&rft.au=Jian%2C+Chu&rft.date=2005-05-01&rft.issn=1673-565X&rft.eissn=1862-1775&rft.volume=6&rft.issue=5&rft.spage=440&rft.epage=446&rft_id=info:doi/10.1631%2Fjzus.2005.A0440&rft.externalDBID=n%2Fa&rft.externalDocID=10_1631_jzus_2005_A0440
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88140X%2F88140X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxb-e%2Fzjdxxb-e.jpg