Counterfactual Inference for Generalized Zero-Shot Compound-Fault Diagnosis
Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data in an...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data in an interpretable manner, divulging critical causes from the observable phenomena. This article proposes a method to address the imbalance and interpretability issues of generalized zero-shot learning (GZSL) methods for compound-fault diagnosis using counterfactual inference. Our method uses a structural causal model (SCM) to decouple and generate fault features, which enhances the capabilities of the variational autoencoder and generative adversarial network (VAE-GAN) through a strengthened discriminator, and reveals the intrinsic causal components in fault data, distinguishing key fault causes from accompanying phenomena. This enables the classification of both single and compound faults by learning from examples of single faults, easing the dependence on the examples of compound faults. Extensive experimental results show that our method, trained solely with single-fault samples, achieves a harmonic average of 87.40% accuracy for both single and compound faults, outperforming existing state-of-the-art methods. This significantly improves both the accuracy and interpretability of compound-fault diagnosis. |
---|---|
AbstractList | Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data in an interpretable manner, divulging critical causes from the observable phenomena. This article proposes a method to address the imbalance and interpretability issues of generalized zero-shot learning (GZSL) methods for compound-fault diagnosis using counterfactual inference. Our method uses a structural causal model (SCM) to decouple and generate fault features, which enhances the capabilities of the variational autoencoder and generative adversarial network (VAE-GAN) through a strengthened discriminator, and reveals the intrinsic causal components in fault data, distinguishing key fault causes from accompanying phenomena. This enables the classification of both single and compound faults by learning from examples of single faults, easing the dependence on the examples of compound faults. Extensive experimental results show that our method, trained solely with single-fault samples, achieves a harmonic average of 87.40% accuracy for both single and compound faults, outperforming existing state-of-the-art methods. This significantly improves both the accuracy and interpretability of compound-fault diagnosis. |
Author | Kong, Hui Yuan, Xiaohui Ding, Xu Xu, Juan |
Author_xml | – sequence: 1 givenname: Juan orcidid: 0000-0002-6626-1700 surname: Xu fullname: Xu, Juan email: xujuan@hfut.edu.cn organization: Key Laboratory of Knowledge Engineering With Big Data, Ministry of Education, School of Computer and Information, Hefei University of Technology, Hefei, China – sequence: 2 givenname: Hui orcidid: 0009-0000-5482-3369 surname: Kong fullname: Kong, Hui email: 2022111040@mail.hfut.edu.cn organization: Key Laboratory of Knowledge Engineering With Big Data, Ministry of Education, School of Computer and Information, Hefei University of Technology, Hefei, China – sequence: 3 givenname: Xu orcidid: 0000-0002-7669-4139 surname: Ding fullname: Ding, Xu email: dingxu@hfut.edu.cn organization: Key Laboratory of Knowledge Engineering With Big Data, Ministry of Education, School of Computer and Information, Hefei University of Technology, Hefei, China – sequence: 4 givenname: Xiaohui orcidid: 0000-0001-6897-4563 surname: Yuan fullname: Yuan, Xiaohui email: xiaohui.yuan@unt.edu organization: Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA |
BookMark | eNpNkD1PwzAQhi1UJNrCzsAQiTnFdvwRjyjQUlHEQFlYItc5Q6rULnYywK_HVTswne70PnenZ4JGzjtA6JrgGSFY3a2XLzOKKZ8VXHAs8RkaE85lroSgIzTGmJS5YlxcoEmMW4yxFEyO0XPlB9dDsNr0g-6ypbMQwBnIrA_ZAhwE3bW_0GQfEHz-9uX7rPK7faKafK6Hrs8eWv3pfGzjJTq3uotwdapT9D5_XFdP-ep1sazuV7mhTPa5BdpAudGKCGoLblQakA1uDq0qJGO8pMZQ2TRMlVaBEZpJ3QisJZXp8WKKbo9798F_DxD7euuH4NLJuqCYybKkZZFS-JgywccYwNb70O50-KkJrg_K6qSsPiirT8oScnNEWgD4F1cymaPFHzH_aTs |
CODEN | IEIMAO |
Cites_doi | 10.1109/CVPR46437.2021.00947 10.1109/ICCV48922.2021.00019 10.1007/978-3-030-58517-4_36 10.1016/j.psep.2023.07.080 10.1109/CVPR46437.2021.01515 10.1016/j.measurement.2024.115040 10.1109/LSP.2020.2977498 10.1016/j.eswa.2023.120875 10.1109/TIM.2024.3369153 10.1109/tip.2022.3153138 10.1609/aaai.v34i03.5631 10.1109/CVPR46437.2021.01496 10.1109/TIM.2024.3374311 10.1109/TPAMI.2021.3127346 10.1016/j.ymssp.2021.108036 10.1109/TIM.2024.3373062 10.1145/3469877.3490581 10.3233/FAIA230528 10.1609/aaai.v34i04.6069 10.1109/TPAMI.2021.3140070 10.1109/JPROC.2021.3058954 10.1109/TII.2024.3359460 10.1109/TNNLS.2021.3083367 10.1109/TII.2020.2988208 10.1109/ICASSP43922.2022.9747741 10.1109/TCST.2020.3015514 10.1109/CVPR46437.2021.00240 10.1016/j.eswa.2023.119642 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2025.3565070 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 11 |
ExternalDocumentID | 10_1109_TIM_2025_3565070 10979452 |
Genre | orig-research |
GrantInformation_xml | – fundername: Dreams Foundation of Jianghuai Advance Technology Center grantid: 2023-ZM01J003 – fundername: Open Foundation of State Key Laboratory of High-End Compressor and System Technology grantid: SKL-YSJ202307 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 52375089 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c247t-fe2de8ba9162f35c9fe21b0d162f93744582cc27dd498f9ec6a47ad60a7270003 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 07:40:51 EDT 2025 Tue Jul 29 02:14:11 EDT 2025 Wed Aug 27 02:01:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c247t-fe2de8ba9162f35c9fe21b0d162f93744582cc27dd498f9ec6a47ad60a7270003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6897-4563 0009-0000-5482-3369 0000-0002-6626-1700 0000-0002-7669-4139 |
PQID | 3204788283 |
PQPubID | 85462 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TIM_2025_3565070 proquest_journals_3204788283 ieee_primary_10979452 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Sauer (ref23) |
References_xml | – ident: ref28 doi: 10.1109/CVPR46437.2021.00947 – ident: ref19 doi: 10.1109/ICCV48922.2021.00019 – ident: ref20 doi: 10.1007/978-3-030-58517-4_36 – ident: ref22 doi: 10.1016/j.psep.2023.07.080 – ident: ref27 doi: 10.1109/CVPR46437.2021.01515 – ident: ref2 doi: 10.1016/j.measurement.2024.115040 – ident: ref15 doi: 10.1109/LSP.2020.2977498 – ident: ref9 doi: 10.1016/j.eswa.2023.120875 – ident: ref13 doi: 10.1109/TIM.2024.3369153 – ident: ref5 doi: 10.1109/tip.2022.3153138 – ident: ref25 doi: 10.1609/aaai.v34i03.5631 – ident: ref24 doi: 10.1109/CVPR46437.2021.01496 – ident: ref1 doi: 10.1109/TIM.2024.3374311 – ident: ref10 doi: 10.1109/TPAMI.2021.3127346 – ident: ref8 doi: 10.1016/j.ymssp.2021.108036 – ident: ref12 doi: 10.1109/TIM.2024.3373062 – ident: ref17 doi: 10.1145/3469877.3490581 – ident: ref26 doi: 10.3233/FAIA230528 – ident: ref18 doi: 10.1609/aaai.v34i04.6069 – ident: ref3 doi: 10.1109/TPAMI.2021.3140070 – ident: ref29 doi: 10.1109/JPROC.2021.3058954 – ident: ref21 doi: 10.1109/TII.2024.3359460 – ident: ref11 doi: 10.1109/TNNLS.2021.3083367 – ident: ref6 doi: 10.1109/TII.2020.2988208 – ident: ref14 doi: 10.1109/ICASSP43922.2022.9747741 – ident: ref4 doi: 10.1109/TCST.2020.3015514 – start-page: 1 volume-title: Proc. 2021 Int. Conf. Learn. Represent. (ICLR) ident: ref23 article-title: Counterfactual generative networks – ident: ref16 doi: 10.1109/CVPR46437.2021.00240 – ident: ref7 doi: 10.1016/j.eswa.2023.119642 |
SSID | ssj0007647 |
Score | 2.4240687 |
Snippet | Learning a model heavily depends on the training examples, which are sometimes difficult to obtain if not impossible. This a typically true for fault diagnosis... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Compounds Counterfactual inference Data models Fault diagnosis Faults generalized zero-shot learning (GZSL) generative adversarial network Generative adversarial networks Inference Neural networks Predictive models rolling bearing Semantics Training Zero shot learning |
Title | Counterfactual Inference for Generalized Zero-Shot Compound-Fault Diagnosis |
URI | https://ieeexplore.ieee.org/document/10979452 https://www.proquest.com/docview/3204788283 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60IOjBR61YrbIHLx6S5rF5HUUtrdJebKF4CZvdDRalkTa59Nc7s5tIUQRvSUjCMrM7-83OzDeE3GQyQDeCWxz2bovlgUDK28hyBMARJV2hdB-y8SQcztjTPJjXxeq6FkYppZPPlI2XOpYvC1HhUVkfo6UJC8Di7oLnZoq1vs1uFDJDkOnCCgZY0MQknaQ_HY3BE_QC2wf44mBf4q09SDdV-WWJ9fYyOCKTZmAmq-TdrsrMFpsfnI3_HvkxOayBJr0zM-OE7Khlmxxs0Q-2yZ5O_xTrU_KMpenYsJrrehI6asoAKWBaWlNTLzZK0le1KqyXt6KkaEmwJ5M14NVHSR9Mzt5i3SGzweP0fmjVbRYs4bGotHLlSRVnHICil_uBSOCBmzkSbwG8MIysCeFFUrIkzhMlQs4iLkOHRxi1dvwz0loWS3VOKHhfcax4Bk5LjsxniQLAmWecJZ4rIsftkttG8OmnYdNItRfiJCkoKUUlpbWSuqSDctx6z4iwS3qNqtJ6va1T30OWIfAe_Ys_Prsk-_h3c3rSI61yVakrwBNldq3n0RdpK8WY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTttAEB4BFaIc2vJTEUrpHuDAwcFer-P40EMFjRJCuBAkxMWsd8cCUSUVcVSVd-FVeDZm1jaKQByRuNmWf-Sd0cw3OzPfAOxkNuIwQnuafLen8sgw5W3s-YbgCNrAoJtDNjhpdc_U0Xl0Pgf3T70wiOiKz7DJhy6Xb8dmyltl-5wtTVQkqxrKPv7_RxHa5GfvkMS5K2Xn9_Cg61VDBDwjVVx4OUqL7UwTDJJ5GJmELgSZb_mUXLPivJExMrZWJe08QdPSKta25euYc7J-SO-dhw8ENCJZtoc9Gfq4pUpKzoBsBgGROgvqJ_vD3oBiTxk1QwJMPk9CnvF6bozLC9vvHFrnMzzUS1HWsdw0p0XWNHfPWCLf7Vp9gU8VlBa_St1fgTkcrcLyDMHiKiy6AlczWYM-N9_zSG7tOmZEr250FITaRUW-fX2HVlzg7dg7vRoXgm0lT53yOnr6pxCHZVXi9WQdzt7kv77Cwmg8wg0QFF-226gzCsty5nZLkCB1nmmVyMDEftCAvVrQ6d-SLyR1cZafpKQUKStFWilFA9ZZbjP3lSJrwFatGmllUSZpKJlHieLjcPOVx37AUnc4OE6Peyf9b_CRv1TuFW3BQnE7xe-Enops2-mwgMu3VoRHYDAi5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counterfactual+Inference+for+Generalized+Zero-Shot+Compound-Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Xu%2C+Juan&rft.au=Kong%2C+Hui&rft.au=Ding%2C+Xu&rft.au=Yuan%2C+Xiaohui&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2025.3565070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3565070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |