Counterfactual Inference for Generalized Zero-Shot Compound-Fault Diagnosis

Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data in an...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 11
Main Authors Xu, Juan, Kong, Hui, Ding, Xu, Yuan, Xiaohui
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data in an interpretable manner, divulging critical causes from the observable phenomena. This article proposes a method to address the imbalance and interpretability issues of generalized zero-shot learning (GZSL) methods for compound-fault diagnosis using counterfactual inference. Our method uses a structural causal model (SCM) to decouple and generate fault features, which enhances the capabilities of the variational autoencoder and generative adversarial network (VAE-GAN) through a strengthened discriminator, and reveals the intrinsic causal components in fault data, distinguishing key fault causes from accompanying phenomena. This enables the classification of both single and compound faults by learning from examples of single faults, easing the dependence on the examples of compound faults. Extensive experimental results show that our method, trained solely with single-fault samples, achieves a harmonic average of 87.40% accuracy for both single and compound faults, outperforming existing state-of-the-art methods. This significantly improves both the accuracy and interpretability of compound-fault diagnosis.
AbstractList Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data in an interpretable manner, divulging critical causes from the observable phenomena. This article proposes a method to address the imbalance and interpretability issues of generalized zero-shot learning (GZSL) methods for compound-fault diagnosis using counterfactual inference. Our method uses a structural causal model (SCM) to decouple and generate fault features, which enhances the capabilities of the variational autoencoder and generative adversarial network (VAE-GAN) through a strengthened discriminator, and reveals the intrinsic causal components in fault data, distinguishing key fault causes from accompanying phenomena. This enables the classification of both single and compound faults by learning from examples of single faults, easing the dependence on the examples of compound faults. Extensive experimental results show that our method, trained solely with single-fault samples, achieves a harmonic average of 87.40% accuracy for both single and compound faults, outperforming existing state-of-the-art methods. This significantly improves both the accuracy and interpretability of compound-fault diagnosis.
Author Kong, Hui
Yuan, Xiaohui
Ding, Xu
Xu, Juan
Author_xml – sequence: 1
  givenname: Juan
  orcidid: 0000-0002-6626-1700
  surname: Xu
  fullname: Xu, Juan
  email: xujuan@hfut.edu.cn
  organization: Key Laboratory of Knowledge Engineering With Big Data, Ministry of Education, School of Computer and Information, Hefei University of Technology, Hefei, China
– sequence: 2
  givenname: Hui
  orcidid: 0009-0000-5482-3369
  surname: Kong
  fullname: Kong, Hui
  email: 2022111040@mail.hfut.edu.cn
  organization: Key Laboratory of Knowledge Engineering With Big Data, Ministry of Education, School of Computer and Information, Hefei University of Technology, Hefei, China
– sequence: 3
  givenname: Xu
  orcidid: 0000-0002-7669-4139
  surname: Ding
  fullname: Ding, Xu
  email: dingxu@hfut.edu.cn
  organization: Key Laboratory of Knowledge Engineering With Big Data, Ministry of Education, School of Computer and Information, Hefei University of Technology, Hefei, China
– sequence: 4
  givenname: Xiaohui
  orcidid: 0000-0001-6897-4563
  surname: Yuan
  fullname: Yuan, Xiaohui
  email: xiaohui.yuan@unt.edu
  organization: Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA
BookMark eNpNkD1PwzAQhi1UJNrCzsAQiTnFdvwRjyjQUlHEQFlYItc5Q6rULnYywK_HVTswne70PnenZ4JGzjtA6JrgGSFY3a2XLzOKKZ8VXHAs8RkaE85lroSgIzTGmJS5YlxcoEmMW4yxFEyO0XPlB9dDsNr0g-6ypbMQwBnIrA_ZAhwE3bW_0GQfEHz-9uX7rPK7faKafK6Hrs8eWv3pfGzjJTq3uotwdapT9D5_XFdP-ep1sazuV7mhTPa5BdpAudGKCGoLblQakA1uDq0qJGO8pMZQ2TRMlVaBEZpJ3QisJZXp8WKKbo9798F_DxD7euuH4NLJuqCYybKkZZFS-JgywccYwNb70O50-KkJrg_K6qSsPiirT8oScnNEWgD4F1cymaPFHzH_aTs
CODEN IEIMAO
Cites_doi 10.1109/CVPR46437.2021.00947
10.1109/ICCV48922.2021.00019
10.1007/978-3-030-58517-4_36
10.1016/j.psep.2023.07.080
10.1109/CVPR46437.2021.01515
10.1016/j.measurement.2024.115040
10.1109/LSP.2020.2977498
10.1016/j.eswa.2023.120875
10.1109/TIM.2024.3369153
10.1109/tip.2022.3153138
10.1609/aaai.v34i03.5631
10.1109/CVPR46437.2021.01496
10.1109/TIM.2024.3374311
10.1109/TPAMI.2021.3127346
10.1016/j.ymssp.2021.108036
10.1109/TIM.2024.3373062
10.1145/3469877.3490581
10.3233/FAIA230528
10.1609/aaai.v34i04.6069
10.1109/TPAMI.2021.3140070
10.1109/JPROC.2021.3058954
10.1109/TII.2024.3359460
10.1109/TNNLS.2021.3083367
10.1109/TII.2020.2988208
10.1109/ICASSP43922.2022.9747741
10.1109/TCST.2020.3015514
10.1109/CVPR46437.2021.00240
10.1016/j.eswa.2023.119642
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3565070
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2025_3565070
10979452
Genre orig-research
GrantInformation_xml – fundername: Dreams Foundation of Jianghuai Advance Technology Center
  grantid: 2023-ZM01J003
– fundername: Open Foundation of State Key Laboratory of High-End Compressor and System Technology
  grantid: SKL-YSJ202307
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 52375089
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-fe2de8ba9162f35c9fe21b0d162f93744582cc27dd498f9ec6a47ad60a7270003
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 07:40:51 EDT 2025
Tue Jul 29 02:14:11 EDT 2025
Wed Aug 27 02:01:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-fe2de8ba9162f35c9fe21b0d162f93744582cc27dd498f9ec6a47ad60a7270003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6897-4563
0009-0000-5482-3369
0000-0002-6626-1700
0000-0002-7669-4139
PQID 3204788283
PQPubID 85462
PageCount 11
ParticipantIDs crossref_primary_10_1109_TIM_2025_3565070
proquest_journals_3204788283
ieee_primary_10979452
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Sauer (ref23)
References_xml – ident: ref28
  doi: 10.1109/CVPR46437.2021.00947
– ident: ref19
  doi: 10.1109/ICCV48922.2021.00019
– ident: ref20
  doi: 10.1007/978-3-030-58517-4_36
– ident: ref22
  doi: 10.1016/j.psep.2023.07.080
– ident: ref27
  doi: 10.1109/CVPR46437.2021.01515
– ident: ref2
  doi: 10.1016/j.measurement.2024.115040
– ident: ref15
  doi: 10.1109/LSP.2020.2977498
– ident: ref9
  doi: 10.1016/j.eswa.2023.120875
– ident: ref13
  doi: 10.1109/TIM.2024.3369153
– ident: ref5
  doi: 10.1109/tip.2022.3153138
– ident: ref25
  doi: 10.1609/aaai.v34i03.5631
– ident: ref24
  doi: 10.1109/CVPR46437.2021.01496
– ident: ref1
  doi: 10.1109/TIM.2024.3374311
– ident: ref10
  doi: 10.1109/TPAMI.2021.3127346
– ident: ref8
  doi: 10.1016/j.ymssp.2021.108036
– ident: ref12
  doi: 10.1109/TIM.2024.3373062
– ident: ref17
  doi: 10.1145/3469877.3490581
– ident: ref26
  doi: 10.3233/FAIA230528
– ident: ref18
  doi: 10.1609/aaai.v34i04.6069
– ident: ref3
  doi: 10.1109/TPAMI.2021.3140070
– ident: ref29
  doi: 10.1109/JPROC.2021.3058954
– ident: ref21
  doi: 10.1109/TII.2024.3359460
– ident: ref11
  doi: 10.1109/TNNLS.2021.3083367
– ident: ref6
  doi: 10.1109/TII.2020.2988208
– ident: ref14
  doi: 10.1109/ICASSP43922.2022.9747741
– ident: ref4
  doi: 10.1109/TCST.2020.3015514
– start-page: 1
  volume-title: Proc. 2021 Int. Conf. Learn. Represent. (ICLR)
  ident: ref23
  article-title: Counterfactual generative networks
– ident: ref16
  doi: 10.1109/CVPR46437.2021.00240
– ident: ref7
  doi: 10.1016/j.eswa.2023.119642
SSID ssj0007647
Score 2.4240687
Snippet Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Compounds
Counterfactual inference
Data models
Fault diagnosis
Faults
generalized zero-shot learning (GZSL)
generative adversarial network
Generative adversarial networks
Inference
Neural networks
Predictive models
rolling bearing
Semantics
Training
Zero shot learning
Title Counterfactual Inference for Generalized Zero-Shot Compound-Fault Diagnosis
URI https://ieeexplore.ieee.org/document/10979452
https://www.proquest.com/docview/3204788283
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60IOjBR61YrbIHLx6S5rF5HUUtrdJebKF4CZvdDRalkTa59Nc7s5tIUQRvSUjCMrM7-83OzDeE3GQyQDeCWxz2bovlgUDK28hyBMARJV2hdB-y8SQcztjTPJjXxeq6FkYppZPPlI2XOpYvC1HhUVkfo6UJC8Di7oLnZoq1vs1uFDJDkOnCCgZY0MQknaQ_HY3BE_QC2wf44mBf4q09SDdV-WWJ9fYyOCKTZmAmq-TdrsrMFpsfnI3_HvkxOayBJr0zM-OE7Khlmxxs0Q-2yZ5O_xTrU_KMpenYsJrrehI6asoAKWBaWlNTLzZK0le1KqyXt6KkaEmwJ5M14NVHSR9Mzt5i3SGzweP0fmjVbRYs4bGotHLlSRVnHICil_uBSOCBmzkSbwG8MIysCeFFUrIkzhMlQs4iLkOHRxi1dvwz0loWS3VOKHhfcax4Bk5LjsxniQLAmWecJZ4rIsftkttG8OmnYdNItRfiJCkoKUUlpbWSuqSDctx6z4iwS3qNqtJ6va1T30OWIfAe_Ys_Prsk-_h3c3rSI61yVakrwBNldq3n0RdpK8WY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTttAEB4BFaIc2vJTEUrpHuDAwcFer-P40EMFjRJCuBAkxMWsd8cCUSUVcVSVd-FVeDZm1jaKQByRuNmWf-Sd0cw3OzPfAOxkNuIwQnuafLen8sgw5W3s-YbgCNrAoJtDNjhpdc_U0Xl0Pgf3T70wiOiKz7DJhy6Xb8dmyltl-5wtTVQkqxrKPv7_RxHa5GfvkMS5K2Xn9_Cg61VDBDwjVVx4OUqL7UwTDJJ5GJmELgSZb_mUXLPivJExMrZWJe08QdPSKta25euYc7J-SO-dhw8ENCJZtoc9Gfq4pUpKzoBsBgGROgvqJ_vD3oBiTxk1QwJMPk9CnvF6bozLC9vvHFrnMzzUS1HWsdw0p0XWNHfPWCLf7Vp9gU8VlBa_St1fgTkcrcLyDMHiKiy6AlczWYM-N9_zSG7tOmZEr250FITaRUW-fX2HVlzg7dg7vRoXgm0lT53yOnr6pxCHZVXi9WQdzt7kv77Cwmg8wg0QFF-226gzCsty5nZLkCB1nmmVyMDEftCAvVrQ6d-SLyR1cZafpKQUKStFWilFA9ZZbjP3lSJrwFatGmllUSZpKJlHieLjcPOVx37AUnc4OE6Peyf9b_CRv1TuFW3BQnE7xe-Enops2-mwgMu3VoRHYDAi5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counterfactual+Inference+for+Generalized+Zero-Shot+Compound-Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Xu%2C+Juan&rft.au=Kong%2C+Hui&rft.au=Ding%2C+Xu&rft.au=Yuan%2C+Xiaohui&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2025.3565070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3565070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon