New predictive control algorithms based on Least Squares Support Vector Machines
Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function,...
Saved in:
Published in | Journal of Zhejiang University. A. Science Vol. 6; no. 5; pp. 440 - 446 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China
01.05.2005
School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China%National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China |
Subjects | |
Online Access | Get full text |
ISSN | 1673-565X 1862-1775 |
DOI | 10.1631/jzus.2005.A0440 |
Cover
Abstract | Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms. |
---|---|
AbstractList | Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms. TP273; Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms. |
Author | 刘斌 苏宏业 褚健 |
AuthorAffiliation | NationalLaboratoryofIndustrialControlTechnology,InstituteofAdvancedProcessControl,ZhejiangUniversity,Hangzhou310027,China |
AuthorAffiliation_xml | – name: National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China;School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China%National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China |
Author_xml | – sequence: 1 fullname: 刘斌 苏宏业 褚健 |
BookMark | eNp9kDlPAzEQhS0EEmdNa9FRbPC53pQIcUnhkDhEZ0283sRhsYO9ISG_Hi9QUaApZqR53xxvF2364C1Ch5QMaMnpyWy9SANGiBycEiHIBtqhVckKqpTczHWpeCFL-bKNdlOaZZkipdpB97d2iefR1s507sNiE3wXQ4uhnYTouulbwmNItsbB45GF1OGH9wVEm_DDYj4PscPP1nQh4hswU-dt2kdbDbTJHvzmPfR0cf54dlWM7i6vz05HhWGiEoVgQ1Y3hCneWFsbyaRqKmoqgCFhfMhMbguQpq6A2IbkhgAFTOQk65oTvoeOf-YuwTfgJ3oWFtHnjXo9q1ersba9FzmoyFr5ozUxpBRto43roHP9r-BaTYnuLdS9hbrH9LeFmTv5w82je4P4-Q9x9EtMg5-8u3zXGMxr41qrqaxoxbniX-GXgz0 |
CitedBy_id | crossref_primary_10_1108_17563780810919140 crossref_primary_10_1016_j_apor_2018_03_001 crossref_primary_10_1002_rnc_1094 crossref_primary_10_1016_j_apor_2014_07_012 |
Cites_doi | 10.1109/37.845037 10.1016/0005-1098(87)90087-2 10.1016/0165-0114(95)00118-2 10.1016/S1367-5788(03)00009-9 10.1023/A:1018628609742 |
ClassificationCodes | TP273 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1631/jzus.2005.A0440 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1862-1775 |
EndPage | 446 |
ExternalDocumentID | zjdxxb_e200505014 10_1631_jzus_2005_A0440 15818337 |
GrantInformation_xml | – fundername: 国家杰出青年科学基金; 高等学校优秀青年教师教学科研奖励计划 funderid: (60025308); 高等学校优秀青年教师教学科研奖励计划 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 29L 29~ 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 6NX 8RM 8UJ 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AAKDD AANZL AARHV AARTL AATVU AAUYE AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADQRH ADRFC ADTIX ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AINHJ AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYLF ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA CAG CCEZO CDYEO CEKLB CHBEP COF CQIGP CSCUP CW9 DNIVK EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IPNFZ IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NQJWS NU0 O9- O9J P9T PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SJYHP SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGP TR2 TSG TUC U2A UG4 UGNYK UNUBA UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~A9 ~WA -SC -S~ AACDK AAJBT AAPKM AASML AATNV AAYXX AAYZH ABAKF ABBRH ABDBE ABFSG ABJNI ABQSL ABTKH ABWNU ACAOD ACDTI ACPIV ACSTC ACZOJ ADHKG ADTPH AEFQL AEMSY AESKC AEVLU AEZWR AFBBN AFDZB AFHIU AGQEE AGQPQ AGRTI AHPBZ AHWEU AIGIU AIXLP AMXSW AOCGG ATHPR AYFIA BSONS CAJEC CITATION DDRTE DPUIP IKXTQ IWAJR NPVJJ Q-- SNPRN SOHCF U1G U5M 4A8 PSX |
ID | FETCH-LOGICAL-c2484-4292df0273feedc5257f81c8aa902392c92d4a5cd8a0ef0c8a4a7a24a4a5dd303 |
ISSN | 1673-565X |
IngestDate | Thu May 29 04:06:16 EDT 2025 Thu Apr 24 22:55:51 EDT 2025 Tue Jul 01 01:18:27 EDT 2025 Fri Nov 25 14:48:54 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Linear kernel function Least Squares Support Vector Machines RBF kernel function Generalized predictive control |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2484-4292df0273feedc5257f81c8aa902392c92d4a5cd8a0ef0c8a4a7a24a4a5dd303 |
Notes | TP273 33-1236/O4 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zjdxxb_e200505014 crossref_citationtrail_10_1631_jzus_2005_A0440 crossref_primary_10_1631_jzus_2005_A0440 chongqing_backfile_15818337 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-05-00 |
PublicationDateYYYYMMDD | 2005-05-01 |
PublicationDate_xml | – month: 05 year: 2005 text: 2005-05-00 |
PublicationDecade | 2000 |
PublicationTitle | Journal of Zhejiang University. A. Science |
PublicationTitleAlternate | Journal of Zhejiang University Science |
PublicationTitle_FL | JOURNAL OF ZHEJIANG UNIVERSITY(SCIENCE) |
PublicationYear | 2005 |
Publisher | National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China%National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China |
Publisher_xml | – name: School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China%National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China – name: National Laboratory of Industrial Control Technology, Institute of Advanced Process Control,Zhejiang University, Hangzhou 310027, China |
References | D.W. Clarke (60050440_CR2) 1987; 23 J.A.K. Suykens (60050440_CR6) 1999; 9 J.H. Nie (60050440_CR3) 1996; 78 J.B. Rawlings (60050440_CR4) 2000; 20 60050440_CR5 C.J. Yang (60050440_CR8) 1997; 24 R. Babuška (60050440_CR1) 2003; 27 V. Vapnik (60050440_CR7) 1998 X.G. Zhang (60050440_CR9) 2000; 26 |
References_xml | – volume: 20 start-page: 38 issue: 3 year: 2000 ident: 60050440_CR4 publication-title: Control Systems Magazines, IEEE doi: 10.1109/37.845037 – ident: 60050440_CR5 – volume: 23 start-page: 137 issue: 2 year: 1987 ident: 60050440_CR2 publication-title: Automatic doi: 10.1016/0005-1098(87)90087-2 – volume: 78 start-page: 5 year: 1996 ident: 60050440_CR3 publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(95)00118-2 – volume-title: Statistical Learning Theory year: 1998 ident: 60050440_CR7 – volume: 26 start-page: 32 issue: 1 year: 2000 ident: 60050440_CR9 publication-title: ACTA AUTOMATICA SINICA – volume: 27 start-page: 73 issue: 1 year: 2003 ident: 60050440_CR1 publication-title: Annual Reviews in Control doi: 10.1016/S1367-5788(03)00009-9 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 60050440_CR6 publication-title: Neural Processing Letters doi: 10.1023/A:1018628609742 – volume: 24 start-page: 9 issue: 6 year: 1997 ident: 60050440_CR8 publication-title: Mechanical & Electrical Engineering Magazine |
SSID | ssj0057067 |
Score | 1.678022 |
Snippet | Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares... TP273; Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least... |
SourceID | wanfang crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 440 |
SubjectTerms | RBF核心函数 最小支持向量装置 线性函数 自动控制系统 |
Title | New predictive control algorithms based on Least Squares Support Vector Machines |
URI | http://lib.cqvip.com/qk/88140X/20055/15818337.html https://d.wanfangdata.com.cn/periodical/zjdxxb-e200505014 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgExIviPEhygBZiIehyCUfdpI-dohpQjAhsaGKl8iJ43YfpNvaiNG_njvb-dig0uAlrZzmlPp-Pp_P598R8mYUyLRQYcRyKTB0o302ioKIaRlJlYNRlqZM5-eDeP-If5yISZcSZE6XLPNhsfrruZL_0Sq0gV7xlOw_aLYVCg3wHfQLV9AwXG-lY0xOPL_ErRaTANSkncuz6RzW_LMfCw8nKYUbAp-wRo_39aLG80Ye1vIEv9v7ZmL2WH1ohunvazzV77PyBFA07WVxDL3xsLELXZzdHmM4rluszKsp--Wyf9pcnWPpNvrrayEH0SX4OSsZJxEDT3BiJxHbBksjFiS2DEpjWuMegkTPTHJL0eRmXG6DkH8Y8zgyxnxVL2zsa-y3z_Vps29MZ22SIS5vQESGArDapsiMgLtkM0wS3NLfHO_t7h4087ZIfFNvuP1zjggKRLy78Q7IwzGDHrwA7-KaP3Pvp6w06KPnohw-JA-cxujYAmWL3CmrR2TLaWlBdxzF-NvH5Asgh3bIoQ45tEMONcih84oa5FCHHOqQQy1yaIOcJ-Ro78Ph-33mamuwIuQpZ1ilTGkkM9IwIAvkxNVpUKRSjvC4c1jAbS6ROUL6pfbhBpeJDDl8CKXA73lKNqp5VT4jNBUjnSLJe1wGPC-FzP1cRKESnOs0VPGAbLe9Bb5ZcYqMY1kgwFWMomRAhk3_ZYWjpcfqKGfZGv0NyE77wLllZFn_09dOIZkbtYtsdaKurvKsDE0NRz_gz28vb5vc74bDC7KxvKzLl-CTLvNXDky_AYYQjWw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+predictive+control+algorithms+based+on+Least+Squares+Support+Vector+Machines&rft.jtitle=Journal+of+Zhejiang+University.+A.+Science&rft.au=Bin%2C+Liu&rft.au=Hong-ye%2C+Su&rft.au=Jian%2C+Chu&rft.date=2005-05-01&rft.issn=1673-565X&rft.eissn=1862-1775&rft.volume=6&rft.issue=5&rft.spage=440&rft.epage=446&rft_id=info:doi/10.1631%2Fjzus.2005.A0440&rft.externalDBID=n%2Fa&rft.externalDocID=10_1631_jzus_2005_A0440 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88140X%2F88140X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxb-e%2Fzjdxxb-e.jpg |